CN205640347U - 一种led直管灯 - Google Patents

一种led直管灯 Download PDF

Info

Publication number
CN205640347U
CN205640347U CN201620102545.8U CN201620102545U CN205640347U CN 205640347 U CN205640347 U CN 205640347U CN 201620102545 U CN201620102545 U CN 201620102545U CN 205640347 U CN205640347 U CN 205640347U
Authority
CN
China
Prior art keywords
circuit
pin
led
electrical switch
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620102545.8U
Other languages
English (en)
Inventor
叶奇峰
张跃强
熊爱明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Super Lighting Electric Appliance Co Ltd
Original Assignee
Jiaxing Super Lighting Electric Appliance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Super Lighting Electric Appliance Co Ltd filed Critical Jiaxing Super Lighting Electric Appliance Co Ltd
Application granted granted Critical
Publication of CN205640347U publication Critical patent/CN205640347U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种LED直管灯,包含灯管;第一接脚及第二接脚,都耦接所述灯管,用以接收一外部驱动信号;第一整流电路,用以对所述外部驱动信号进行整流,以产生一整流后信号;滤波电路,与所述第一整流电路耦接,用以对所述整流后信号进行滤波,以产生滤波后信号;LED驱动模块,与所述滤波电路耦接,以接收所述滤波后信号以发光;以及镇流兼容电路,耦接于所述第一整流电路。所述LED直管灯用于当所述外部驱动信号被初始施加于所述第一接脚及所述第二接脚时,所述镇流兼容电路处于开路状态,使所述LED直管灯未发光,直到所述镇流兼容电路进入导通状态,其中所述导通状态允许电流从所述第一接脚或所述第二接脚输入后通过所述LED驱动模块以使所述LED直管灯发光。

Description

一种LED直管灯
本申请要求2015年2月12日提交中国专利局、申请号为201510075925.7、发明名称为“LED日光灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年3月10日提交中国专利局、申请号为201510104823.3、发明名称为“发光二极管灯管及镇流侦测电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年3月26日提交中国专利局、申请号为201510134586.5、发明名称为“一种发光二极管灯管”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年3月27日提交中国专利局、申请号为201510136796.8、发明名称为“LED日光灯的制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年6月26日提交中国专利局、申请号为201510372375.5、发明名称为“LED灯管的电流控制方法及其控制电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年5月29日提交中国专利局、申请号为201510284720.x、发明名称为“发光二极管驱动电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年6月26日提交中国专利局、申请号为201510373492.3、发明名称为“一种LED日光灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年8月7日提交中国专利局、申请号为201510482944.1、发明名称为“LED日光灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年8月8日提交中国专利局、申请号为201510486115.0、发明名称为“LED日光灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年7月20日提交中国专利局、申请号为201510428680.1、发明名称为“一种LED日光灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年8月8日提交中国专利局、申请号为201510483475.5、发明名称为“LED日光灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年9月2日提交中国专利局、申请号为201510555543.4、发明名称为“LED直管灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年9月6日提交中国专利局、申请号为201510557717.0、发明名称为“LED直管灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年9月18日提交中国专利局、申请号为201510595173.7、发明名称为“LED直管灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年6月17日提交中国专利局、申请号为201510338027.6、发明名称为“一种LED日光灯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求2015年4月14日提交中国专利局、申请号为201510173861.4、发明名称为“照明用光源及其照明装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及照明器具领域,具体涉及一种LED(light-emitting diode)直管灯。
背景技术
LED照明技术正快速发展而取代了传统的白炽灯及萤光灯。相较于充填有惰性气体及水银的萤光灯而言,LED直管灯无须充填水银。因此,在各种由像是传统萤光灯泡及灯管等照明选项所主宰的家用或工作场所用的照明系统中,LED直管灯无意外地逐渐成为人们高度期待的照明选项。LED直管灯的优点包含提升的耐用性及寿命以及较低耗能。因此,考虑所有因素后,LED直管灯将会是可节省成本的照明选项。
已知LED直管灯一般包括灯管、设于灯管内且带有光源的电路板,以及设于灯管两端的灯头,灯头内设有电源,光源与电源之间通过电路板进行电气连接。然而,现有的LED直管灯仍有一些质量问题需解决。
例如,现有的LED直管灯的电路设计,对于符合相关的认证规范以及与现有的日光灯使用电子镇流器的驱动架构的兼容性之间,并未能提供适当的解决方案。举例来说,日光灯内部并无电子组件,对于符合照明设备的UL认证、EMI的规范上相当简单。然而,LED直管灯具有相当多的电子组件于灯内,各电子组件间的布局不易符合UL认证、EMI的规范。
市售常见的电子镇流器主要可分成瞬时启动型(Instant Start)电子镇流器、预热启动型(Program Start)电子镇流器两种。电子镇流器具有谐振电路,其驱动设计与日光灯的负载特性匹配,即电子镇流器在日光灯在点亮前为电容性组件,而点亮后为电阻性组件,提供对应的启动程序,而使日光灯可以正确的点亮。而LED为非线性组件,与日光灯的特性全然不同。因此,LED直管灯会影响电子镇流器的谐振设计,而造成兼容性问题。一般而言,预热启动型电子镇流器会侦测灯丝,而传统的LED驱动电路无法支持而造成侦测失败而无法启动。另 外,电子镇流器等效上为电流源,做为LED直管灯的直流转直流转换器的电源时,容易造成过流过压或者欠流欠压,因而导致电子组件损坏或LED直管灯无法稳定提供照明。
再来,LED驱动所用的驱动信号为直流信号,然而日光灯的驱动信号为市电的低频、低压交流信号或电子镇流器的高频、高压交流信号,甚至应用于紧急照明时,紧急照明的电池为直流信号。不同驱动信号间的电压、频率范围落差大,并非简单进行整流即可使LED灯兼容地被使用于日光灯的灯座中(而替代日光灯),且仅简单进行整流(或加上滤波等处理)即对LED组件供电易造成流经LED组件之电流值不稳定(而易造成照明效果不稳定)。
有鉴于上述问题,以下提出本实用新型及其实施例。
实用新型内容
本实用新型提供一种新的LED直管灯,以及其各个方面(与特征),以解决上述问题。
本实用新型提供一种LED直管灯,其特征在于包含:一灯管;一第一接脚及一第二接脚,都耦接所述灯管,用以接收一外部驱动信号;一第一整流电路,耦接所述第一接脚及所述第二接脚,用以对所述外部驱动信号进行整流,以产生一整流后信号;一滤波电路,与所述第一整流电路耦接,用以对所述整流后信号进行滤波,以产生一滤波后信号;一LED驱动模块,与所述滤波电路耦接,以接收所述滤波后信号以发光;以及一镇流兼容电路,耦接于所述第一整流电路。所述LED直管灯用于当所述外部驱动信号被初始施加于所述第一接脚及所述第二接脚时,所述镇流兼容电路处于一开路状态,使所述LED直管灯未发光,直到所述镇流兼容电路进入一导通状态,其中所述导通状态允许一电流从所述第一接脚或所述第二接脚输入后通过所述LED驱动模块以使所述LED直管灯发光。
在一些实施例中,所述镇流兼容电路耦接于所述第一接脚或第二接脚以及所述第一整流电路之间,或耦接于所述第一整流电路以及所述滤波电路之间。
在一些实施例中,所述灯管还具有一第三接脚以及一第四接脚,用以接收所述外部驱动信号,且所述LED直管灯还包含一第二整流电路;所述第二整流电路耦接所述第三接脚及所述第四接脚,用以对所述外部驱动信号进行整流。进一步,所述镇流兼容电路可以也耦接于所述第二整流电路以及所述滤波电路之间。
在实施例中,无论有无所述第三接脚、第四接脚、第二整流电路,所述LED直管灯可还包含一灯板,贴附于所述灯管的一内管壁上。所述灯板包含一可挠式电路板;而所述LED驱动模块包含一LED模块,其中所述LED模块包含一LED 组件且被设置于所述可挠式电路板上。
在一些实施例中,所述镇流兼容电路包含一第一电子开关、一第二电子开关、以及一第一电容器。所述第一电子开关的一端耦接于所述第二电子开关,而另一端耦接于所述第一电容器。所述镇流兼容电路用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关处于开路状态,而所述第一电容器被充电直到使所述第一电子开关导通以至于触发所述第二电子开关导通,而所述第二电子开关之导通使所述镇流兼容电路进入所述导通状态。进一步,所述镇流兼容电路可以还包含另一电容器。所述另一电容器具有一端耦接所述镇流兼容电路的一输入/输出端与所述第二电子开关的一耦接点,且具有另一端耦接所述第一电子开关与所述第一电容器的一耦接点,且用以反映所述镇流兼容电路的一输入端及一输出端之间电压差的瞬间变化。
在一些实施例中,所述镇流兼容电路包含一第一电子开关以及一第二电子开关,且所述第一电子开关的一端耦接于所述第二电子开关。所述镇流兼容电路用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关处于开路状态,然后所述外部驱动信号经过一二极管或所述第一整流电路而产生一直流信号,直到所述直流信号达到一振幅使所述第一电子开关导通以至于触发所述第二电子开关导通,所述第二电子开关之导通使所述镇流兼容电路进入所述导通状态。在此情形中,所述镇流兼容电路可还包含一分压电路,用于让所述外部驱动信号经过所述二极管或所述第一整流电路后经过所述分压电路,因而产生所述直流信号。
在实施例中,上述第一电子开关可包含一双向触发二极管(DIAC)或构成一固体放电管(Thyristor Surge Suppressor)。而在实施例中,所述第二电子开关可包含一双向可控硅(TRIAC)或一硅控整流器(SCR)。
在一些实施例中,从所述外部驱动信号被初始施加于所述第一接脚及第二接脚起,经过一期间后所述镇流兼容电路进入所述导通状态,其中所述期间介于10毫秒与1秒之间。进一步,所述期间可介于10毫秒与300毫秒之间。
本实用新型还提供一种LED直管灯,其特征在于包含:一灯管、一第一接脚及一第二接脚、一第一整流电路、一滤波电路、一LED驱动模块、以及一镇流兼容电路。所述第一接脚及第二接脚都耦接所述灯管,用以接收一外部驱动信号。所述第一整流电路耦接所述第一接脚及所述第二接脚,且用以对所述外部驱动 信号进行整流,以产生一整流后信号。所述第一整流电路包含一整流单元以及一端点转换电路,其中所述整流单元耦接所述端点转换电路,且被配置以进行半波整流;而所述端点转换电路用以传递所述第一接脚和/或第二接脚所接收的所述外部驱动信号。所述滤波电路与所述第一整流电路耦接,且用以对所述整流后信号进行滤波,以产生一滤波后信号。所述LED驱动模块与所述滤波电路耦接,以接收所述滤波后信号以发光。所述镇流兼容电路耦接于所述整流单元以及所述端点转换电路之间。所述LED直管灯用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述镇流兼容电路处于一开路状态,使所述LED直管灯未发光,直到所述镇流兼容电路进入一导通状态,所述导通状态允许一电流从所述第一接脚或第二接脚输入后通过所述LED驱动模块以使所述LED直管灯发光。
在一些实施例中,所述整流单元包含二整流二极管,且所述的二整流二极管其中之一的正端连接另一的负端形成一半波连接点,且所述镇流兼容电路耦接所述半波连接点。
在一些实施例中,所述镇流兼容电路包含一第一电子开关、一第二电子开关、以及一第一电容器。所述第一电子开关的一端耦接于所述第二电子开关,而另一端耦接于所述第一电容器。所述镇流兼容电路用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关处于开路状态,而所述第一电容器被充电直到使所述第一电子开关导通以至于触发所述第二电子开关导通,所述第二电子开关之导通使所述镇流兼容电路进入所述导通状态。
在一些实施例中,所述镇流兼容电路包含一第一电子开关以及一第二电子开关。所述第一电子开关的一端耦接于所述第二电子开关。所述镇流兼容电路用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关处于开路状态,然后所述外部驱动信号经过一二极管或所述第一整流电路而产生一直流信号,直到所述直流信号达到一振幅使所述第一电子开关导通以至于触发所述第二电子开关导通,所述第二电子开关之导通使所述镇流兼容电路进入所述导通状态。在此情形中,所述镇流兼容电路可还包含一分压电路,用于让所述外部驱动信号经过所述二极管或所述第一整流电路后经过所述分压电路,因而产生所述直流信号。
在实施例中,上述第一电子开关可包含一双向触发二极管或构成一固体放电管。而 在实施例中,所述第二电子开关可包含一双向可控硅或一硅控整流器。
有益效果
采用本新型方案的LED直管灯,在电源组件的镇流兼容电路设计中,可以与整流电路串联。在与整流电路串联的设计中,镇流兼容电路的初始状态为截止,并经过设定延迟时间后导通。镇流兼容电路可以在启动初期使瞬时启动型电子镇流器能顺利启动,而改善对瞬时启动型电子镇流器的兼容性。而且镇流兼容电路几乎不影响预热启动型电子镇流器、快速启动型电子镇流器等其他电子镇流器的兼容性。
附图说明
图1是一立体图,显示本实用新型一实施例的LED直管灯;
图1A是一立体图,显示本实用新型另一实施例的LED直管灯的灯管两端的灯头具有不同尺寸;
图2是一立体分解图,显示图1的LED直管灯;
图3是一立体图,显示本实用新型一实施例的LED直管灯的灯头的前部及顶部;
图4是一立体图,显示图3的LED直管灯的灯头的底部;
图5是一立体图,显示本实用新型又一实施例LED直管灯中的再一灯头结构;
图6是一平面剖视图,显示本实用新型一实施例的LED直管灯的灯板为可挠式电路软板且其末端爬过灯管的过渡部而与电源的输出端焊接连接;
图7是一平面剖视图,显示本实用新型一实施例LED直管灯的灯板的可挠式电路软板具双层结构;
图8是一立体图,显示本实用新型一实施例LED直管灯的灯板的可挠式电路软板的用与电源的印刷电路板焊接连接的焊盘;
图9是一平面图,显示本实用新型一实施例LED直管灯的灯板的可挠式电路软板的焊盘配置;
图10是一平面图,显示本实用新型另一实施例LED直管灯的灯板的可挠式电路软板具有3个呈一列并排的焊盘;
图11是一平面图,显示本实用新型再一实施例LED直管灯的灯板的可挠式电路软板具有3个呈两列并排的焊盘;
图12是一平面图,显示本实用新型又一实施例LED直管灯的灯板的可挠式电路软板具有4个呈一列并排焊盘的焊盘;
图13是一平面图,显示本实用新型仍一实施例LED直管灯的灯板的可挠式电路软板具有 4个呈两列并排的焊盘;
图14是一平面图,显示本实用新型一实施例LED直管灯的灯板的可挠式电路软板的焊盘上具有孔洞;
图15是一平面剖视图,显示利用图14的灯板的可挠式电路软板的焊盘与电源的印刷电路板的焊接过程;
图16是一平面剖视图,显示利用图14的灯板的可挠式电路软板的焊盘与电源的印刷电路板的焊接过程,其中焊盘上的孔洞靠近可挠式电路软板的边缘;
图17是一平面图,显示本实用新型一实施例LED直管灯的灯板的可挠式电路软板的焊盘具有缺口;
图18是一平面剖视图,显示沿图17中A-A'线的局部放大剖面;
图19是一立体图,显示本实用新型另一实施例LED直管灯的灯板的可挠式电路软板与电源的印刷电路板结合成一电路板组件;
图20是一立体图,显示图19的电路板组件的另一配置;
图21是一立体图,显示本实用新型一实施例LED直管灯中的电源;
图22是一立体图,显示本实用新型另一实施例LED直管灯中,电源的电路板垂直地焊接至铝制的硬式电路板上;
图23是一立体图,显示本实用新型另一实施例中,灯板的可挠式电路软板具双层线路层;
图24A为根据本实用新型第一较佳实施例的LED直管灯的电源组件的应用电路方块示意图;
图24B为根据本实用新型第二较佳实施例的LED直管灯的电源组件的应用电路方块示意图;
图24C为根据本实用新型第一较佳实施例的LED灯的电路方块示意图;
图24D为根据本实用新型第三较佳实施例的LED直管灯的电源组件的应用电路方块示意图;
图24E为根据本实用新型第二较佳实施例的LED灯的电路方块示意图;
图25A为根据本实用新型第一较佳实施例的整流电路的电路示意图;
图25B为根据本实用新型第二较佳实施例的整流电路的电路示意图;
图25C为根据本实用新型第三较佳实施例的整流电路的电路示意图;
图25D为根据本实用新型第四较佳实施例的整流电路的电路示意图;
图26A为根据本实用新型第一较佳实施例的端点转换电路的电路示意图;
图26B为根据本实用新型第二较佳实施例的端点转换电路的电路示意图;
图26C为根据本实用新型第三较佳实施例的端点转换电路的电路示意图;
图26D为根据本实用新型第四较佳实施例的端点转换电路的电路示意图;
图27A为根据本实用新型第一较佳实施例的滤波电路的电路方块示意图;
图27B为根据本实用新型第一较佳实施例的滤波单元的电路示意图;
图27C为根据本实用新型第二较佳实施例的滤波单元的电路示意图;
图27D为根据本实用新型第三较佳实施例的滤波单元的电路示意图;
图27E为根据本实用新型第四较佳实施例的滤波单元的电路示意图;
图28A为根据本实用新型第一较佳实施例的LED模块的电路示意图;
图28B为根据本实用新型第二较佳实施例的LED模块的电路示意图;
图28C为根据本实用新型第一较佳实施例的LED模块的走线示意图;
图28D为根据本实用新型第二较佳实施例的LED模块的走线示意图;
图28E为根据本实用新型第三较佳实施例的LED模块的走线示意图;
图29A为根据本实用新型第三较佳实施例的LED灯的电路方块示意图;
图29B为根据本实用新型第一较佳实施例的驱动电路的电路方块示意图;
图29C为根据本实用新型第一较佳实施例的驱动电路的电路示意图;
图29D为根据本实用新型第二较佳实施例的驱动电路的电路示意图;
图29E为根据本实用新型第三较佳实施例的驱动电路的电路示意图;
图29F为根据本实用新型第四较佳实施例的驱动电路的电路示意图;
图29G为根据本实用新型第二较佳实施例的驱动电路的电路方块示意图;
图29H为根据本实用新型一较佳实施例的电压Vin与电流Iout之区线关系示意图;
图30A为根据本实用新型第四较佳实施例的LED灯的电路方块示意图;
图30B为根据本实用新型第五较佳实施例的LED灯的电路方块示意图;
图30C为根据本实用新型较佳实施例的镇流兼容电路的电路配置示意图;
图30D为根据本实用新型第六较佳实施例的LED灯的电路方块示意图;
图30E为根据本实用新型第七较佳实施例的LED灯的电路方块示意图;
图30F为根据本实用新型第一较佳实施例的镇流兼容电路的电路示意图;
图30G为根据本实用新型第四较佳实施例的LED直管灯的电源组件的应用电路方块示意图;
图30H为根据本实用新型第二较佳实施例的镇流兼容电路的电路示意图。
具体实施方式
本实用新型在玻璃灯管的基础上,提出了一种新的LED直管灯,以解决背景技术中提到的问题以及上述问题。为使本实用新型的上述目的、特征和优点能够更为明显易懂,下面结合附图对本实用新型的具体实施例做详细的说明。下列本实用新型各实施例的叙述仅是为了 说明而为例示,并不表示为本实用新型的全部实施例或将本实用新型限制于特定实施例。
请参照图1与图2,本实用新型于一实施例中提供一种LED直管灯,其包括:一灯管1、一设于灯管1内的灯板2,以及分别设于灯管1两端的两个灯头3。灯管1可以采用塑料灯管或者玻璃灯管,所述灯头的尺寸大小为相同或不同。请参照图1A,在所述灯头的尺寸不相同的实施例中,优选地,所述较小灯头的尺寸为较大灯头尺寸的30%至80%。
在一实施例中,LED直管灯的灯管1采用具强化结构的玻璃灯管,以避免传统玻璃灯易破裂以及破裂因漏电而引发触电事故的问题,以及塑料灯容易老化的问题。本实用新型各实施例中,可以使用化学方式或是物理方式对玻璃制灯管1做二次加工强化。
请参照图3与图4,本实用新型一实施例中,LED直管灯的灯头3包括一绝缘管302,一固设于绝缘管302外周面上的导热部303,以及设于绝缘管302上的两支空心导电针301。所述导热部303可以是一管状的金属环。
在制作LED直管灯时,灯管1的末端区101插设于灯头3后,灯管1的末端区101插入灯头3部分的轴向长度占导热部303轴向长度的三分之一到三分之二之间,这样的好处是:一方面,保证空心导电针301与导热部303具有足够的爬电距离,通电时两者不易短接使人触电而引发危险;另一方面,由于绝缘管302的绝缘作用,使得空心导电针301与导热部303之间的爬电距离加大,更容易通过高电压时使人触电而引发危险的测试。
请参照图5及图22,于另一实施例中,灯头3’的端部设有一凸柱312,凸柱312的顶端开设有孔洞,其外缘设有一深度为0.1±1%mm的凹槽314可供导电引脚53定位。导电引脚53在穿出灯头3’端部凸柱312的孔洞之后,可弯折置于凹槽314之上,然后再以一导电金属帽311覆盖住凸柱312,如此,则可将导电引脚53固定在凸柱312与导电金属帽311之间,于本实施例中,导电金属帽311的内径例如为7.56±5%mm,而凸柱312的外径例如为7.23±5%mm,且导电引脚53外径例如为0.5±1%mm,因此导电金属帽311可直接紧密覆盖住凸柱312而不需要再额外涂覆黏胶,如此便可完成电源5与导电金属帽311的电气连接。
请参照图2、3、12、13,在其他实施例中,本实用新型所提供的灯头上设有用于散热的孔洞304。藉此,让位于灯头内部的电源模组产生的热能够散去而不会造成灯头内部处于高温状态,以避免灯头内部组件的可靠度下降。进一步地,灯头上用于散热的孔洞为弧形。进一步地,灯头上用于散热的孔洞为三条大小不一的弧线。进一步地,灯头上用于散热的孔洞为由小到大逐渐变化的三条弧线。进一步地,灯头上用于散热的孔洞可以为上述弧形,弧线的任意搭配所构成。
在其他实施例中,灯头中包含有一用于安装电源模组的电源插槽(图未示)。
在其他实施例中,可挠式电路软板的宽度可以加宽,由于电路板表面包括油墨材料的电路保护层,而油墨材料具有反射光线的作用,因此在加宽的部位,电路板本身便可以起到如反射膜12功能的效果。优选地,可挠式电路软板沿灯管2周向延伸的长度与所述灯管2内周面的周长之间的比例范围为0.3至0.5。可挠式电路软板外可包覆一电路保护层,电路保护层可以是一种油墨材料,具有增加反射的功能,加宽的可挠式电路软板以光源为起点向周向延伸,光源的光线会藉由加宽的部位使光线更加集中。
进一步地,灯板2可以是条状铝基板、FR4板或者可挠式电路软板中的任意一种。由于本实施例的灯管1为玻璃灯管,如果灯板2采用刚性的条状铝基板或者FR4板,那么当灯管破裂,例如断成两截后,整个灯管仍旧能够保持为直管的状态,这时使用者有可能会认为LED直管灯还可以使用、并去自行安装,容易导致触电事故。由于可挠式电路软板具有较强的可挠性与易弯曲的特性,解决刚性条状铝基板、FR4板可挠性与弯曲性不足的情况,因此本实施例的灯板2采用可挠式电路软板,这样当灯管1破裂后,即无法支撑破裂的灯管1继续保持为直管状态,以告知使用者LED直管灯已经不能使用,避免触电事故的发生。因此,当采用可挠式电路软板后,可以在一定程度上缓解由于玻璃管破碎而造成的触电问题。以下实施例即以可挠式电路软板作为灯板2来做说明。
请参照图7,作为灯板2的可挠式电路软板包括一层具有导电效果的线路层2a,光源202设于线路层2a上,通过线路层2a与电源电气连通。在此说明书中具导电效果的所述线路层又可称为导电层。参照图7,本实施例中,可挠式电路软板还可以包括一层介电层2b,与线路层2a迭置,介电层2b与线路层2a的面积相等,线路层2a在与介电层2b相背的表面用于设置光源202。线路层2a电性连接至电源5用以让直流电流通过。介电层2b在与线路层2a相背的表面则通过粘接剂片4粘接于灯管1的内周面上。其中,线路层2a可以是金属层,或者布有导线(例如铜线)的电源层。
在其他实施例中,线路层2a和介电层2b的外表面可以包覆一电路保护层,所述电路保护层可以是一种油墨材料,具有阻焊和增加反射的功能。或者,可挠式电路软板可以是一层结构,即只由一层线路层2a组成,然后在线路层2a的表面包覆一层上述油墨材料的电路保护层。不论是一层线路层2a结构或二层结构(一层线路层2a和一层介电层2b)都可以搭配电路保护层。电路保护层也可以在可挠式电路软板的一侧表面设置,例如仅在具有光源202之一侧设置电路保护层。需要注意的是,可挠式电路软板为一层线路层结构2a或为二层结构(一层线路层2a和一层介电层2b),明显比一般的三层柔性基板(二层线路层中夹一层介电层)更具可挠性与易弯曲性,因此,可与具有特殊造型的灯管1搭配(例如:非直管灯),而将 可挠式电路软板紧贴于灯管1管壁上。此外,可挠式电路软板紧贴于灯管管壁为较佳的配置,且可挠式电路软板的层数越少,则散热效果越好,并且材料成本越低,更环保,柔韧效果也有机会提升。
当然,本实用新型的可挠式电路软板并不仅限于一层或二层电路板,在其他实施例中,可挠式电路软板包括多层线路层2a与多层介电层2b,介电层2b与线路层2a会依序交错迭置且设于线路层2a与光源202相背的一侧,光源202设于多层线路层2a的最上一层,通过线路层2a的最上一层与电源电气连通。在其他实施例中,作为灯板2的可挠式电路软板的长度大于灯管的长度。
请参见图23,在一实施例中,作为灯板2的可挠式电路软板由上而下依序包括一第一线路层2a,一介电层2b及一第二线路层2c,第二线路层2c的厚度大于第一线路层2a的厚度,灯板2的长度大于灯管1的长度,其中在灯板2未设有光源202且突出于灯管1的末端区域上,第一线路层2a及第二线路层2c分别透过二个贯穿孔203及204电气连通,但贯穿孔203及204彼此不连通以避免短路。
藉此方式,由于第二线路层2c厚度较大,可起到支撑第一线路层2a及介电层2b的效果,同时让灯板2贴附于灯管1的内管壁上时不易产生偏移或变形,以提升制造良率。此外,第一线路层2a及第二线路层2c电气相连通,使得第一线路层2a上的电路布局可以延伸至第二线路层2c,让灯板2上的电路布局更为多元。再者,原本的电路布局走线从单层变成双层,灯板2上的线路层单层面积,亦即宽度方向上的尺寸,可以进一步减缩,让批次进行固晶的灯板数量可以增加,提升生产率。
进一步地,灯板2上未设有光源202且突出于灯管1的末端区域上的第一线路层2a及第二线路层2c,亦可直接被利用来实现电源模组的电路布局,而让电源模组直接配置在可挠式电路软板上得以实现。
请继续参照图2,灯板2上设有若干光源202,灯头3内设有电源5,光源202与电源5之间通过灯板2电气连通。本实用新型各实施例中,电源5可以为单个体(即所有电源模组都集成在一个部件中),并设于灯管1一端的灯头3中;或者电源5也可以分为两部分,称为双个体(即所有电源模组分别设置在两个部件中),并将两部分分别设于灯管两端的灯头3中。如果灯管1仅有一端作强化部处理时,电源优先选择为单个体,并设于强化后的末端区101所对应的灯头3中。
不管是单个体还是双个体,电源的形成方式都可以有多重选择,例如,电源可以为一种灌封成型后的模块,具体地,使用一种高导热的硅胶(导热系数≥0.7w/m·k),通过模具对 电源模组进行灌封成型,得到电源,这种方式得到的电源具有高绝缘、高散热、外形更规则的优点,且能够方便地与其他结构件配合。或者,电源也可以为不作灌封胶成型,直接将裸露的电源模组置入灯头内部,或者将裸露的电源模组用传统热缩管包住后,再置入灯头3内部。换言之,本实用新型各实施例中,电源5可为如图7所示以单片印刷电路板搭载电源模组的形式出现,亦可为如图21所示以单个体模块的形式出现。
请参照图2并结合图21,于一实施例中,电源5的一端具有公插51,另一端具有金属插针52,灯板2的端部设有母插201,灯头3上设有用于连接外部电源的空心导电针301。电源5的公插51插设于灯板2的母插201内,金属插针52插设于灯头3的空心导电针301内。此时公插51和母插201相当于转接头,用于将电源5和灯板2电连接。当金属插针52插入空心导电针301内后,经过外部冲压工具冲击空心导电针301,使得空心导电针301发生轻微的变形,从而固定住电源5上的金属插针52,并实现电气连接。通电时,电流依次通过空心导电针301、金属插针52、公插51以及母插201到达灯板2,并通过灯板2到达光源202。然而,电源5的结构则不限于图21所示模块化的样态。电源5可以是一载有电源模组的印刷电路板,再用公插51、母插201的连接方式与灯板2电性连接。
在其他实施例中,任何型式的电源5与灯板2之间的电性连接也可以用传统导线打线方式取代上述的公插51及母插201,即采用一根传统的金属导线,将金属导线的一端与电源电连接,另一端与灯板2电连接。进一步地,金属导线可包覆一绝缘套管以保护使用者免于触电。但导线打线连接的方式有可能在运输过程中会有断裂的问题,质量上稍差。
其他实施例中,电源5与灯板2之间的电性连接可以通过铆钉钉接、锡膏黏接、焊接或是以导线捆绑的方式来直接连接在一起。与前述灯板2的固定方式一致,可挠式电路软板的一侧表面通过粘接剂片4粘接固定于灯管1的内周面,而可挠式电路软板的两端可以选择固定或者不固定在灯管1的内周面上。
如果可挠式电路软板的两端固定在灯管1的内周面上,则优先考虑在可挠式电路软板上设置母插201,然后将电源5的公插51插入母插201实现电气连接。
如果灯板2沿灯管1轴向的两端不固定在灯管1的内周面上,如果采用导线连接,在后续搬动过程中,由于两端自由,在后续的搬动过程中容易发生晃动,因而有可能使得导线发生断裂。因此灯板2与电源5的连接方式优先选择为焊接。具体地,参照图6,可以直接将灯板2爬过强化部结构的过渡区103后焊接于电源5的输出端上,免去导线的使用,提高产品质量的稳定性。此时灯板2不需要设置母插201,电源5的输出端也不需要设置公插51。
如图8所示,具体作法可以是将电源5的输出端留出电源焊盘a,并在电源焊盘a上留锡、 以使得焊盘上的锡的厚度增加,方便焊接,相应的,在灯板2的端部上也留出光源焊盘b,并将电源5输出端的电源焊盘a与灯板2的光源焊盘b焊接在一起。将焊盘所在的平面定义为正面,则灯板2与电源5的连接方式以两者正面的焊盘对接最为稳固,但是在焊接时焊接压头典型而言压在灯板2的背面,隔着灯板2来对焊锡加热,比较容易出现可靠度的问题。如果如图14所示,将灯板2正面的光源焊盘b中间开出孔洞,再将其正面朝上迭加在电源5正面的电源焊盘a上来焊接,则焊接压头可以直接对焊锡加热熔解,对实务操作上较为容易实现。
如图8所示,上述实施例中,作为灯板2的可挠式电路软板大部分固定在灯管1的内周面上,只有在两端是不固定在灯管1的内周面上,不固定在灯管1内周面上的灯板2形成一自由部21,而灯板2固定在灯管1的内周面上。自由部21具有上述的焊盘b。在装配时,自由部21和电源5焊接的一端会带动自由部21向灯管1内部收缩。值得注意的是,当作为灯板2的可挠式电路软板如图23所示具有二层线路层2a及2c夹一介电层2b的结构时,前述灯板2未设有光源202且突出于灯管1的末端区域可作为自由部21,而让自由部21实现二层线路层的连通及电源模组的电路布局。
在本实施例中,当灯板2及电源5连接时,焊盘b及a及灯板上的光源202所在表面朝同一方向,而灯板2上的焊盘b上形成有如图14所示的贯通孔e,使得焊盘b及焊盘a相互连通。当灯板2的自由部21朝向灯管1的内部收缩而变形时,电源5的印刷电路板及灯板2之间的焊接连接部对电源5有一个侧向的拉力。进一步地,相较于电源5之焊盘a及灯板2上的焊盘b系面对面的情况,这里的电源5的印刷电路板及灯板2之间的焊接连接部对电源5还有一个向下的拉力。此一向下拉力来自于贯通孔e内的焊料而于电源5及灯板2之间形成一个更为强化及牢固的电性连接。
如图9所示,灯板2的光源焊盘b为两个不连接的焊盘,分别和光源202正负极电连接,焊盘的大小约为3.5×2mm2,电源5的印刷电路板上也有与其相对应的焊盘,焊盘的上方为便于焊接机台自动焊接而有预留锡,锡的厚度可为0.1至0.7mm,较佳值为0.3至0.5mm较为恰当,以0.4mm为最佳。在两个焊盘之间可设置一绝缘孔洞c,避免两个焊盘在焊接的过程中因焊锡熔接在一起而造成电性短路,此外在绝缘孔洞c的后方还可设置定位孔d,用来让自动焊接机台可正确判断出光源焊盘b的正确位置。
灯板的光源焊盘b至少有一个,分别和光源202正负极电连接。在其他实施例中,为了能达到兼容性及后续使用上的扩充性,光源焊盘b的数量可以具有一个以上,例如2个、3个、4个或是4个以上。当焊盘只有1个时,灯板对应二端都会分别与电源电连接,以形成 一回路,此时可利用电子组件取代的方式,例如:以电感取代电容当作稳流组件。如图10至13所示,当焊盘为3个时,第3个焊盘可以用作接地使用,当焊盘为4个时,第4个焊盘可以用来作信号输入端。相应的,电源焊盘a亦和光源焊盘b数量相同。当焊盘为3个以上时,焊盘间的排列可以为一列并排或是排成两列,依实际使用时的容置面积大小配置在适当的位置,只要彼此不电连接造成短路即可。在其他实施例中,若是将部份电路制作在可挠式电路软板上,光源焊盘b可以单独一个,焊盘数量愈少,在工艺上愈节省流程;焊盘数量愈多,可挠式电路软板和电源输出端的电连接固定愈增强。
如图14所示,在其他实施例中,光源焊盘b的内部可以具有焊接穿孔e的结构,焊接穿孔e的直径可为1至2mm,较佳为1.2至1.8mm,最佳为1.5mm,太小则焊接用的锡不易穿越。当电源5的电源焊盘a与灯板2的光源焊盘b焊接在一起时,焊接用的锡可以穿过所述的焊接穿孔e,然后堆积在焊接穿孔e上方冷却凝结,形成具有大于焊接穿孔e直径的焊球结构g,这个焊球结构g会起到像是钉子的功能,除了透过电源焊盘a和光源焊盘b之间的锡固定外,更可以因为焊球结构g的作用而增强电性连接的稳固定。
如图15至图16所示,在其他实施例中,当光源焊盘b的焊接穿孔e距离灯板2的边缘≦1mm时,焊接用的锡会穿过所述的孔洞e而堆积在孔洞上方边缘,过多的锡也会从灯板2的边缘往下方回流,然后与电源焊盘a上的锡凝结在一起,其结构就像是一个铆钉将灯板2牢牢的钉在电源5的电路板上,具有可靠的电性连接功能。如图17及图18所示,在其他实施例中,焊接缺口f取代了焊接穿孔e,焊盘的焊接穿孔是在边缘,焊接用的锡透过所述的焊接缺口f把电源焊盘a和光源焊盘b电连接固定,锡更容易爬上光源焊盘b而堆积在焊接缺口f周围,当冷却凝结后会有更多的锡形成具有大于焊接缺口f直径的焊球,这个焊球结构会让电性连接结构的固定能力增强。本实施例中,因为焊接缺口的设计,焊接用的锡起到像是C形钉子的功能。
焊盘的焊接穿孔不论是先形成好,或是在焊接的过程中直接用焊接压头或称热压头打穿,都可以达到本实施例所述的结构。所述的焊接压头其与焊锡接触的表面可以为平面,凹面,凸面或这些组合;而所述的焊接压头用于限制所欲焊接对象例如灯板2的表面可以为长条状或是网格状,所述的与焊锡接触的表面不完全将穿孔覆盖,确保焊锡能从穿孔穿出,当焊锡穿出焊接穿孔堆积在焊接穿孔周围时,凹部能提供焊球的容置位置。在其他实施例中,作为灯板2的可挠式电路软板具有一定位孔,在焊接时可以透过定位孔将电源焊盘a和光源焊盘b的焊盘精准的定位。
于上述实施例中,灯板2的光源焊盘b和电源5的电源焊盘a可透过焊接方式固定,焊 盘的穿孔不论是先形成好,或是在焊接的过程中系直接用焊接压头打穿。
请参照图9,灯板2与电源5的印刷电路板上也有与其相对应的焊盘,焊盘的上方为便于焊接机台自动焊接而有预留锡,一般而言锡的厚度较佳值为0.3至0.5mm则可以将灯板2稳固地焊接在电源5的印刷电路板上。
请参照图19和图20,在其它的实施方式中,上述透过焊接方式固定的灯板2和电源5可以用搭载有电源模组250的电路板组合件25取代。电路板组合件25具有一长电路板251和一短电路板253,长电路板251和短电路板253彼此贴合透过黏接方式固定,短电路板253位于长电路板251周缘附近。短电路板253上具有电源模组25,整体构成电源。短电路板253材质较长电路板251硬,以达到支撑电源模组250的作用。
长电路板251可以为上述作为灯板2的可挠式电路软板或柔性基板,且具有图7所示的线路层2a。灯板2的线路层2a和电源模组250电连接的方式可依实际使用情况有不同的电连接方式。如图19所示,电源模组250和长电路板251上将与电源模组250电性连接的线路层2a皆位于短电路板253的同一侧,电源模组250直接与长电路板251电气连接。如图20所示,电源模组250和长电路板251上将与电源模组250电性连接的线路层2a系分别位于短电路板253的两侧,电源模组250穿透过短电路板253和灯板2的线路层2a电气连接。
如图19所示,在一实施例中,电路板组合件25省略了前述实施例中灯板2和电源5要用焊接的方式固定的情况,而是先将长电路板251和短电路板253黏接固定,再将电源模组250和灯板2的线路层2a电气连接。此外,灯板2如上述并不仅限于一层或二层电路板,可以是如图23所示还包含另一层线路层2c。光源202设于线路层2a,通过线路层2a与电源5电气连通。如图20所示,在另一实施例中,电路板组合件25具有一长电路板251和一短电路板253,长电路板251可以为上述灯板2的可挠式电路软板或柔性基板,灯板2包括一线路层2a与一介电层2b,先将介电层2b和短电路板253以拼接方式固接,之后,再将线路层2a贴附在介电层2b上并延伸至短电路板253上。以上各实施例,均不脱离本实用新型电路板组合件25的应用范围。
在上述各实施例中,短电路板253的长度约为15毫米至40毫米,较佳为19毫米至36毫米,长电路板251的长度可为800毫米至2800毫米,较佳为1200毫米至2400毫米。短电路板253和长电路板251的比例可以为1:20至1:200。
此外,在前述的实施例中,当灯板2和电源5系透过焊接方式固定时,灯板2的端部并不固定在灯管1的内周面上,无法安全的固定支撑住电源5,在其他实施例中,若电源5必须另行固定在灯管1末端区的灯头内,则灯头会相对较长而压缩了灯管1有效的发光面积。
请参考图22,在一实施例中,所使用的灯板为铝制硬式电路板22,因其端部可相对的固定在灯管1的末端区,而电源5则采用垂直于硬式电路板22的方式焊接固定在硬式电路板22端部上方,一来便于焊接工艺的实施,二来灯头3不需要具有足以承载电源5之总长度的空间而可以缩短长度,如此可增加灯管有效的发光面积。此外,在前述的实施例中,电源5上除了装设有电源模组之外,还需要另行焊接金属导线与灯头3的空心导电针301形成电气连接。在本实施例中,可以直接使用于电源5上,做为电源模组的导电引脚53与灯头3电气连接,不需额外再焊接其它导线,更有利于制程之简化。
进一步地,例如当采用外置驱动电源对LED直管灯驱动发光的结构,则可缩短了灯头的长度尺寸。为保证LED灯的整体长度符合规定,其灯头短缩的长度由延长灯管的长度来补足。因灯管的长度有延长,相应地延长贴在灯管内的灯板的长度。同等照明条件下,贴在灯管内壁的灯板上的LED组件间的间隔可相应的加大,由于LED组件间的间隔增大,这样可提高散热效率、降低LED组件操作时的温度,而可延长LED组件的寿命。
请参见图24A,为根据本实用新型第一较佳实施例的LED直管灯的电源组件的应用电路方块示意图。交流电源508系用以提供交流电源信号。交流电源508可以为市电,电压范围100-277V,频率为50或60Hz。灯管驱动电路505接收交流电源508的交流电源信号,并转换成交流驱动信号以做为外部驱动信号。灯管驱动电路505可以为电子镇流器,用以将市电的信号转换而成高频、高压的交流驱动信号。常见电子镇流器的种类,例如:瞬时启动型(Instant Start)电子镇流器、预热启动型(Program Start)电子镇流器、快速启动型(Rapid Start)电子镇流器等,本实用新型的LED直管灯均适用。交流驱动信号的电压大于300V,较佳电压范围为400-700V;频率大于10kHz,较佳频率范围为20k-50kHz。LED直管灯500接收外部驱动信号,在本实施例中,外部驱动信号为灯管驱动电路505的交流驱动信号,而被驱动发光。在本实施例中,LED直管灯500为单端电源的驱动架构,灯管的同一端灯头具有第一接脚501、第二接脚502,而第一接脚501与第二接脚502用以接收外部驱动信号。本实施例的第一接脚501、第二接脚502耦接(即,电连接、或直接或间接连接)至灯管驱动电路505以接收交流驱动信号。
值得注意的是,灯管驱动电路505为可省略的电路,故在图式中以虚线标示出。当灯管驱动电路505省略时,交流电源508与第一接脚501、第二接脚502耦接。此时,第一接脚501、第二接脚502接收交流电源508所提供的交流电源信号,以做为外部驱动信号。
除了上述的单端电源的应用外,本实用新型的LED直管灯500也可以应用至双端单接脚的电路结构。请参见图24B,为根据本实用新型第二较佳实施例的LED直管灯的电源组件的 应用电路方块示意图。相较于图24A所示,第一接脚501、第二接脚502分别置于LED直管灯500的灯管相对的双端灯头以形成双端各单接脚,其余的电路连接及功能则与图24A所示电路相同。因此,本实用新型的LED直管灯中的第一接脚501与第二接脚502可分别置于此LED直管灯500的灯管相对的双端,或者置于灯管的同一端。
接着,请参见图24C,为根据本实用新型第一较佳实施例的LED灯的电路方块示意图。LED灯的电源组件主要包含第一整流电路510、滤波电路520以及LED驱动模块530。第一整流电路510耦接第一接脚501、第二接脚502,以接收外部驱动信号,并对外部驱动信号进行整流,然后由第一整流输出端511、第二整流输出端512输出整流后信号。在此的外部驱动信号可以是图24A及图24B中的交流驱动信号或交流电源信号,甚至也可以为直流信号而不影响LED灯的操作。滤波电路520与所述第一整流电路耦接,用以对整流后信号进行滤波;即滤波电路520耦接第一整流输出端511、第二整流输出端512以接收整流后信号,并对整流后信号进行滤波,然后由第一滤波后输出端521、第二滤波后输出端522输出滤波后信号。LED驱动模块530与滤波电路520耦接,以接收滤波后信号并发光;即LED驱动模块530耦接第一滤波后输出端521、第二滤波后输出端522以接收滤波后信号,然后驱动LED驱动模块530内的LED组件(未绘出)发光。此部分请详见之后实施例的说明。
值得注意的是,在本实施例中,第一整流输出端511、第二整流输出端512及第一滤波后输出端521、第二滤波后输出端522的数量均为二,而实际应用时则根据第一整流电路510、滤波电路520以及LED驱动模块530各电路间信号传递的需求增加或减少,即各电路间耦接端点可以为一个或以上。
再者,图24C所示的LED灯的电源组件以及以下LED灯的电源组件的各实施例,除适用于图24A及图24B所示的LED直管灯外,对于包含两接脚用以传递电力的发光电路架构,例如:球泡灯、PAL灯、插管节能灯(PLS灯、PLD灯、PLT灯、PLL灯等)等各种不同的照明灯的灯座规格均适用。
请参见图24D,为根据本实用新型第三较佳实施例的LED直管灯的电源组件的应用电路方块示意图。交流电源508系用以提供交流电源信号。灯管驱动电路505接收交流电源508的交流电源信号,并转换成交流驱动信号。LED直管灯500接收灯管驱动电路505的交流驱动信号,而被驱动发光。在本实施例中,LED直管灯500为双端(各双接脚)电源,灯管的一端灯头具有第一接脚501、第二接脚502,另一端灯头具有第三接脚503、第四接脚504。第一接脚501、第二接脚502、第三接脚503及第四接脚504耦接至灯管驱动电路505以共同接收交流驱动信号,以驱动LED直管灯500内的LED组件(未绘出)发光。交流电源508可以为 市电,而灯管驱动电路505可以是安定器或电子镇流器。
请参见图24E,为根据本实用新型第二较佳实施例的LED灯的电路方块示意图。LED灯的电源组件主要包含第一整流电路510、滤波电路520、LED驱动模块530以及第二整流电路540。第一整流电路510耦接第一接脚501、第二接脚502,用以接收并整流第一接脚501、第二接脚502所传递的外部驱动信号;第二整流电路540耦接第三接脚503、第四接脚504,用以接收并整流第三接脚503、第四接脚504所传递的外部驱动信号。也就是说,LED灯的电源组件可以包含第一整流电路510及第二整流电路540共同于第一整流输出端511、第二整流输出端512输出整流后信号。滤波电路520耦接第一整流输出端511、第二整流输出端512以接收整流后信号,并对整流后信号进行滤波,然后由第一滤波后输出端521、第二滤波后输出端522输出滤波后信号。LED驱动模块530耦接第一滤波后输出端521、第二滤波后输出端522以接收滤波后信号,然后驱动LED驱动模块530内的LED组件(未绘出)发光。
本实施例的LED灯的电源组件可以应用至图24D的双端电源架构。值得注意的是,由于本实施例的LED灯的电源组件同时具有第一整流电路510及第二整流电路540,也可以应用至图24A、B的单端电源架构,来接收外部驱动信号(包含前述实施例中的交流电源信号、交流驱动信号等)。当然,除本实施例外,其余各实施例的的LED灯的电源组件也可以应用至直流信号的驱动架构。
请参见图25A,为根据本实用新型第一较佳实施例的整流电路的电路示意图。整流电路610为桥式整流电路,包含第一整流二极管611、第二整流二极管612、第三整流二极管613及第四整流二极管614,用以对所接收的信号进行全波整流。第一整流二极管611的正极耦接第二整流输出端512,负极耦接第二接脚502。第二整流二极管612的正极耦接第二整流输出端512,负极耦接接脚501。第三整流二极管613的正极耦接第二接脚502,负极耦接第一整流输出端511。整流二极管614的正极耦接接脚501,负极耦接第一整流输出端511。
当第一接脚501、第二接脚502接收的信号为交流信号时,整流电路610的操作描述如下。当交流信号处于正半波时,交流信号依序经第一接脚501、整流二极管614和第一整流输出端511后流入,并依序经第二整流输出端512、第一整流二极管611和第二接脚502后流出。当交流信号处于负半波时,交流信号依序经第二接脚502、第三整流二极管613和第一整流输出端511后流入,并依序经第二整流输出端512、第二整流二极管612和接脚501后流出。因此,不论交流信号处于正半波或负半波,整流电路610的整流后信号的正极均位于第一整流输出端511,负极均位于第二整流输出端512。依据上述操作说明,整流电路610输出的整流后信号为全波整流信号。
当第一接脚501、第二接脚502耦接直流电源而接收直流信号时,整流电路610的操作描述如下。当第一接脚501耦接直流电源的正端而第二接脚502耦接直流电源的负端时,直流信号依序经第一接脚501、整流二极管614和第一整流输出端511后流入,并依序经第二整流输出端512、第一整流二极管611和第二接脚502后流出。当第一接脚501耦接直流电源的负端而第二接脚502耦接直流电源的正端时,交流信号依序经第二接脚502、第三整流二极管613和第一整流输出端511后流入,并依序经第二整流输出端512、第二整流二极管612和第一接脚501后流出。同样地,不论直流信号如何透过第一接脚501、第二接脚502输入,整流电路610的整流后信号的正极均位于第一整流输出端511,负极均位于第二整流输出端512。
因此,在本实施例的整流电路610不论所接收的信号为交流信号或直流信号,均可正确输出整流后信号。
请参见图25B,为根据本实用新型第二较佳实施例的整流电路的电路示意图。整流电路710包含第一整流二极管711及第二整流二极管712,用以对所接收的信号进行半波整流。第一整流二极管711的正端耦接第二接脚502,负端耦接第一整流输出端511。第二整流二极管712的正端耦接第一整流输出端511,负端耦接第一接脚501。第二整流输出端512视实际应用而可以省略或者接地。
接着说明整流电路710的操作如下。
当交流信号处于正半波时,交流信号在第一接脚501输入的信号电平高于在第二接脚502输入的信号电平。此时,第一整流二极管711及第二整流二极管712均处于逆偏的截止状态,整流电路710停止输出整流后信号。当交流信号处于负半波时,交流信号在第一接脚501输入的信号电平低于在第二接脚502输入的信号电平。此时,第一整流二极管711及第二整流二极管712均处于顺偏的导通状态,交流信号经由第一整流二极管711、第一整流输出端511而流入,并由第二整流输出端512或LED灯的另一电路或接地端流出。依据上述操作说明,整流电路710输出的整流后信号为半波整流信号。
请参见图25C,为根据本实用新型第三较佳实施例的整流电路的电路示意图。整流电路810包含整流单元815和端点转换电路541,以进行半波整流。在本实施例中,整流单元815为半波整流电路,包含第一整流二极管811及第二整流二极管812,用以进行半波整流。第一整流二极管811的正端耦接第二整流输出端512,负端耦接半波连接点819。第二整流二极管812的正端耦接半波连接点819,负端耦接第一整流输出端511。端点转换电路541耦接半波连接点819,以及第一接脚501及第二接脚502,用以将第一接脚501及第二接脚502所接 收的信号传递至半波连接点819。藉由端点转换电路541的端点转换功能,整流电路810可以提供两个输入端(耦接第一接脚501及第二接脚502的端点)及两个输出端(第一整流输出端511及第二整流输出端512)。
接着说明在某些实施例中整流电路810的操作如下。
当交流信号处于正半波时,交流信号依序经第一接脚501(或者第二接脚502)、端点转换电路541、半波连接点819、第二整流二极管812和第一整流输出端511后流入,并由LED灯的另一电路流出。当交流信号处于负半波时,交流信号并由LED灯的另一电路流入,然后经第二整流输出端512、第一整流二极管811、半波连接点819、端点转换电路541和第一接脚501(或者第二接脚502)后流出。
值得注意的是,端点转换电路541可以包含电阻(亦可称为电阻器)、电容(亦可称为电容器)、电感(亦可称为电感器)或其组合,来同时具有限流/限压、保护、电流/电压调节等功能中的至少一个。这些功能的说明请参见于后说明。
实际应用上,整流单元815和端点转换电路541可以调换而不影响半波整流功能。请参见图25D,为根据本实用新型第四较佳实施例的整流电路的电路示意图。第一整流二极管811的正端耦接第二接脚502,第二整流二极管812的负端耦接第一接脚501,而第一整流二极管811的负端及第二整流二极管812的正端同时耦接半波连接点819。端点转换电路541耦接半波连接点819,以及第一整流输出端511及第二整流输出端512。当交流信号处于正半波时,交流信号并由LED灯的另一电路流入,然后经第二整流输出端512(或者第一整流输出端511)、端点转换电路541半波连接点819、第二整流二极管812、和第一接脚501后流出。当交流信号处于负半波时,交流信号依序经第二接脚502、第一整流二极管811、半波连接点819、端点转换电路541和第一整流输出端511(或第二整流输出端512)后流入,并由LED灯的另一电路流出。
值得说明的是,图25C和图25D所示的实施例中的端点转换电路541可以被省略,故以虚线来表示。图25C省略端点转换电路541后,第一接脚501及第二接脚502耦接至半波连接点819。图25D省略端点转换电路541后,第一整流输出端511及第二整流输出端512耦接至半波连接点819。
图24C所示实施例的第一整流电路510可以使用图25A所示的整流电路610。
图25C和图25D所示的整流电路可以省略端点转换电路541而不影响LED直管灯操作所需的整流功能。当第一整流电路510及第二整流电路540选用图25B至图25D的半波整流的 整流电路时,随着交流信号处于正半波或负半波,第一整流电路510及第二整流电路540其中之一负责流入,另一负责流出。再者,第一整流电路510及第二整流电路540若同时选用图25C或图25D,或者图25C和图25D各一,则其中之一的端点转换电路541即可具有限流/限压、保护、电流/电压调节的功能,另一端点转换电路541可以省略。
请参见图26A,为根据本实用新型第一较佳实施例的端点转换电路的电路示意图。端点转换电路641包含电容642,电容642的一端同时耦接第一接脚501及第二接脚502,另一端耦接半波连接点819。电容642对交流信号具有等效阻抗值。交流信号的频率越低,电容642的等效阻抗值越大;交流信号的频率越高,电容642的等效阻抗值越小。因此,本实施例的端点转换电路641中的电容642具有高通滤波作用。再者,端点转换电路641与LED灯中的LED组件为串联,并具有等效阻抗下,对LED组件具有限流、限压的作用,可以避免LED组件的电流及跨压过高而损害LED组件。另外,藉由配合交流信号的频率选择电容642的容值,更可对LED组件具有电流、电压调节的作用。
值得注意的是,端点转换电路641可以额外包含电容645或/及电容646。电容645一端耦接半波连接点819,另一端耦接第三接脚503。电容646一端耦接半波连接点819,另一端耦接第四接脚504。即,电容645及646以半波连接点819做为共同连接端,做为电流调整电容的电容642耦接共同连接端以及第一接脚501及第二接脚502。这样的电路架构下,第一接脚501及第二接脚502其中之一与第三接脚503之间有串联的电容642及645,或者第一接脚501及第二接脚502其中之一与第四接脚504之间有串联的电容642及646。藉由串联的电容的等效阻抗值,交流信号被分压。根据串联的电容的等效阻抗值的比例,可以控制第一整流电路510中的电容642的跨压以及滤波电路520及LED驱动模块530上的跨压,使流经LED驱动模块530的LED模块的电流限制于一额定电流值之内,且同时避免过高电压毁损滤波电路520及LED驱动模块530而达到保护滤波电路520及LED驱动模块530的作用。
请参见图26B,为根据本实用新型第二较佳实施例的端点转换电路的电路示意图。端点转换电路741包含电容743及744。电容743的一端耦接第一接脚501,另一端耦接半波连接点819。电容744的一端耦接第二接脚502,另一端耦接半波连接点819。相较于图26A所示的端点转换电路641,端点转换电路741主要系将电容642改为两个电容743及744。电容743及744的电容值可以相同,也可以视第一接脚501及第二接脚502所接收的信号大小而为不同。
同样地,端点转换电路741可以额外包含电容745或/及电容746,分别耦接至第三接脚503及第四接脚504。如此,第一接脚501及第二接脚502中任一与第三接脚503及第四接脚 504中任一均有串联的电容而达到分压作用以及保护的功能。
请参见图26C,为根据本实用新型第三较佳实施例的端点转换电路的电路示意图。端点转换电路841包含电容842、843及844。电容842及843串联于第一接脚501及半波连接点819之间。电容842及844串联于第二接脚502及半波连接点819之间。在这样的电路架构下,电容842、843及844之间任一短路,第一接脚501及半波连接点819接脚之间以及第二接脚502及半波连接点819之间均仍存在电容而仍有限流的作用。因此,对于使用者误触LED灯而发生触电时,可以避免过高电流流经人体而造成使用者触电伤害。电容843、844的容值较佳为电容842的容值的一半。
同样地,端点转换电路841可以额外包含电容845或/及电容846,分别耦接至第三接脚503及第四接脚504。如此,第一接脚501及第二接脚502中任一与第三接脚503及第四接脚504中任一均有串联的电容而达到分压作用以及保护的功能。
上述实施例的电容645及646、电容745及746及电容845及846上的分压较佳为低于500V,例如:100-500V的范围,更佳为低于400V,例如:300-400V的范围。
请参见图26D,为根据本实用新型第四较佳实施例的端点转换电路的电路示意图。端点转换电路941包含保险丝947、948。保险丝947一端耦接第一接脚501,另一端耦接半波连接点819。保险丝948一端耦接第二接脚502,另一端耦接半波连接点819。藉此,当第一接脚501及第二接脚502任一流经的电流高于保险丝947及948的额定电流时,保险丝947及948就会对应地熔断而开路,藉此达到过流保护的功能。
当然,上述端点转换电路的实施例中的第一接脚501及第二接脚502改为第三接脚503及第四接脚504(以及第三接脚503及第四接脚504改为第一接脚501及第二接脚502),即可转用至第二整流电路540。
上述端点转换电路实施例中的电容的电容值较佳为落在100pF~100nF之间。另外,电容可以并联或串联的二个或以上的电容来等效取代。例如:电容642、842可以用两个电容串联来代替。2个电容其中之一的容值可自1.0nF~2.5nF的范围内选取,较佳的选取1.5nF;另一个选自1.5nF~3.0nF的范围,较佳的选取2.2nF。
请参见图27A,为根据本实用新型第一较佳实施例的滤波电路的电路方块示意图。图中绘出第一整流电路510仅用以表示连接关系,并非滤波电路520包含第一整流电路510。滤波电路520包含滤波单元523,耦接第一整流输出端511及第二整流输出端512,以接收整流电路所输出的整流后信号,并滤除整流后信号中的纹波后输出滤波后信号。因此,滤波后信号的波形较整流后信号的波形更平滑。滤波电路520也可还包含滤波单元524,耦接于整流 电路及对应接脚之间,例如:第一整流电路510与第一接脚501、第一整流电路510与第二接脚502、第二整流电路540与第三接脚503及第二整流电路540与第四接脚504,用以对特定频率进行滤波,以滤除外部驱动信号的特定频率。在本实施例,滤波单元524耦接于第一接脚501与第一整流电路510之间。滤波电路520也可还包含滤波单元525,耦接于第一接脚501与第二接脚502其中之一与第一整流电路510其中之一的二极管之间或第三接脚503与第四接脚504其中之一与第二整流电路540其中之一的二极管,用以降低或滤除电磁干扰(EMI)。在本实施例,滤波单元525耦接于第一接脚501与与第一整流电路510其中之一的二极管(未绘出)之间。由于滤波单元524及525可视实际应用情况增加或省略,故图中以虚线表示之。
请参见图27B,为根据本实用新型第一较佳实施例的滤波单元的电路示意图。滤波单元623包含一电容625。电容625的一端耦接第一整流输出端511及第一滤波输出端521,另一端耦接第二整流输出端512及第二滤波输出端522,以对由第一整流输出端511及第二整流输出512输出的整流后信号进行低通滤波,以滤除整流后信号中的高频成分而形成滤波后信号,然后由第一滤波输出端521及第二滤波输出端522输出。
请参见图27C,为根据本实用新型第二较佳实施例的滤波单元的电路示意图。滤波单元723为π型滤波电路,包含电容725、电感726以及电容727。电容725的一端耦接第一整流输出端511并同时经过电感726耦接第一滤波输出端521,另一端耦接第二整流输出端512及第二滤波输出端522。电感726耦接于第一整流输出端511及第一滤波输出端521之间。电容727的一端经过电感726耦接第一整流输出端511并同时耦接第一滤波输出端521,另一端耦接第二整流输出端512及第二滤波输出端522。
等效上来看,滤波单元723较图27B所示的滤波单元623多了电感726及电容727。而且电感726与电容727也同电容725般,具有低通滤波作用。故,本实施例的滤波单元723相较于图27B所示的滤波单元623,具有更佳的高频滤除能力,所输出的滤波后信号的波形更为平滑。
上述实施例中的电感726的感值较佳为选自10nH~10mH的范围。电容625、725、727的容值较佳为选自100pF~1uF的范围。
请参见图27D,为根据本实用新型第三较佳实施例的滤波单元的电路示意图。滤波单元824包含并联的电容825及电感828。电容825的一端耦接第一接脚501,另一端耦接第一整流输出端511,以对由第一接脚501输入的外部驱动信号进行高通滤波,以滤除外部驱动信号中的低频成分。电感828的一端耦接第一接脚501,另一端耦接第一整流输出端511,以对 由第一接脚501输入的外部驱动信号进行低通滤波,以滤除外部驱动信号中的高频成分。因此,电容825及电感828的结合可对外部驱动信号中特定频率呈现高阻抗。也就是,并联的电容和电感对外部驱动信号的等效阻抗于特定频率上呈现最大值。
经由适当地选取电容825的容值以及电感828的感值,可使阻抗对应频滤的中心频率(阻抗最大值)位于特定频率上,中心频率为其中L为电感828的感值,C为电容825的容值。例如:较佳的中心频率在20-30kHz范围内,更佳为25kHz,因此具有滤波单元824的LED灯可符合UL认证的安规要求。
值得注意的是,滤波单元824可包含电阻829。电阻829耦接于第一接脚501及第一整流输出端511之间。因此,电阻829与并联的电容825、电感828串联。举例来说,电阻829耦接于第一接脚501及并联的电容825和电感828之间,或者电阻829耦接于第一整流输出端511及并联的电容825和电感828之间。在本实施例,电阻829耦接于第一接脚501及并联的电容825和电感828之间。电阻829用以调整电容825及电感828所构成的LC电路的Q值,以更适应于不同Q值要求的应用环境。由于电阻829为非必要组件,故在本实施例中以虚线表示。
电容825的容值较佳为在10nF~2uF的范围内。电感828的感值较佳为小于2mH,更佳为小于1mH,可以使用空心电感或工字电感。电阻829较佳为大于50欧姆,更佳为大于500欧姆。
除了上述的实施例所示的滤波电路外,传统的低通或带通滤波器均可以作为本实用新型的滤波单元而使用于滤波电路内。
请参见图27E,为根据本实用新型第四较佳实施例的滤波单元的电路示意图。在本实施例中,滤波单元925设置于图25A所示的整流电路610之内,以降低整流电路610及/或其他电路所造成电磁干扰(EMI)。在本实施例中,滤波单元925包含EMI电容,耦接于第一接脚501与整流二极管614的正端之间并同时也耦接于第二接脚502与第三整流二极管613的正端之间,以降低第一接脚501及第二接脚502所接收交流驱动信号的正半波传递时伴随的电磁干扰。滤波单元925的EMI电容也耦接于第二整流二极管612的负端与第一接脚501之间并同时也耦接第一整流二极管611的负端与第二接脚502之间,以降低第一接脚501及第二接脚502所接收交流驱动信号的负半波传递时伴随的电磁干扰。也就是,整流电路610为全波整流电路并包含第一整流二极管611、第二整流二极管612、第三整流二极管613及第四整流二极管614,第一整流二极管611、第二整流二极管612、第三整流二极管613及第四整流 二极管614中两个整流二极管-第一整流二极管611及第三整流二极管613,其中第三整流二极管613的正端及第一整流二极管611的负端连接形成一第一滤波连接点,第一整流二极管611、第二整流二极管612、第三整流二极管613及第四整流二极管614中另两个整流二极管-第二整流二极管612及第四整流二极管614,其中第四整流二极管614的正端及第二整流二极管612的负端连接形成一第二滤波连接点,滤波单元925的EMI电容耦接于第一滤波连接点及第二滤波连接点之间。
另外,请参见图25C与图26A、图26B及图26C,相似的,图26A、图26B及图26C其中之一的电路中的任一电容均耦接于与图25C的电路中的任一二极管及第一接脚501及第二接脚502(或者第三接脚503及第四接脚504)之间,因此图26A、图26B及图26C中的任一或全部电容可以做为滤波单元的EMI电容使用,而达到降低电路的电磁干扰之功能。也就是,图24C中的第一整流电路510可以是半波整流电路并包含两个整流二极,两个整流二极管其中之一的正端连接另一的负端形成半波连接点,图26A、图26B及图26C中的任一或全部电容耦接于两个整流二极管的半波连接点及所述两个接脚至少其中之一;图26A、图26B及图26C中的任一或全部电容耦接于两个整流二极管的半波连接点及所述第三接脚及所述第四接脚至少其中之一。
再者,滤波单元925耦接第一接脚501与第二接脚502,等同使第一接脚501与第二接脚502之间为短路。请同时参见图26A到图26C,配合滤波单元925使使第一接脚501与第二接脚502之间为短路的作用,各实施例中的电容645及646、电容745及746、电容845及846均可以省略其中之一。不论外部交流信号由第一接脚501或第二接脚502输出,电容645及646、电容745及746、电容845及846均可以省略其中之一后仍可达到分压的作用。
值得注意的是,图27E所示实施例中的EMI电容可以做为图27D所示实施例中的滤波单元824的电容而与滤波单元824的电感搭配,而同时达到对特定频率呈现高阻抗及降低电磁干扰的功能。也就是,当整流电路为全波整流电路时,滤波单元824的电容825耦接于全波整流电路的第一滤波连接点及第二滤波连接点之间,当整流电路为半波整流电路时,滤波单元824的电容825耦接于半波整流电路的半波连接点及所述两个接脚至少其中之一。
请参见图28A,为根据本实用新型第一较佳实施例的LED模块的电路示意图。LED模块630的正端耦接第一滤波输出端521,负端耦接第二滤波输出端522。LED模块630包含至少一个LED单元632,即前述实施例中的光源。LED单元632为两个以上时彼此并联。每一个LED单元的正端耦接LED模块630的正端,以耦接第一滤波输出端521;每一个LED单元的负端耦接LED模块630的负端,以耦接第二滤波输出端522。LED单元632包含至少一个LED组 件631。当LED组件631为复数时,LED组件631串联成一串,第一个LED组件631的正端耦接所属LED单元632的正端,第一个LED组件631的负端耦接下一个(第二个)LED组件631。而最后一个LED组件631的正端耦接前一个LED组件631的负端,最后一个LED组件631的负端耦接所属LED单元632的负端。
值得注意的是,LED模块630可产生电流侦测信号S531,代表LED模块630的流经电流大小,以作为侦测、控制LED模块630之用。
请参见图28B,为根据本实用新型第二较佳实施例的LED模块的电路示意图。LED模块630的正端耦接第一滤波输出端521,负端耦接第二滤波输出端522。LED模块630包含至少二个LED单元732,而且每一个LED单元732的正端耦接LED模块630的正端,以及负端耦接LED模块630的负端。LED单元732包含至少二个LED组件731,在所属的LED单元732内的LED组件731的连接方式如同图28A所描述般,LED组件731的负极与下一个LED组件731的正极耦接,而第一个LED组件731的正极耦接所属LED单元732的正极,以及最后一个LED组件731的负极耦接所属LED单元732的负极。再者,本实施例中的LED单元732之间也彼此连接。每一个LED单元732的第n个LED组件731的正极彼此连接,负极也彼此连接。因此,本实施例的LED模块630的LED组件间的连接为网状连接。
相较于图29A至图29G的实施例,上述实施例的LED驱动模块530包含LED模块630但未包含驱动电路。
同样地,本实施例的LED模块630可产生电流侦测信号S531,代表LED模块630的流经电流大小,以作为侦测、控制LED模块630之用。
另外,实际应用上,LED单元732所包含的LED组件731的数量较佳为15-25个,更佳为18-22个。
请参见图28C,为根据本实用新型第一较佳实施例的LED模块的走线示意图。本实施例的LED组件831的连接关系同图28B所示,在此以三个LED单元为例进行说明。正极导线834与负极导线835接收驱动信号,以提供电力至各LED组件831,举例来说:正极导线834耦接前述滤波电路520的第一滤波输出端521,负极导线835耦接前述滤波电路520的第二滤波输出端522,以接收滤波后信号。为方便说明,图中将每一个LED单元中的第n个划分成同一LED组833。
正极导线834连接最左侧三个LED单元中的第一个LED组件831,即如图所示最左侧LED组833中的三个LED组件的(左侧)正极,而负极导线835连接三个LED单元中的最后一个LED组件831,即如图所示最右侧LED组833中的三个LED组件的(右侧)负极。每一个LED单元 的第一个LED组件831的负极,最后一个LED组件831的正极以及其他LED组件831的正极及负极则透过连接导线839连接。
换句话说,最左侧LED组833的三个LED组件831的正极透过正极导线834彼此连接,其负极透过最左侧连接导线839彼此连接。左二LED组833的三个LED组件831的正极透过最左侧连接导线839彼此连接,其负极透过左二的连接导线839彼此连接。由于最左侧LED组833的三个LED组件831的负极及左二LED组833的三个LED组件831的正极均透过最左侧连接导线839彼此连接,故每一个LED单元的第一个LED组件的负极与第二个LED组件的正极彼此连接。依此类推从而形成如图28B所示的网状连接。
值得注意的是,连接导线839中与LED组件831的正极连接部分的宽度836小于与LED组件831的负极连接部分的宽度837。使负极连接部分的面积大于正极连接部分的面积。另外,宽度837小于连接导线839中同时连接邻近两个LED组件831中其中之一的正极及另一的负极的部分的宽度838,使同时与正极与负极部分的面积大于仅与负极连接部分的面积及正极连接部分的面积。因此,这样的走线架构有助于LED组件的散热。
另外,正极导线834还可包含有正极引线834a,负极导线835还可包含有负极引线835a,使LED模块的两端均具有正极及负极连接点。这样的走线架构可使LED灯的电源组件的其他电路,例如:滤波电路520、第一整流电路510及第二整流电路540由任一端或同时两端的正极及负极连接点耦接到LED模块,增加实际电路的配置安排的弹性。
请参见图28D,为根据本实用新型第二较佳实施例的LED模块的走线示意图。本实施例的LED组件931的连接关系同图28A所示,在此以三个LED单元且每个LED单元包含7个LED组件为例进行说明。正极导线934与负极导线935接收驱动信号,以提供电力至各LED组件931,举例来说:正极导线934耦接前述滤波电路520的第一滤波输出端521,负极导线935耦接前述滤波电路520的第二滤波输出端522,以接收滤波后信号。为方便说明,图中将每一个LED单元中七个LED组件划分成同一LED组932。
正极导线934连接每一LED组932中第一个(最左侧)LED组件931的(左侧)正极。负极导线935连接每一LED组932中最后一个(最右侧)LED组件931的(右侧)负极。在每一LED组932中,邻近两个LED组件931中左方的LED组件931的负极透过连接导线939连接右方LED组件931的正极。藉此,LED组932的LED组件串联成一串。
值得注意的是,连接导线939用以连接相邻两个LED组件931的其中之一的负极及另一的正极。负极导线935用以连接各LED组的最后一个(最右侧)的LED组件931的负极。正极导线934用以连接各LED组的第一个(最左侧)的LED组件931的正极。因此,其宽度及供LED 组件的散热面积依上述顺序由大至小。也就是说,连接导线939的宽度938最大,负极导线935连接LED组件931负极的宽度937次之,而正极导线934连接LED组件931正极的宽度936最小。因此,这样的走线架构有助于LED组件的散热。
另外,正极导线934还可包含有正极引线934a,负极导线935还可包含有负极引线935a,使LED模块的两端均具有正极及负极连接点。这样的走线架构可使LED灯的电源组件的其他电路,例如:滤波电路520、第一整流电路510及第二整流电路540由任一端或同时两端的正极及负极连接点耦接到LED模块,增加实际电路的配置安排的弹性。
再者,图28C及28D中所示的走线可以可挠式电路板来实现。举例来说,可挠式电路板具有单层线路层,以蚀刻方式形成图28C中的正极导线834、正极引线834a、负极导线835、负极引线835a及连接导线839,以及图28D中的正极导线934、正极引线934a、负极导线935、负极引线935a及连接导线939。
请参见图28E,为根据本实用新型第三较佳实施例的LED模块的走线示意图。本实施例系将图28C的LED模块的走线由单层线路层改为双层线路层,主要是将正极引线834a及负极引线835a改至第二层线路层。说明如下。
请同时参见图23,可挠式电路板具有双层线路层,包括一第一线路层2a,介电层2b及第二线路层2c。第一线路层2a及第二线路层2c间以介电层2b进行电性隔离。可挠式电路板的第一线路层2a以蚀刻方式形成图28E中的正极导线834、负极导线835及连接导线839,以电连接所述多个LED组件831,例如:电连接所述多个LED组件成网状连接,第二线路层2c以蚀刻方式正极引线834a、负极引线835a,以电连接所述滤波电路(的滤波输出端)。而且在可挠式电路板的第一线路层2a的正极导线834、负极导线835具有层连接点834b及835b。第二线路层2的正极引线834a、负极引线835a具有层连接点834c及835c。层连接点834b及835b与层连接点834c及835c位置相对,用以电性连接正极导线834及正极引线834a,以及负极导线835及负极引线835a。较佳的做法系将第一层线路层的层连接点834b及835b的位置同下方介电层形成开口至裸露出层连接点834c及835c,然后用焊锡焊接,使正极导线834及正极引线834a,以及负极导线835及负极引线835a彼此电性连接。
同样地,图28D所示的LED模块的走线也可以将正极引线934a及负极引线935a改至第二层线路层,而形成双层线路层的走线结构。
值得注意的是,具有双层导电层或线路层的可挠式电路板的第二导电层的厚度较佳为相较于第一导电层的厚度厚,藉此可以降低在正极引线及负极引线上的线损(压降)。再者,具有双层导电层的可挠式电路板相较于单层导电层的可挠式电路板,由于将两端的正极引线、 负极引线移至第二层,可以缩小可挠式电路板的宽度。在相同的治具上,较窄的基板的排放数量多于较宽的基板,因此可以提高LED模块的生产效率。而且具有双层导电层的可挠式电路板相对上也较容易维持形状,以增加生产的可靠性,例如:LED组件的焊接时焊接位置的准确性。
作为上述方案的变形,本实用新型还提供一种LED直管灯,该LED直管灯的电源组件的至少部分电子组件设置在灯板上:即利用PEC(印刷电子电路,PEC:Printed Electronic Circuits),技术将至少部分电子组件印刷或嵌入在灯板上。
本实用新型的一个实施例中,将电源组件的电子组件全部设置在灯板上。其制作过程如下:基板准备(可挠性印刷电路板准备)→喷印金属纳米油墨→喷印无源组件/有源器件(电源组件)→烘干/烧结→喷印层间连接凸块→喷涂绝缘油墨→喷印金属纳米油墨→喷印无源组件及有源器件(依次类推形成所包含的多层板)→喷涂表面焊接盘→喷涂阻焊剂焊接LED组件。
上述的本实施例中,若将电源组件的电子组件全部设置在灯板上时,只需在灯板的两端通过焊接导线连接LED直管灯的接脚,实现接脚与灯板的电气连接。这样就不用再为电源组件设置基板,进而可进一步的优化灯头的设计。较佳的,电源组件设置在灯板的两端,这样尽量减少其工作产生的热对LED组件的影响。本实施例因减少焊接,提高电源组件的整体信赖性。
若将部分电子组件印刷在灯板上(如电阻,电容)时,而将大的器件如:电感,电解电容等电子组件设置在灯头内。灯板的制作过程同上。这样通过将部分电子组件,设置在灯板上,合理的布局电源组件,来优化灯头的设计。
作为上述的方案变形,也可通过嵌入的方式来实现将电源组件的电子组件设置在灯板上。即:以嵌入的方式在可挠性灯板上嵌入电子组件。较佳的,可采用含电阻型/电容型的覆铜箔板(CCL)或丝网印刷相关的油墨等方法实现;或采用喷墨打印技术实现嵌入无源组件的方法,即以喷墨打印机直接把作为无源组件的导电油墨及相关功能油墨喷印到灯板内设定的位置上。作为上述方案的变形,无源组件也可以喷墨打印机直接把作为无源组件的导电油墨及相关功能油墨喷印到灯板上)。然后,经过UV光处理或烘干/烧结处理,形成埋嵌无源组件的灯板。嵌入在灯板上电子组件包括电阻、电容和电感;在其它的实施例中,有源组件也适用。通过这样的设计来合理的布局电源组件进而达到优化灯头的设计(由于部分采用嵌入式电阻和电容,本实施例节约了宝贵的印刷电路板表面空间,缩小了印刷电路板的尺寸并减少了其重量和厚度。同时由于消除了这些电阻和电容的焊接点(焊接点是印刷电路板上最容易引入故 障的部分),电源组件的可靠性也得到了提高。同时将减短印刷电路板上导线的长度并且允许更紧凑的器件布局,因而提高电气性能)。
以下说明嵌入式电容、电阻的制造方法。
通常使用嵌入式电容的方法,采用一种叫做分布式电容或平面电容的概念。在铜层的基础上压上非常薄的绝缘层。一般以电源层/地层的形式成对出现。非常薄的绝缘层使电源层与地层之间的距离非常小。这样的电容量也可以通过传统的金属化孔实现。基本上来说,这样的方法在电路板上建立了一个大的平行的板极电容。
一些高电容量的产品,有些是分布式电容型的,另外一些是分立嵌入式的。通过在绝缘层中填充钛酸钡(一种具有高介电常数的材料)来获得更高的电容量。
通常制造嵌入式电阻的方法是使用电阻粘剂。它是掺杂有传导性碳或石墨的树脂,以此为填充剂,丝网印刷至指定处,然后经过处理后层压入电路板内部。电阻由金属化孔或微过孔连接至电路板上的其他电子组件。另一种方法为Ohmega-Ply法:它是双金属层结构——铜层与一个薄的镍合金层构成了电阻元素,它们形成层状的相对于底层的电阻。然后通过对铜层和镍合金层的蚀刻,形成具有铜端子的各种镍电阻。这些电阻被层压至电路板的内层中。
在本实用新型的一个实施例中,将导线直接印刷在玻璃管的内壁(设置成线状),LED组件直接贴该内壁,以经过这些导线彼此电性连接。较佳的,采用LED组件的芯片形式直接贴在该内壁的导线上(在导线的两端设置连接点,通过连接点LED组件与电源组件连接),贴附后,在该芯片上点滴荧光粉(使LED直管灯工作时产生白光,也可是其它颜色的光)。
本实用新型的LED组件的发光效率为80lm/W以上,较佳为120lm/W以上,更佳为160lm/W以上。LED组件可以是单色LED芯片的光经荧光粉而混成白色光,其光谱的主要波长为430-460nm以及550-560nm,或者430-460nm、540-560nm以及620-640nm。
请参见图29A,为根据本实用新型第三较佳实施例的LED灯的电路方块示意图。本实施例的LED灯的电源组件包含第一整流电路510及第二整流电路540、滤波电路520、LED驱动模块530,且LED驱动模块530更包含驱动电路1530及LED模块630。驱动电路1530为直流转直流转换电路,耦接第一滤波输出端521及第二滤波输出端522,以接收滤波后信号,并进行电力转换以将滤波后信号转换成驱动信号而于第一驱动输出端1521及第二驱动输出端1522输出。LED模块630耦接第一驱动输出端1521及第二驱动输出端1522,以接收驱动信号而发光,较佳为LED模块630的电流稳定于一设定电流值(以利有稳定、较不闪烁的LED灯光;而且利于控制电流值)。LED模块630可参见图28A至图28D的说明。
值得注意的是,第二整流电路540为非必要组件而可省略,故在图中以虚线表示。也就 是说,图24A及图24C所示的实施例中的LED驱动模块530可更包含驱动电路1530及LED模块630。因此,本实施例的LED灯的电源组件亦可应用至单端电源、双端电源的应用环境,例如:球泡灯、PAL灯等均适用。
请参见图29B,为根据本实用新型第一较佳实施例的驱动电路的电路方块示意图。驱动电路包含控制器1531及转换电路1532,以电流源的模式进行电力转换,以驱动LED模块发光。转换电路1532包含开关电路1535以及储能电路1538。转换电路1532耦接第一滤波输出端521及第二滤波输出端522,接收滤波后信号,并根据控制器1531的控制,转换成驱动信号而由第一驱动输出端1521及第二驱动输出端1522输出,以驱动LED模块。在控制器1531的控制下,转换电路1532所输出的驱动信号为稳定电流,而使LED模块稳定发光。
请参见图29C,为根据本实用新型第一较佳实施例的驱动电路的电路示意图。在本实施例,驱动电路1630为降压直流转直流转换电路,包含控制器1631及转换电路,而转换电路包含电感1632、续流二极管1633、电容1634以及切换开关1635。驱动电路1630耦接第一滤波输出端521及第二滤波输出端522,以将接收的滤波后信号转换成驱动信号,以驱动耦接在第一驱动输出端1521及第二驱动输出端1522之间的LED模块。
在本实施例中,切换开关1635为金氧半场效晶体管,具有控制端、第一端及第二端。切换开关1635的第一端耦接续流二极管1633的正极,第二端耦接第二滤波输出端522,控制端耦接控制器1631以接受控制器1631的控制使第一端及第二端之间为导通或截止。第一驱动输出端1521耦接第一滤波输出端521,第二驱动输出端1522耦接电感1632的一端,而电感1632的另一端耦接切换开关1635的第一端。电容1634的耦接于第一驱动输出端1521及第二驱动输出端1522之间,以稳定第一驱动输出端1521及第二驱动输出端1522之间的电压差。续流二极管1633的负端耦接第一驱动输出端1521。
接下来说明驱动电路1630的运作。
控制器1631根据电流侦测信号S535或/及S531决定切换开关1635的导通及截止时间,也就是控制切换开关1635的占空比(Duty Cycle)来调节驱动信号的大小。电流侦测信号S535系代表流经切换开关1635的电流大小。电流侦测信号S535系代表流经耦接于第一驱动输出端1521及第二驱动输出端1522之间的LED模块的电流大小。根据电流侦测信号S531及S535的任一,控制器1631可以得到转换电路所转换的电力大小的信息。当切换开关1635导通时,滤波后信号的电流由第一滤波输出端521流入,并经过电容1634及第一驱动输出端1521到LED模块、电感1632、切换开关1635后由第二滤波输出端522流出。此时,电容1634及电感1632进行储能。当切换开关1635截止时,电感1632及电容1634释放所储存的能量,电 流经续流二极管1633续流到第一驱动输出端1521使LED模块仍持续发光。
值得注意的是,电容1634非必要组件而可以省略,故在图中以虚线表示。在一些应用环境,可以藉由电感会阻抗电流的改变的特性来达到稳定LED模块电流的效果而省略电容1634。
请参见图29D,为根据本实用新型第二较佳实施例的驱动电路的电路示意图。在本实施例,驱动电路1730为升压直流转直流转换电路,包含控制器1731及转换电路,而转换电路包含电感1732、续流二极管1733、电容1734以及切换开关1735。驱动电路1730将由第一滤波输出端521及第二滤波输出端522所接收的滤波后信号转换成驱动信号,以驱动耦接在第一驱动输出端1521及第二驱动输出端1522之间的LED模块。
电感1732的一端耦接第一滤波输出端521,另一端耦接滤流二极管1733的正极及切换开关1735的第一端。切换开关1735的第二端耦接第二滤波输出端522及第二驱动输出端1522。续流二极管1733的负极耦接第一驱动输出端1521。电容1734耦接于第一驱动输出端1521及第二驱动输出端1522之间。
控制器1731耦接切换开关1735的控制端,根据电流侦测信号S531或/及电流侦测信号S535来控制切换开关1735的导通与截止。当切换开关1735导通时,电流由第一滤波输出端521流入,并流经电感1732、切换开关1735后由第二滤波输出端522流出。此时,流经电感1732的电流随时间增加,电感1732处于储能状态。同时,电容1734处于释能状态,以持续驱动LED模块发光。当切换开关1735截止时,电感1732处于释能状态,电感1732的电流随时间减少。电感1732的电流经续流二极管1733续流流向电容1734以及LED模块。此时,电容1734处于储能状态。
值得注意的是,电容1734为可省略的组件,以虚线表示。在电容1734省略的情况,切换开关1735导通时,电感1732的电流不流经LED模块而使LED模块不发光;切换开关1735截止时,电感1732的电流经续流二极管1733流经LED模块而使LED模块发光。藉由控制LED模块的发光时间及流经的电流大小,可以达到LED模块的平均亮度稳定于设定值上,而达到相同的稳定发光的作用。
请参见图29E,为根据本实用新型第三较佳实施例的驱动电路的电路示意图。在本实施例,驱动电路1830为降压直流转直流转换电路,包含控制器1831及转换电路,而转换电路包含电感1832、续流二极管1833、电容1834以及切换开关1835。驱动电路1830耦接第一滤波输出端521及第二滤波输出端522,以将接收的滤波后信号转换成驱动信号,以驱动耦接在第一驱动输出端1521及第二驱动输出端1522之间的LED模块。
切换开关1835的第一端耦接第一滤波输出端521,第二端耦接续流二极管1833的负极, 而控制端耦接控制器1831以接收控制器1831的控制信号而使第一端与第二端之间的状态为导通或截止。续流二极管1833的正极耦接第二滤波输出端522。电感1832的一端与切换开关1835的第二端耦接,另一端耦接第一驱动输出端1521。第二驱动输出端1522耦接续流二极管1833的正极。电容1834耦接于第一驱动输出端1521及第二驱动输出端1522之间,以稳定第一驱动输出端1521及第二驱动输出端1522之间的电压。
控制器1831根据电流侦测信号S531或/及电流侦测信号S535来控制切换开关1835的导通与截止。当切换开关1835导通时,电流由第一滤波输出端521流入,并流经切换开关1835、电感1832、第一驱动输出端1521及第二驱动输出端1522后由第二滤波输出端522流出。此时,流经电感1832的电流以及电容1834的电压随时间增加,电感1832及电容1834处于储能状态。当切换开关1835截止时,电感1832处于释能状态,电感1832的电流随时间减少。此时,电感1832的电流经第一驱动输出端1521及第二驱动输出端1522、续流二极管1833再回到电感1832而形成续流。
值得注意的是,电容1834为可省略组件,图式中以虚线表示。当电容1834省略时,不论切换开关1835为导通或截止,电感1832的电流均可以流过第一驱动输出端1521及第二驱动输出端1522以驱动LED模块持续发光。
请参见图29F,为根据本实用新型第四较佳实施例的驱动电路的电路示意图。在本实施例,驱动电路1930为降压直流转直流转换电路,包含控制器1931及转换电路,而转换电路包含电感1932、续流二极管1933、电容1934以及切换开关1935。驱动电路1930耦接第一滤波输出端521及第二滤波输出端522,以将接收的滤波后信号转换成驱动信号,以驱动耦接在第一驱动输出端1521及第二驱动输出端1522之间的LED模块。
电感1932的一端耦接第一滤波输出端521及第二驱动输出端1522,另一端耦接切换开关1935的第一端。切换开关1935的第二端耦接第二滤波输出端522,而控制端耦接控制器1931以根据控制器1931的控制信号而为导通或截止。续流二极管1933的正极耦接电感1932与切换开关1935的连接点,负极耦接第一驱动输出端1521。电容1934耦接第一驱动输出端1521及第二驱动输出端1522,以稳定耦接于第一驱动输出端1521及第二驱动输出端1522之间的LED模块的驱动。
控制器1931根据电流侦测信号S531或/及电流侦测信号S535来控制切换开关1935的导通与截止。当切换开关1935导通时,电流由第一滤波输出端521流入,并流经电感1932、切换开关1935后由第二滤波输出端522流出。此时,流经电感1932的电流随时间增加,电感1932处于储能状态;电容1934的电压随时间减少,电容1934处于释能状态,以维持LED 模块发光。当切换开关1935截止时,电感1932处于释能状态,电感1932的电流随时间减少。此时,电感1932的电流经续流二极管1933、第一驱动输出端1521及第二驱动输出端1522再回到电感1932而形成续流。此时,电容1934处于储能状态,电容1934的电压随时间增加。
值得注意的是,电容1934为可省略组件,图式中以虚线表示。当电容1934省略时,切换开关1935导通时,电感1932的电流并未流经第一驱动输出端1521及第二驱动输出端1522而使LED模块不发光。切换开关1935截止时,电感1932的电流经续流二极管1933而流经LED模块而使LED模块发光。藉由控制LED模块的发光时间及流经的电流大小,可以达到LED模块的平均亮度稳定于设定值上,而达到相同的稳定发光的作用。
请参见图29G,为根据本实用新型第二较佳实施例的驱动电路的电路方块示意图。驱动电路包含控制器2631及转换电路2632,以可调电流源的模式进行电力转换,以驱动LED模块发光。转换电路2632包含开关电路2635以及储能电路2638。转换电路2632耦接第一滤波输出端521及第二滤波输出端522,接收滤波后信号,并根据控制器2631的控制,转换成驱动信号而由第一驱动输出端1521及第二驱动输出端1522输出,以驱动LED模块。控制器2631接收电流侦测信号S535或/及S539,控制转换电路2632输出的驱动信号稳定于设定电流值上。其中,电流侦测信号S535代表开关电路2635的电流大小;电流侦测信号S539代表储能电路2638的电流大小,例如:储能电路2638中的电感电流,第一驱动输出端1521所输出的电流等。电流侦测信号S535及S539的任一均可以代表驱动电路由第一驱动输出端1521及第二驱动输出端1522提供给LED模块的电流Iout的大小。控制器2631更耦接第一滤波输出端521,以根据第一滤波输出端521的电压Vin决定设定电流值的大小。因此,驱动电路的电流Iout,即设定电流值,会根据滤波电路所输出的滤波后信号的电压Vin的大小调整。
值得注意的是,上述电流侦测信号S535及S539的产生可以是利用电阻或电感的方式量测。举例来说,根据电流流经电阻而于电阻两端产生的压差,或者利用互感电感与储能电路2638中的电感互感等均可以用以侦测电流。
上述的电路架构,尤其适用于灯管驱动电路为电子镇流器的应用环境。电子镇流器等效上为电流源,其输出功率并非为定值。而如图29C到图29F所示般的驱动电路,其消耗功率与LED模块的LED组件数量有关,可视为定值。当电子镇流器的输出功率高于驱动电路所驱动的LED模块的消耗功率时,电子镇流器的输出电压会不断提高,也就是LED灯的电源组件所接收的交流驱动信号的电平会不断上升而导致有超过电子镇流器或/及LED灯的电源组件的组件耐压而毁损的风险。当电子镇流器的输出功率低于驱动电路所驱动的LED模块的消耗功率时,电子镇流器的输出电压会不断降低,也就是交流驱动信号的电平会不断下降而导致 电路无法正常操作。
值得注意的是,LED灯照明所需的功率已经小于日光灯等荧光灯照明所需的功率。若使用以往背光模块等控制LED亮度的控制机制,应用于电子镇流器等传统的驱动系统,必然会遭遇到驱动系统的功率与LED灯的所需功率不同造成的不兼容问题。甚至导致驱动系统或/及LED灯毁损的问题。例用上述的功率调整,使得LED灯更为兼容于传统的荧光灯照明系统。
请参见图29H,为根据本实用新型一较佳实施例的电压Vin与电流Iout的区线关系示意图。其中,横轴为电压Vin,纵轴为电流Iout。在一实施例中,当滤波后信号的电压Vin(即电平)在电压上限值VH和电压下限值VL之间时,电流Iout维持在最初的设定电流值。当滤波后信号的电压Vin高于电压上限值VH时,电流Iout(即设定电流值)随电压Vin的增加而提高。电压上限值VH高于电压下限值VL。较佳为曲线的斜率随电压Vin上升而变大。当滤波后信号的电压Vin低于电压下限值VL时,设定电流值随电压Vin的减少而降低。较佳为曲线的斜率随电压Vin减少而变小。也就是,当电压Vin高于电压上限值VH或低于电压下限值VL时,电设定电流值较佳为电压Vin的二次方或以上的函数关系,而使得消耗功率的增加率(减少率)高于输出功率的增加率(减少率)。即,所述设定电流值的调整函数系为包含所述滤波后信号的电平的二次方或以上的函数。
在另一实施例中,当滤波后信号的电压Vin在电压上限值VH和电压下限值VL之间时,LED灯的电流Iout会随电压Vin增加或减少而线性增加或减少。当电压Vin在电压上限值VH时,电流Iout在上电流值IH;当电压Vin在电压下限值VL时,电流Iout在下电流值IL。其中,上电流值IH高于下电流值IL。也就是,当电压Vin在电压上限值VH和电压下限值VL之间,电流Iout为电压Vin的一次方的函数关系。
藉由上述的设计,当电子镇流器的输出功率高于驱动电路所驱动的LED模块的消耗功率时,电压Vin会随时间提高并超过电压上限值VH。当电压Vin高于电压上限值VH时,LED模块的消耗功率的增加率高于电子镇流器的输出功率的增加率,并于电压Vin为高平衡电压VH+以及电流Iout为高平衡电流IH+时,输出功率等于消耗功率而平衡。此时,高平衡电压VH+高于电压上限值VH,而高平衡电流IH+高于上电流值。反之,当电压Vin低于电压下限值VL时,LED模块的消耗功率的减少率高于电子镇流器的输出功率的减少率,并于电压Vin为低平衡电压VL-以及电流Iout为低平衡电流IL-时,输出功率等于消耗功率而平衡。此时,低平衡电压VL-低于电压下限值VL,而低平衡电流IL-低于下电流值IL。
在一较佳实施例中,电压下限值VL定义为电子镇流器的最低输出电压的90%,电压上限值VH定义为最高输出电压的110%。以全电压100-277V AC/60HZ为例,电压下限值VL设置 为90V(100V*90%),电压上限值VH设置为305V(277V*110%)。
配合图19及图20,短电路板253被区分成与长电路板251两端连接的第一电路板及第二电路板,由于上述已经对长及短的相对概念进行说明,在此不再赘述,由于所述第一电路板与第二电路板包括于所述短电路板之中,故为便于说明,以下均将所述第一电路板计做第一短电路板,所述第二电路板计做第二短电路板,而且电源组件中的电子组件被分别设置于的短电路板253的第一短电路板及第二短电路板上。第一短电路板及第二短电路板的长度尺寸可以约略一致,也可以不一致。如上述,优选地所述较小灯头的尺寸为较大灯头尺寸的30%至80%。或可因为如此,第一短电路板(图19短电路板253的右侧电路板及图20的短电路板253的左侧电路板)的长度尺寸为第二短电路板的长度尺寸的30%~80%,亦即所述第一电路板的长度尺寸可为第二电路板的长度尺寸的30%~80%。或者,优选地所述较小灯头的尺寸为较大灯头尺寸的1/3~2/3。或可因为如此,更佳的第一短电路板的长度尺寸为第二短电路板的长度尺寸的1/3~2/3,亦即所述第一电路板的长度尺寸可以为第二电路板的长度尺寸的1/3~2/3。在本实施中,第一短电路板的长度尺寸大致为第二短电路板的尺寸的一半。第二短电路板的尺寸介于15mm~65mm(具体视应用场合而定)。第一短电路板设置于LED直管灯的一端的灯头中,以及第二短电路板设置于LED直管灯的相对的另一端的灯头中。
举例来说,驱动电路的电容例如:图29C至图29F中的电容1634、1734、1834、1934)实际应用上可以是两个或以上的电容并联而成。电源组件中驱动电路的电容至少部分或全部设置于短电路板253的第一短电路板上。即,整流电路、滤波电路、驱动电路的电感、控制器、切换开关、二极管等均设置于短电路板253的第二短电路板上。而电感、控制器、切换开关等为电子组件中温度较高的组件,与部分或全部电容设置于不同的电路板上,可使电容(尤其是电解电容)避免因温度较高的组件对电容的寿命造成影响,提高电容信赖性。这样的电路布局,可以使电子组件的焊接变得容易;进一步,还可降低EMI的干扰。
本实用新型的驱动电路的转换效率为80%以上,较佳为90%以上,更佳为92%以上。因此,在未包含驱动电路时,本实用新型的LED灯的发光效率较佳为120lm/W以上,更佳为160lm/W以上;而在包含驱动电路与LED组件结合后的发光效率较佳为120lm/W*90%=108lm/W以上,更佳为160lm/W*92%=147.2lm/W以上。
另外,考虑LED直管灯的扩散层的透光率为85%以上,因此,本实用新型的LED直管灯的发光效率较佳为108lm/W*85%=91.8lm/W以上,更佳为147.2lm/W*85%=125.12lm/W。
值得注意的是,切换电路可以包含多个切换组件,以提供两个以上的切换端来并联连接多个并联的电容(例如:图26A的电容645及646、图26A的电容643、645及646、图26B的 电容743与744或/及745与746、图26C的电容843及844、图26C的电容845及846、图26C的电容842、843及844、图26C的电容842、845及846、图26C的电容842、843、844、845及846),来确实达到将等效与LED直管灯串联的多个电容旁通的效果。
综合以上,当多个光源202排布成沿灯管长度方向的一列时,所有光源202的支架202b的第二侧壁16需要分别位于同一条直线上,即同侧的第二侧壁16形成类似于一面墙的结构,以阻挡用户的视线直接看到光源202。当多个光源202排布成沿灯管长度方向的多列时,沿灯管宽度方向最外侧的两列的所有光源202的支架202b的最外第二侧壁16需要分别位于两条直线上,形成类似于两面墙的结构,以阻挡用户的视线直接看到光源202;而对于中间的一列或几列光源202,其侧壁的排布、延伸方式不作要求,可以与最外侧的两列光源202相同,也可以采用其他不同排布方式。
参见图30A,为根据本实用新型第四较佳实施例的LED灯的电路方块示意图。相较于图24E所示实施例,本实施例的日光灯包含第一整流电路510及第二整流电路540、滤波电路520及LED驱动模块530,且更增加镇流兼容电路1510。镇流兼容电路1510耦接于所述第一整流电路510,且也可耦接于第一接脚501或/及第二接脚502以及整流电路510之间。在本实施例,以镇流兼容电路1510耦接于第一接脚501及整流电路之间为例说明。请同时参见图24A、图24B及图24D,灯管驱动电路505为电子镇流器,提供交流驱动信号以驱动本实施例的LED灯。
由于灯管驱动电路505的驱动系统启动之初,输出能力尚未完全提升至正常状态。然而,在启动之初LED灯的电源组件立即导通并接收灯管驱动电路505所提供的交流驱动信号。这会造成启动之初,灯管驱动电路505立即有负载而无法顺利启动。举例来说,灯管驱动电路505的内部组件自其转换的输出取电而维持启动后的操作,输出电压无法正常上升而导致启动失败,或灯管驱动电路505的谐振电路的Q值因LED灯的负载的加入而改变而无法顺利启动等。
本实施例的镇流兼容电路1510在启动之初,将呈现开路状态,使交流驱动信号的能量无法输入至LED模块,并经设定的延迟时间后才进入导通状态,使交流驱动信号的能量开始输入至LED灯模块。上述的镇流兼容电路1510于做为外部驱动信号的交流驱动信号开始输入LED直管灯起一设定延迟时间内为截止,于所述设定延迟时间后为导通,藉此LED灯的操作模拟了荧光灯的启动特性—驱动电源启动后一段延迟时间后内部气体才放电而发光。因此,镇流兼容电路1510进一步改善了对电子镇流器等灯管驱动电路505的兼容性。
在本实施例中,第二整流电路540为可省略的电路,以虚线表示。
参见图30B,为根据本实用新型第五较佳实施例的LED灯的电路方块示意图。相较于图30A所示实施例,本实施例的镇流兼容电路1510可耦接于第三接脚503或/及第四接脚504以及第二整流电路540之间。如图30A中镇流兼容电路1510的说明,镇流兼容电路1510具有延迟起动的作用,使交流驱动信号的输入延迟了设定的时间,避免电子镇流器等灯管驱动电路505启动失败的问题。
镇流兼容电路1510除了如上述实施例般置于接脚与整流电路之间外,也可以对应不同的整流电路的架构而改置于整流电路之内。请参见图30C,为根据本实用新型较佳实施例的镇流兼容电路的电路配置示意图。在本实施例中,整流电路系采用图25C所示的整流电路810的电路架构。整流电路810包含整流单元815和端点转换电路541。整流单元815耦接第一接脚501及第二接脚502,端点转换电路541耦接第一整流输出端511及第二整流输出端512,而镇流兼容电路1510耦接于整流单元815及端点转换电路541之间。于启动之初,做为外部驱动信号的交流驱动信号开始输入LED直管灯,交流驱动信号仅能经过整流单元815,而无法经过端点转换电路541以及内部的滤波电路及LED驱动模块等,且整流单元815内的第一整流二极管811及第二整流二极管812的寄生电容相当小可忽略。因此,LED灯的电源组件的等效电容或电感于启动之初并未耦接灯管驱动电路505,因而不影响灯管驱动电路505的Q值而可使灯管驱动电路505顺启动。换句话说,所述第一整流电路可包含一整流单元(815)以及一端点转换电路(541)。所述整流单元耦接所述端点转换电路,且被配置以进行半波整流;而所述端点转换电路用以传递所述第一接脚和/或第二接脚所接收的所述外部驱动信号。须注意的是,在此提到的“传递”也涵盖“转换”、“改变”的意思。
值得注意的是,在端点转换电路541不包含电容或电感等组件的前提下,整流单元815和端点转换电路541的交换(即,整流单元815耦接第一整流输出端511及第二整流输出端512,端点转换电路541耦接第一接脚501及第二接脚502并不影响镇流兼容电路1510的功能。
再者,如图25A到图25D的说明,整流电路的第一接脚501及第二接脚502变更为第三接脚503及第四接脚504时,即可作为第二整流电路540。即,上述的镇流兼容电路1510的电路配置也可以改至第二整流电路540内而不影响镇流兼容电路1510的功能。另外,如前述般端点转换电路541不包含电容或电感等组件,或者第一整流电路510或第二整流电路540采用如图25A所示的整流电路610时,第一整流电路510或第二整流电路540的寄生电容相 当小,也不会影响灯管驱动电路505的Q值。
参见图30D,为根据本实用新型第六较佳实施例的LED灯的电路方块示意图。相较于图30A所示实施例,本实施例的镇流兼容电路1510耦接于第二整流电路540与滤波电路520之间。如上说明,本实施例中的第二整流电路540不包含电容或电感等组件,因此不影响镇流兼容电路1510的功能。
参见图30E,为根据本实用新型第七较佳实施例的LED灯的电路方块示意图。相较于图30A所示实施例,本实施例的镇流兼容电路1510耦接于整流电路510与滤波电路520之间。同样地,本实施例中的整流电路510不包含电容或电感等组件,因此不影响镇流兼容电路1510的功能。
参见图30F,为根据本实用新型第一较佳实施例的镇流兼容电路的电路示意图。镇流兼容电路1610中的初始状态为镇流兼容输入端1611及镇流兼容输出端1621之间等效上为开路。镇流兼容电路1610于镇流兼容输入端1611接收信号后,经设定时间才导通镇流兼容输入端1611及镇流相容输出端1621,使镇流兼容输入端1611所接收的信号传送到镇流兼容输出端1621。
镇流兼容电路1610包含二极管1612、电阻1613、1615、1618、1620及1622、第二电子开关(在此实施例中包含双向可控硅1614)、第一电子开关(在此实施例中包含双向触发二极管1617)、第一电容1619、镇流兼容输入端1611及镇流兼容输出端1621。其中,电阻1613的阻值相当大,因此在双向可控硅1614截止时,镇流兼容输入端1611及镇流兼容输出端1621之间等效上为开路。
双向可控硅1614耦接于镇流兼容输入端1611及镇流兼容输出端1621之间,电阻1613也耦接于镇流兼容输入端1611及镇流兼容输出端1621之间而与双向可控硅1614并联。二极管1612、电阻1620、1622及电容1619依序串联于镇流兼容输入端1611及镇流兼容输出端1621之间,而与双向可控硅1614并联。二极管1612的正极与双向可控硅1614连接,而负极连接到电阻1620的一端。双向可控硅1614的控制端与双向触发二极管1617的一端相连,双向触发二极管1617的另一端与电阻1618的一端相连,电阻1618的的另一端耦接电容1619及电阻1622的连接端。电阻1615耦接于双向可控硅1614的控制端及电阻1613与电容1619的连接端之间。其中,电阻1615、1618、1620可以省略,故图中以虚线表示。电阻1618省略时,双向触发二极管1617的另一端与电容1619及电阻1622的连接端直接连接。电阻1620省略时,二极管1612的负极直接连接电阻1622。
当交流驱动信号(例如:电子镇流器所输出的高频、高压交流信号)开始输入到镇流兼容输入端1611时,双向可控硅1614先处于开路状态,使交流驱动信号无法输入而使LED灯也处于开路状态。交流驱动信号经过二极管1612、电阻1620、1622开始对电容1619充电,使电容1619的电压逐渐上升。持续充电一段时间后,电容1619的电压升高到超过双向触发二极管1617的阀值而使触发双向触发二极管1617导通。然后,导通的双向触发二极管1617触发双向可控硅1614,使双向可控硅1614也导通。此时,导通的双向可控硅1614电性连接镇流兼容输入端1611及镇流兼容输出端1621,使交流驱动信号经由镇流兼容输入端1611及镇流兼容输出端1621输入,使LED灯的电源组件开始操作。另外,电容1619所储存的能量维持双向可控硅1614导通,以避免交流驱动信号的交流变化造成双向可控硅1614,即镇流兼容电路1610的再度截止,或者重复于导通与截止之间变化的问题。换句话说,当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关处于开路状态,而所述第一电容器被充电直到使所述第一电子开关导通以至于触发所述第二电子开关导通,所述第二电子开关之导通使所述镇流兼容电路进入所述导通状态。
当本实施例的镇流兼容电路1610应用至图30C或图30D的应用电路时,由于镇流兼容电路1610接收经过整流单元或整流电路整流后的信号,二极管1612可以省略。双向可控硅1614可用硅控整流器(Silicon Controlled Rectifier,SCR)来代替,双向触发二极管1617可用固体放电管(Thyristor Surge Suppressor)来代替,而不影响保护电路的保护功能。尤其,通过采用硅控整流器管可降低导通时的压降。
一般电子镇流器等灯管驱动电路505启动后经几百毫秒,电子镇流器的输出电压可以提高到一定电压值之上而不至于受到LED灯的负载加入的影响。尤其,部分的瞬时启动型电子镇流器的输出交流电压会先约略维持电值定值一小段时间,例如:0.01秒,此时的电压定值在300V以下,之后才开始上升,而在此一小段时间内输出端有任何负载的加入,都可能造成瞬时启动型电子镇流器无法顺利拉升输出交流电压;特别是,当瞬时启动型电子镇流器的输入电压为120V或以下的市电时,更容易出现。另外,电子镇流器等灯管驱动电路505会设有荧光灯是否点灯的侦测,若超过时间荧光灯未点灯则判断荧光灯异常而进入保护状态。因此,镇流兼容电路1610的延迟时间较佳为大于0.01秒,更佳为在0.1秒到3秒之间。换句话说,从所述外部驱动信号被初始施加于所述第一接脚及第二接脚起,经过一期间后所述镇流兼容电路进入所述导通状态,其中所述期间可介于10毫秒与1秒之间。可选的是,所述期间介于10毫秒与300毫秒之间。
值得注意的是,电阻1622可以额外并联另一电容1623。电容1623具有一端耦接所述镇流兼容电路的一输入/输出端与所述第二电子开关的一耦接点,且具有另一端耦接所述第一电子开关与所述第一电容器的一耦接点,且用以反映所述镇流兼容电路的一输入端及一输出端之间电压差的瞬间变化。亦即电容1623的作用在于反应镇流兼容输入端1611及镇流兼容输出端1621之间电压差的瞬间变化,且不影响镇流兼容电路1610的延迟导通的作用。
如此说明书所揭露的内容,本实用新型的LED直管灯在实施例中可包含一灯板,贴附于所述灯管的一内管壁上,所述灯板包含一可挠式电路板。而所述LED驱动模块包含一LED模块,其中所述LED模块包含一LED组件且被设置于所述可挠式电路板上。
请参见图30G,为根据本实用新型第四较佳实施例的LED直管灯的电源组件的应用电路方块示意图。相较于图24D所示实施例,本实施例的灯管驱动电路505驱动多个串联的LED直管灯500,且每个LED直管灯500内均装设有镇流兼容电路1610。为方便说明,以下以两个串联的LED直管灯500为例说明。
因两个LED直管灯500内的镇流兼容电路1610的延迟时间因组件制程误差等因素的影响而具有不同的延迟时间,因此两个镇流兼容电路1610的导通时间并不一致。当灯管驱动电路505启动,灯管驱动电路505所提供的交流驱动信号的电压大致由两个LED直管灯500所均分承受。而后当镇流兼容电路1610其中之一先导通时,灯管驱动电路505的交流驱动信号的电压几乎落在尚未导通的另一只LED直管灯500上。这使得尚未导通的LED直管灯500的镇流兼容电路1610上的跨压突然增加一倍,即镇流兼容输入端1611及镇流兼容输出端1621之间电压差突然增加一倍。由于电容1623的存在,电容1619及1623的分压效果,会瞬间拉高电容1619的电压,使得双向触发二极管1617触及双向可控硅1614导通,而使两个LED直管灯500的镇流兼容电路1610几乎同时导通。藉由电容1623的加入,可避免串联的LED直管灯之间因镇流兼容电路1610的延迟时间不同,导致先导通的镇流兼容电路1610中的双向可控硅1614因维持导通的电流不足而再度截止的问题。因此,加入电容1623的镇流兼容电路1610可进一步改受串联的LED直管灯的兼容性。
在实际应用上,电容1623的建议容值为在10pF~1nF之间,较佳为10pF~100PF,更佳为47pF。
值得注意的是,二极管1612系用以对电容1619充电的信号进行整流。因此,请参见图30C、图30D及图30E,在镇流兼容电路1610配置于整流单元或整流电路之后的应用情况, 二极管1612可以省略。因此,在图30F中,二极管1612以虚线表示。
参见图30H,为根据本实用新型第二较佳实施例的镇流兼容电路的电路示意图。镇流兼容电路1710中的初始状态为镇流兼容输入端1711及镇流兼容输出端1721之间为开路。镇流兼容电路1710于镇流兼容输入端1711接收信号,于外部驱动信号的电平小于一设定延迟电平值时为截止,于外部驱动信号的电平大于设定延迟电平值时为导通,使镇流兼容输入端1711所接收的信号传送到镇流兼容输出端1721。设定延迟电平值较佳为大于等于400V。
镇流兼容电路1710包含第二电子开关(在此实施例中例如是双向可控硅1712)、第一电子开关(在此实施例中例如是双向触发二极管1713)、电阻1714、1716及1717及电容1715。双向可控硅1712的第一端耦接镇流兼容输入端1711,控制端耦接双向触发二极管1713的一端及电阻1714的一端,而第二端耦接电阻1714的另一端。电容1715的一端耦接双向触发二极管1713的另一端,另一端耦接双向可控硅1712的第二端。电阻1717与电容1715并联,因此也耦接双向触发二极管1713的另一端及双向可控硅1712的第二端。电阻1716的一端耦接双向触发二极管1713与电容1715的连接点,另一端耦接镇流兼容输出端1721。
当交流驱动信号(例如:电子镇流器所输出的高频、高压交流信号)开始输入到镇流兼容输入端1711时,双向可控硅1712先处于开路状态,使交流驱动信号无法输入而使LED灯也处于开路状态。交流驱动信号的输入会在镇流兼容电路1710的镇流兼容输入端1711及镇流兼容输出端1721之间造成压差。当交流驱动信号随时间变大并经过一段时间后达到足够的振幅(设定延迟电平值)时,镇流兼容输出端1721的电平经过电阻1716、并联的电容1715及电阻1717以及电阻1714反应到双向可控硅1712的控制端而触发双向可控硅1712导通。此时,镇流兼容电路1710导通而使LED灯正常操作。在双向可控硅1712导通后,电阻1716流经电流,并对电容1715充电以储存一定的电压于电容1715。电容1715所储存的能量维持双向可控硅1712导通,以避免交流驱动信号的交流变化造成双向可控硅1712,即镇流兼容电路1710的再度截止,或者重复于导通与截止之间变化的问题。
各式各样不同的实施例包含,当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关(1712)处于开路状态,然后所述外部驱动信号经过一二极管或所述第一整流电路而产生一直流信号或脉动直流信号(pulsating DC signal),直到所述直流信号达到一振幅使所述第一电子开关(1713)导通以至于触发所述第二电子开关导通,所述第二电子开关之导通使所述镇流兼容电路进入所述导通状态。而此二极管可能在所述第一整流电路中,可能在所述镇流兼容电 路中,或者是与这两者分开存在的,而且也不一定属于所述LED直管灯。须注意的是,上述整流后信号可以包含所述直流信号。
再者,如图30H所示,所述镇流兼容电路1710可包含一分压电路(由例如电组1716及电阻1717所构成),用于让所述外部驱动信号经过所述二极管或所述第一整流电路后经过所述分压电路,因而产生所述直流信号。在所述镇流兼容电路中,各式各样不同的实施例也包含习知技艺者所知的各种不同分压电路,用以产生所述直流信号。
再者,举例来说,所述第一电子开关(如图30F及30H之实施例中的)可包含一双向触发二极管(DIAC)或构成一固体放电管(Thyristor Surge Suppressor)。而所述第二电子开关可包含一双向可控硅(TRIAC)或一硅控整流器(SCR)。
本实用新型LED直管灯于各实施例的实现以如前所述。需要提醒注意的是,在各个实施例中,对于同一根LED直管灯而言,在“灯板采用可挠式电路软板”、“电源具有长短电路板的组合件”等特征中,可以只包括其中的一个或多个技术特征。
此外,其中关于“灯板采用可挠式电路软板”的内容系可选自于包含有实施例中其相关技术特征的其中之一或其组合。
例如,在灯板采用可挠式电路软板中,所述可挠式电路软板与所述电源的输出端之间通过导线打线连接或所述可挠式电路软板与所述电源的输出端之间焊接。此外,所述可挠式电路软板包括一介电层与一线路层的堆栈;可挠式电路软板可以在表面涂覆油墨材料的电路保护层,并通过增加沿周向的宽度来实现反射膜的功能。
例如,在电源设计中,长短电路板的组合件具有一长电路板和一短电路板,长电路板和短电路板彼此贴合透过黏接方式固定,短电路板位于长电路板周缘附近。短电路板上具有电源模组,整体构成电源。在双端电源的驱动架构,可以支持仅使用其中一端以做为单端电源的方式来接收外部驱动信号。
在电源组件的整流电路设计中,可以是具有单一整流单元,或双整流单元。双整流电路中的第一整流单元与第二整流单元分别与配置在LED直管灯的两端灯头的接脚耦接。单一整流单元可适用于单端电源的驱动架构,而双整流单元适用于单端电源及双端电源的驱动架构。而且配置有至少一整流单元时,可以适用于低频交流信号、高频交流信号、或直流信号的驱动环境。
在LED直管灯的接脚设计中,可以是单端双接脚(共两个接脚,另一端无接脚)、双端各 单接脚(共两个接脚)、双端各双接脚(共四个接脚)的架构。在单端双接脚及双端各单接脚的架构下,可适用于单一整流电路的整流电路设计。在双端各双接脚的架构下,可适用于双整流电路的整流电路设计,且使用双端各任一接脚或任一单端的双接脚来接收外部驱动信号。
在电源组件的滤波电路设计中,可以具有单一电容或π型滤波电路,以滤除整流后信号中的高频成分,而提供低纹波的直流信号为滤波后信号。滤波电路也可以包含LC滤波电路,以对特定频率呈现高阻抗,以符合UL认证对特定频率的电流大小规范。再者,滤波电路更可包含耦接于接脚及整流电路之间的滤波单元,以降低LED灯的电路所造成的电磁干扰。
在电源组件的LED驱动模块设计中,可以仅包含LED模块或者包含LED模块及驱动电路。也可以将稳压电路与LED驱动模块并联,以确保LED驱动模块上的电压不至发生过压。
在电源组件的LED模块设计中,LED模块可以包含彼此并联的多串LED组件(即,单一LED芯片,或多个不同颜色LED芯片组成的LED组)串,各LED组件串中的LED组件可以彼此连接而形成网状连接。另外,可以额外增加保护电路来保护LED模块。保护电路可以侦测LED模块的电流或/及电压来对应启动对应的过流或过压保护。
在电源组件的镇流兼容电路设计中,可以与整流电路串联。在与整流电路串联的设计中,镇流兼容电路的初始状态为截止,并经过设定延迟时间后导通。镇流兼容电路可以在启动初期使瞬时启动型电子镇流器能顺利启动,而改善对瞬时启动型电子镇流器的兼容性。而且镇流兼容电路几乎不影响预热启动型电子镇流器、快速启动型电子镇流器等其他电子镇流器的兼容性。
也就是说,可以将上述特征作任意的排列组合,并用于LED直管灯的改进。

Claims (16)

1.一种LED直管灯,包含:
一灯管;
一第一接脚及一第二接脚,都耦接所述灯管,用以接收一外部驱动讯号信号;
一第一整流电路,耦接所述第一接脚及所述第二接脚,用以对所述外部驱动信号进行整流,以产生一整流后信号;
一滤波电路,与所述第一整流电路耦接,用以对所述整流后信号进行滤波,以产生一滤波后信号;
一LED驱动模块,与所述滤波电路耦接,以接收所述滤波后信号以发光;以及
一镇流兼容电路(1510),耦接于所述第一整流电路;
所述LED直管灯用于当所述外部驱动信号被初始施加于所述第一接脚及所述第二接脚时,所述镇流兼容电路处于一开路状态,使所述LED直管灯未发光,直到所述镇流兼容电路进入一导通状态,其中所述导通状态允许一电流从所述第一接脚或所述第二接脚输入后通过所述LED驱动模块以使所述LED直管灯发光。
2.根据权利要求1所述的LED直管灯,其特征在于,
所述镇流兼容电路耦接于所述第一接脚或第二接脚以及所述第一整流电路之间,或耦接于所述第一整流电路以及所述滤波电路之间。
3.根据权利要求1所述的LED直管灯,其特征在于,
所述灯管还具有一第三接脚以及一第四接脚,用以接收所述外部驱动信号,所述LED直管灯还包含一第二整流电路;所述第二整流电路耦接所述第三接脚及所述第四接脚,用以对所述外部驱动信号进行整流。
4.根据权利要求3所述的LED直管灯,其特征在于,
所述镇流兼容电路耦接于所述第二整流电路以及所述滤波电路之间。
5.根据权利要求1所述的LED直管灯,其特征在于,
所述镇流兼容电路包含一第一电子开关(1617)、一第二电子开关(1614)、以及一第一电容器(1619);所述第一电子开关(1617)的一端耦接于所述第二电子开关(1614),而另一端耦接于所述第一电容器(1619);所述镇流兼容电路用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关 (1617)处于开路状态,而所述第一电容器(1619)被充电直到使所述第一电子开关(1617)导通以至于触发所述第二电子开关(1614)导通,所述第二电子开关(1614)导通使所述镇流兼容电路进入所述导通状态。
6.根据权利要求5所述的LED直管灯,其特征在于,
所述镇流兼容电路还包含另一电容器(1623),所述电容器(1623)具有一端耦接所述镇流兼容电路的一输入/输出端与所述第二电子开关的一耦接点,具有另一端耦接所述第一电子开关与所述第一电容器的一耦接点,用以反映所述镇流兼容电路的一输入端及一输出端之间电压差的瞬间变化。
7.根据权利要求1或3所述的LED直管灯,其特征在于,
还包含一灯板,贴附于所述灯管的一内管壁上,所述灯板包含一可挠式电路板;而所述LED驱动模块包含一LED模块,其中所述LED模块包含一LED组件且被设置于所述可挠式电路板上。
8.根据权利要求1所述的LED直管灯,其特征在于,
所述镇流兼容电路包含一第一电子开关(1713)以及一第二电子开关(1712);所述第一电子开关(1713)的一端耦接于所述第二电子开关(1712);所述镇流兼容电路用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关(1712)处于开路状态,然后所述外部驱动信号经过一二极管或所述第一整流电路而产生一直流信号,直到所述直流信号达到一振幅使所述第一电子开关(1713)导通以至于触发所述第二电子开关(1712)导通,所述第二电子开关(1712)之导通使所述镇流兼容电路进入所述导通状态。
9.根据权利要求8所述的LED直管灯,其特征在于,
所述镇流兼容电路还包含一分压电路,用以让所述外部驱动信号经过所述二极管或所述第一整流电路后经过所述分压电路而产生所述直流信号。
10.根据权利要求5或8所述的LED直管灯,
其特征在于,所述第一电子开关包含一双向触发二极管或一固体放电管,或所述第二电子开关包含一双向可控硅或一硅控整流器。
11.一种LED直管灯,包含:
一灯管;
一第一接脚及一第二接脚,都耦接所述灯管,用以接收一外部驱动信号;
一第一整流电路,耦接所述第一接脚及所述第二接脚,用以对所述外部驱 动信号进行整流,以产生一整流后信号,其中所述第一整流电路包含一整流单元(815)以及一端点转换电路(541);所述整流单元耦接所述端点转换电路,且被配置以进行半波整流;而所述端点转换电路用以传递所述第一接脚和/或第二接脚所接收的所述外部驱动信号;
一滤波电路,与所述第一整流电路耦接,用以对所述整流后信号进行滤波,以产生一滤波后信号;
一LED驱动模块,与所述滤波电路耦接,以接收所述滤波后信号以发光;以及
一镇流兼容电路,耦接于所述整流单元以及所述端点转换电路之间;
所述LED直管灯用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述镇流兼容电路处于一开路状态,使所述LED直管灯未发光,直到所述镇流兼容电路进入一导通状态,所述导通状态允许一电流从所述第一接脚或第二接脚输入后通过所述LED驱动模块以使所述LED直管灯发光。
12.根据权利要求11所述的LED直管灯,其特征在于,
所述整流单元包含二整流二极管,所述的二整流二极管其中之一的正端连接另一的负端形成一半波连接点,且所述镇流兼容电路耦接所述半波连接点。
13.根据权利要求11所述的LED直管灯,其特征在于,
所述镇流兼容电路包含一第一电子开关(1617)、一第二电子开关(1614)、以及一第一电容器(1619);所述第一电子开关(1617)的一端耦接于所述第二电子开关(1614),而另一端耦接于所述第一电容器;所述镇流兼容电路用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关(1614)处于开路状态,而所述第一电容器被充电直到使所述第一电子开关(1617)导通以至于触发所述第二电子开关(1614)导通,所述第二电子开关(1614)导通使所述镇流兼容电路进入所述导通状态。
14.根据权利要求11所述的LED直管灯,其特征在于,
所述镇流兼容电路包含一第一电子开关(1713)以及一第二电子开关(1712);所述第一电子开关(1713)的一端耦接于所述第二电子开关;所述镇流兼容电路用于当所述外部驱动信号被初始施加于所述第一接脚及第二接脚时,所述第二电子开关(1712)处于开路状态,然后所述外部驱动信号经过一二极管或所述第一整流电路 而产生一直流信号,直到所述直流信号达到一振幅使所述第一电子开关(1713)导通以至于触发所述第二电子开关(1712)导通,所述第二电子开关(1712)导通使所述镇流兼容电路进入所述导通状态。
15.根据权利要求14所述的LED直管灯,其特征在于,
所述镇流兼容电路还包含一分压电路,用于让所述外部驱动信号经过所述二极管或所述第一整流电路后经过所述分压电路,因而产生所述直流信号。
16.根据权利要求13或14所述的LED直管灯,其特征在于,
所述第一电子开关包含一双向触发二极管或一固体放电管,或所述第二电子开关包含一双向可控硅或一硅控整流器。
CN201620102545.8U 2015-02-12 2016-02-01 一种led直管灯 Active CN205640347U (zh)

Applications Claiming Priority (30)

Application Number Priority Date Filing Date Title
CN2015100759257 2015-02-12
CN201510075925 2015-02-12
CN201510104823 2015-03-10
CN2015101048233 2015-03-10
CN201510134586 2015-03-26
CN2015101345865 2015-03-26
CN201510136796 2015-03-27
CN2015101367968 2015-03-27
CN201510173861 2015-04-14
CN2015101738614 2015-04-14
CN201510338027 2015-06-17
CN2015103380276 2015-06-17
CN201510372375 2015-06-26
CN2015103723755 2015-06-26
CN201510373492 2015-06-26
CN2015103734923 2015-06-26
CN2015104286801 2015-07-20
CN201510428680 2015-07-20
CN201510482944 2015-08-07
CN2015104829441 2015-08-07
CN201510483475 2015-08-08
CN2015104861150 2015-08-08
CN201510486115 2015-08-08
CN2015104834755 2015-08-08
CN201510555543 2015-09-02
CN2015105555434 2015-09-02
CN201510557717 2015-09-06
CN2015105577170 2015-09-06
CN201510595173 2015-09-18
CN2015105951737 2015-09-18

Publications (1)

Publication Number Publication Date
CN205640347U true CN205640347U (zh) 2016-10-12

Family

ID=57078119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620102545.8U Active CN205640347U (zh) 2015-02-12 2016-02-01 一种led直管灯

Country Status (1)

Country Link
CN (1) CN205640347U (zh)

Similar Documents

Publication Publication Date Title
CN206555763U (zh) 一种led直管灯
CN106015996A (zh) 一种led直管灯
CN205584538U (zh) 一种led直管灯
US10344921B2 (en) LED tube lamp and power supply module applicable thereto
US9841174B2 (en) LED tube lamp
CA2987969C (en) Led tube lamp
CN105472836A (zh) 整流滤波电路及led直管灯
US20160356472A1 (en) Led tube lamp
US20170067627A1 (en) Led tube lamp
US10299333B2 (en) LED tube lamp
CN106996514A (zh) 一种led直管灯
GB2544211A (en) LED tube lamp
CA2987975C (en) Led tube lamp
CN206559673U (zh) Led直管灯
US10900620B2 (en) LED tube lamp
CN205640351U (zh) Led直管灯
CN205491290U (zh) 一种led直管灯
CN205640347U (zh) 一种led直管灯
CN205491287U (zh) 一种led直管灯
CN205579231U (zh) Led直管灯
CN207990255U (zh) 一种led直管灯
CN206682650U (zh) Led照明装置
CN206413213U (zh) Led直管灯
CN206559674U (zh) Led直管灯
CN209105475U (zh) Led灯

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant