CN205581683U - A high accuracy temperature control system for optics microballon chamber - Google Patents
A high accuracy temperature control system for optics microballon chamber Download PDFInfo
- Publication number
- CN205581683U CN205581683U CN201620363364.0U CN201620363364U CN205581683U CN 205581683 U CN205581683 U CN 205581683U CN 201620363364 U CN201620363364 U CN 201620363364U CN 205581683 U CN205581683 U CN 205581683U
- Authority
- CN
- China
- Prior art keywords
- temperature
- circuit
- precision
- temperature control
- control system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004005 microsphere Substances 0.000 claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 239000003990 capacitor Substances 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 9
- 238000009529 body temperature measurement Methods 0.000 abstract description 8
- 229910052697 platinum Inorganic materials 0.000 abstract description 5
- 238000001914 filtration Methods 0.000 abstract description 4
- 238000005057 refrigeration Methods 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000011797 cavity material Substances 0.000 description 24
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- -1 PID compound Chemical class 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
Landscapes
- Control Of Temperature (AREA)
Abstract
本实用新型公开了一种用于光学微球腔的高精度温控系统,包括AT89C52单片机、A/D转换电路、抗混叠滤波电路、仪用放大电路,恒流源、PT1000温度传感器、制冷和发热片、驱动电路、显示模块、键盘模块以及电源模块。温度高精度测量采用微电流驱动四线铂电阻Pt1000的测温方案,通过抗干扰滤波技术降低噪声、抑制干扰、减少系统误差,提高系统的测量精度和稳定性。恒温控制,由单片机产生基于Fuzzy‑智能PID复合控制算法结果指令驱动电路,控制制冷或加热片调控光学微球腔机械封装体内温度。本实用新型提供的高精度温控系统具有高精度、良好的可靠性、稳定性和实用性等特点,可有效简化光学微球腔的制作和使用程序。
The utility model discloses a high-precision temperature control system for an optical microsphere cavity, which includes an AT89C52 single-chip microcomputer, an A/D conversion circuit, an anti-aliasing filter circuit, an instrument amplifier circuit, a constant current source, a PT1000 temperature sensor, and a refrigeration unit. And heating sheet, driving circuit, display module, keyboard module and power supply module. The high-precision measurement of temperature adopts the temperature measurement scheme of micro-current driven four-wire platinum resistance Pt1000, and uses anti-interference filtering technology to reduce noise, suppress interference, reduce system errors, and improve the measurement accuracy and stability of the system. Constant temperature control, which is generated by the single-chip microcomputer based on the Fuzzy-intelligent PID composite control algorithm result command drive circuit, controls the cooling or heating plate to regulate the temperature inside the mechanical package of the optical microsphere cavity. The high-precision temperature control system provided by the utility model has the characteristics of high precision, good reliability, stability and practicability, and can effectively simplify the production and use procedures of the optical microsphere cavity.
Description
技术领域 technical field
本实用新型涉及智能控制领域,一种用于光学微球腔的高精度温控系统。 The utility model relates to the field of intelligent control, in particular to a high-precision temperature control system for an optical microsphere cavity.
背景技术 Background technique
光学微球腔材料的热膨胀系数和热光效应对环境温度敏感,外界温度变化或激光能量吸收都会造成材料发生热膨胀;材料的热膨胀和热光效应分别导致谐振腔尺寸和折射率的变化,最终造成谐振频率变化;目前,为了减小环境温度对光学微球腔性能的影响,主要是利用紫外胶封装微球腔,改变紫外胶的厚度从而达到改变了光在紫外胶中的比例,来调节温度系数;这种方法计算繁琐,成本较高,选用器件复杂,且需要精确控制紫外胶包覆特性。 The thermal expansion coefficient and thermo-optic effect of the optical microsphere cavity material are sensitive to the ambient temperature. The external temperature change or the absorption of laser energy will cause the thermal expansion of the material; the thermal expansion and thermo-optic effect of the material lead to the change of the resonant cavity size and the refractive index respectively, eventually causing Resonant frequency changes; at present, in order to reduce the influence of ambient temperature on the performance of the optical microsphere cavity, the microsphere cavity is mainly packaged with ultraviolet glue, and the thickness of the ultraviolet glue is changed to change the proportion of light in the ultraviolet glue to adjust the temperature. coefficient; this method is cumbersome to calculate, high in cost, complex in selecting devices, and requires precise control of the coating characteristics of UV glue.
光学微球腔对温度敏感,若能精确控制光学微球腔装置内温度,同样可以抑制光学微球腔的温度效应;很显然这类装置无需利用紫外胶封装微球腔,在一定程度上可简化光学微球腔制备程序,但需要高精度的温控系统。高精度的温控系统要求具有高精度的测量和恒温控制。在超高精度测量中,大都使用标准铂电阻温度传感器。它测量精度可达0.001℃,年漂移率也不超过0.001℃;在铂电阻测温中,要求高精度、受环境温度影响小的恒流源支持。高稳定的恒流源成为高精度测量的关键,恒流源过大时,会引起电阻等器件发热,产生自热效应,引起误差;但是电流过小时,信噪比又难以保证;恒温控制常用可控硅实现对加热器和制冷器的操控,这需要智能化的温度监控算法来实现恒温控制。 The optical microsphere cavity is sensitive to temperature. If the temperature in the optical microsphere cavity device can be precisely controlled, the temperature effect of the optical microsphere cavity can also be suppressed; Simplify the preparation procedure of the optical microsphere cavity, but require a high-precision temperature control system. A high-precision temperature control system requires high-precision measurement and constant temperature control. In ultra-high-precision measurement, mostly standard platinum resistance temperature sensors are used. Its measurement accuracy can reach 0.001°C, and the annual drift rate does not exceed 0.001°C; in platinum resistance temperature measurement, it is required to be supported by a constant current source with high precision and little influence from the ambient temperature. A highly stable constant current source becomes the key to high-precision measurement. When the constant current source is too large, it will cause the components such as resistors to heat up, produce self-heating effect, and cause errors; but if the current is too small, the signal-to-noise ratio is difficult to guarantee; SCR realizes the control of the heater and refrigerator, which requires an intelligent temperature monitoring algorithm to achieve constant temperature control.
发明内容 Contents of the invention
本实用新型的目的是为了解决现有技术中的问题,提供用于光学微球腔的一种高精度、高可靠性、稳定性和实用性的温控系统。 The purpose of the utility model is to solve the problems in the prior art and provide a high-precision, high-reliability, stable and practical temperature control system for the optical microsphere cavity.
本实用新型提供的高精度温控系统包括:AT89C52单片机、A/D转换电路、抗混叠滤波电路、仪用放大电路,恒流源、PT1000温度传感器、制冷和发热片、驱动电路、显示模块、键盘模块以及电源模块。 The high-precision temperature control system provided by the utility model includes: AT89C52 single-chip microcomputer, A/D conversion circuit, anti-aliasing filter circuit, instrument amplifier circuit, constant current source, PT1000 temperature sensor, refrigeration and heating chip, drive circuit, display module , keyboard module and power supply module.
所述的单片机采用AT89C52单片机,是整个温控系统控制核心,包括高精度温度测量,温度显示和恒温控制。 The single-chip microcomputer adopts AT89C52 single-chip microcomputer, which is the control core of the whole temperature control system, including high-precision temperature measurement, temperature display and constant temperature control.
所述的A/D转换电路是数据采集器的核心器件,采用具有8片内寄存器的集成芯片AD7714,通过对片内寄存器的编程,可实现通道选择、增益选择、滤波频率选择、转换周期选择、自动校准和AD转换等功能。 The A/D conversion circuit is the core device of the data collector, adopting the integrated chip AD7714 with 8 on-chip registers, through the programming of the on-chip registers, channel selection, gain selection, filter frequency selection, and conversion cycle selection can be realized , automatic calibration and AD conversion and other functions.
所述的抗混叠滤波电路,该电路包括低通滤波电路和采样保持电路;低通滤波电路包括电阻R和电容C;低通滤波电路中的电容与采样保持电路中电容并联。 The anti-aliasing filter circuit includes a low-pass filter circuit and a sample-and-hold circuit; the low-pass filter circuit includes a resistor R and a capacitor C; the capacitor in the low-pass filter circuit is connected in parallel with the capacitor in the sample-and-hold circuit.
所述的仪用放大电路主要由三运算放大器和7个电阻构成,电压增益由电阻调节。 The instrument amplifier circuit is mainly composed of three operational amplifiers and seven resistors, and the voltage gain is adjusted by the resistors.
所述的恒流源由5V基准电压源、阻抗变换器A1、电压放大器A2与A3、电流放大器Q1、Q2、Q3、精密采样电阻Rx以及反馈信号电压跟随器A4组成;可提供0.5mA稳恒电流,误差范围小于0.04%。 The constant current source is composed of 5V reference voltage source, impedance converter A1, voltage amplifiers A2 and A3, current amplifiers Q1, Q2, Q3, precision sampling resistor Rx and feedback signal voltage follower A4; it can provide 0.5mA constant current, the error range is less than 0.04%.
所述的PT1000为铂电阻温度传感器,放置于光学微球腔附近实时测量微球腔的温度。 The PT1000 is a platinum resistance temperature sensor, which is placed near the optical microsphere cavity to measure the temperature of the microsphere cavity in real time.
所述的制冷和加热片,制冷片采用无机械振动半导体制冷片,加热片为金属陶瓷发热片。 In the cooling and heating sheet, the cooling sheet adopts a semi-conductor cooling sheet without mechanical vibration, and the heating sheet is a cermet heating sheet.
所述的驱动电路采用BTS7960 芯片组成半桥驱动电路,可依次对驱动制冷和加热片改变光学微球腔周围环境温度。 The driving circuit adopts BTS7960 chip to form a half-bridge driving circuit, which can change the ambient temperature of the optical microsphere cavity by sequentially driving the cooling and heating plates.
所述的显示模块包括ST7920中文图形液晶模块驱动控制器和LCD显示屏,在ST7920控制器驱动配合下,可实现256×32 点阵液晶显示。 The display module includes an ST7920 Chinese graphics liquid crystal module driver controller and an LCD display screen, and with the cooperation of the ST7920 controller driver, a 256×32 dot matrix liquid crystal display can be realized.
所述的键盘模块包括ZLG7290键盘扫描芯片和8×8键盘,主要用于光学微球腔环境温度温度的设定。 The keyboard module includes a ZLG7290 keyboard scanning chip and an 8×8 keyboard, and is mainly used for setting the ambient temperature of the optical microsphere cavity.
所述的电源模块,包括由三端集成稳压器组成的串联型直流稳压电源,整流以及滤波电路。 The power supply module includes a series DC stabilized power supply composed of three-terminal integrated voltage regulators, rectification and filter circuits.
本实用新型的有益效果在于,提供的一种用于微球腔的高精度温控系统可抑制外界环境温度不规则变化产生的干扰,保证微球腔性能的稳定;简化了温度控制方法,降低了实验成本。系统设计的恒流源可提供高稳定的0.5mA电流保证温度传感器PT1000精确实时测温。仪用放大电路、抗混叠滤波电路和高精度A/D转换器组合可降低外界干扰对测量系统的影响。恒温控制采用无机械振动半导体制冷片、金属陶瓷发热片作为温控元件,可减少温度控制误差、消除振动干扰;同时搭配基于Fuzzy-智能PID复合控制算法对微球腔的温控壳体进行高精度恒温控制。 The beneficial effect of the utility model is that the provided high-precision temperature control system for the microsphere cavity can suppress the interference caused by the irregular change of the external environment temperature, and ensure the stability of the performance of the microsphere cavity; the temperature control method is simplified, and the cost of the experiment. The constant current source designed by the system can provide a highly stable 0.5mA current to ensure accurate real-time temperature measurement by the temperature sensor PT1000. The combination of instrument amplifier circuit, anti-aliasing filter circuit and high-precision A/D converter can reduce the influence of external interference on the measurement system. The constant temperature control adopts non-mechanical vibration semiconductor refrigeration chips and metal ceramic heating chips as temperature control elements, which can reduce temperature control errors and eliminate vibration interference; at the same time, it is combined with the Fuzzy-intelligent PID composite control algorithm to control the temperature of the microsphere cavity. Precision constant temperature control.
附图说明 Description of drawings
图1 所示为本实用新型中用于光学微球腔的高精度温控系统框图。 Fig. 1 shows the block diagram of the high-precision temperature control system used in the optical microsphere cavity in the utility model.
图2 所示为本实用新型中A/D转换电路与单片机连接电路图。 Fig. 2 shows the connection circuit diagram of the A/D conversion circuit and the single-chip microcomputer in the utility model.
图3所示为本实用新型中抗混叠滤波电路图。 FIG. 3 is a circuit diagram of the anti-aliasing filter in the utility model.
图4所示为本实用新型中仪用放大电路图。 Shown in Fig. 4 is the instrument amplifying circuit diagram in the utility model.
图5所示为本实用新型中恒流源电路图。 Fig. 5 shows the circuit diagram of the constant current source in the utility model.
图6所示为本实用新型中Fuzzy-智能PID复合控制算法原理图。 Fig. 6 shows the schematic diagram of Fuzzy-intelligent PID composite control algorithm in the utility model.
图7所示为本实用新型中恒温控制程序流程图。 Figure 7 shows the flow chart of the constant temperature control program in the utility model.
具体实施方式 detailed description
下文将结合具体附图详细描述本实用新型具体实施例。应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。 Specific embodiments of the present utility model will be described in detail below in conjunction with specific drawings. It should be noted that the technical features or combinations of technical features described in the following embodiments should not be regarded as isolated, and they can be combined with each other to achieve better technical effects.
如图1所示,本实用新型提供的用于光学微球腔的高精度温控系统,包括:单片机1、A/D转换电路2、抗混叠滤波电路3、仪用放大电路4,恒流源5、PT1000温度传感器6、制冷和发热片7、驱动电路8、显示模块9、键盘模块10以及电源模块11。 As shown in Figure 1, the high-precision temperature control system for the optical microsphere cavity provided by the utility model includes: a single-chip microcomputer 1, an A/D conversion circuit 2, an anti-aliasing filter circuit 3, an instrument amplifier circuit 4, and a constant Flow source 5, PT1000 temperature sensor 6, cooling and heating sheet 7, drive circuit 8, display module 9, keyboard module 10 and power module 11.
单片机1采用AT89C52芯片作为系统的控制核心,负责高精温度测量、温度设定、温度显示以及恒温控制。 Single-chip microcomputer 1 adopts AT89C52 chip as the control core of the system, responsible for high-precision temperature measurement, temperature setting, temperature display and constant temperature control.
A/D转换电路2采用24位高分辨的集成芯片AD7714,是数据采集器的核心器件,决定了系统的测量精度,与单片机AT89C52连接电路图如图2所示。 A/D conversion circuit 2 adopts 24-bit high-resolution integrated chip AD7714, which is the core device of the data collector and determines the measurement accuracy of the system. The connection circuit diagram with the single-chip microcomputer AT89C52 is shown in Figure 2.
抗混叠滤波电路3,电路设计如图3所示,主要用于衰减和滤除测温系统的数据采集过程中会采集到一些混叠信号;由电阻R17和电容C5组成的RC低通滤波电路,滤除高频信号中大于低通滤波电路截止频率1/2πRC的干扰信号;C6与高精度A/D转换电路相连,能够减小孔径误差充分发挥A/D转换器的性能,同时滤除高频谐波。 Anti-aliasing filter circuit 3, the circuit design shown in Figure 3, is mainly used to attenuate and filter out some aliasing signals that will be collected during the data acquisition process of the temperature measurement system; the RC low composed of resistor R 17 and capacitor C 5 Pass filter circuit to filter out the interference signal greater than the cut-off frequency of the low-pass filter circuit 1/2πRC in the high-frequency signal; C 6 is connected with the high-precision A/D conversion circuit, which can reduce the aperture error and give full play to the performance of the A/D converter , while filtering out high-frequency harmonics.
仪用放大电路4,设计电路如图4所示,主要用于对微弱信号进行高精度处理。 Instrument amplifier circuit 4, the design circuit is shown in Figure 4, mainly used for high-precision processing of weak signals.
恒流源5,设计电路如图5所示,当负载电阻R x 变大时,其上瞬间压降V x 随之增大,则运算放大器A3的同相输入端与反相输入端之间的压差减小,输出电压V2小于基准电压,此时运算放大器A2的反相输入端产生微小的负电压,A2将其同相输入端与反相输入端之间的压差进行线性放大,输出的正电压使得三极管Q3的发射极电压增大,从而维持精密采样电阻上的压降保持不变;当负载电阻R x 减小时,工作过程与上述类似。 Constant current source 5, the design circuit is shown in Figure 5, when the load resistance R x becomes larger, the instantaneous voltage drop V x on it increases accordingly, and the voltage between the non-inverting input terminal and the inverting input terminal of the operational amplifier A3 The voltage difference decreases, and the output voltage V2 is lower than the reference voltage. At this time, the inverting input terminal of the operational amplifier A2 generates a small negative voltage, and A2 linearly amplifies the voltage difference between its non-inverting input terminal and the inverting input terminal, and the output The positive voltage makes the emitter voltage of the transistor Q3 increase, thereby keeping the voltage drop on the precision sampling resistor unchanged; when the load resistance Rx decreases, the working process is similar to the above.
PT1000温度传感器6,主要用于高精度温度测量,为消除铂电阻引线电阻对测量精度造成的影响,PT1000采用四线制接法。 PT1000 temperature sensor 6 is mainly used for high-precision temperature measurement. In order to eliminate the influence of platinum resistor lead resistance on measurement accuracy, PT1000 adopts a four-wire connection method.
制冷和发热片7,用于对光学微球腔的环境温度进行加热或制冷。 The cooling and heating sheet 7 is used for heating or cooling the ambient temperature of the optical microsphere cavity.
驱动电路8,采用BTS7960 芯片组成半桥驱动电路,可依次对制冷和发热片进行驱动。 The driving circuit 8 adopts the BTS7960 chip to form a half-bridge driving circuit, which can drive the cooling and heating chips in turn.
显示模块9,用于温度显示和指令状态显示。 The display module 9 is used for temperature display and instruction state display.
键盘模块10,主要用于温度预设和指令输入。 The keyboard module 10 is mainly used for temperature preset and command input.
电源模块11,为系统提供电源。 The power module 11 provides power for the system.
实施例: Example:
本申请实施例提供了一种用于光学微球腔的高精度温控系统,包括光学微球腔机械封装体内温度的高精度测量和恒温控制。 An embodiment of the present application provides a high-precision temperature control system for an optical microsphere cavity, including high-precision measurement and constant temperature control of the temperature in the mechanical package of the optical microsphere cavity.
系统运行首先通过键盘输入目标温度预想值及上下限,同时启动温度传感器PT1000,实时监测光学微球腔机械封装体内温度,产生相应的电压信号;该信号先进入仪用放大电路,去除共模干扰并进行适当放大,再通过抗混叠滤波电路将混叠信号进行衰减和滤除;然后输入高精度A/D转换电路;A/D转换后的数字信号进入单片机系统进行数字滤波,单片机进行数字信号处理获得真实温度,并与预设值进行比较;若实际温度低于目标温度时,单片机发出指令驱动加热片工作使温度升高,反之,驱动制冷电路工作,使温度降低;最后显示模块3对温度进行显示。 When the system is running, first enter the expected value of the target temperature and the upper and lower limits through the keyboard, and at the same time start the temperature sensor PT1000 to monitor the temperature in the mechanical package of the optical microsphere cavity in real time and generate a corresponding voltage signal; the signal first enters the instrument amplifier circuit to remove common mode interference And carry out proper amplification, and then attenuate and filter the aliasing signal through the anti-aliasing filter circuit; then input the high-precision A/D conversion circuit; the digital signal after A/D conversion enters the single-chip microcomputer system for digital filtering, and the single-chip microcomputer performs digital filtering. The signal processing obtains the real temperature and compares it with the preset value; if the actual temperature is lower than the target temperature, the single-chip microcomputer sends an instruction to drive the heating plate to work to increase the temperature; otherwise, it drives the refrigeration circuit to work to reduce the temperature; finally, the display module 3 Display the temperature.
温度控制方法采用Fuzzy-智能PID复合控制算法,算法是基于Fuzzy模糊控制理论和智能PID控制策略,找出控制参数K p (比例控制因子), K i (积分控制因子),K D (微分控制因子)与输入量e(目标温度与实测温度之间的偏差)、e c (e偏差的变化率) 之间的关系,实现三个控制参数的实时修正。首先由输入量的Fuzzy模糊控制器提供基本的PID参量,根据基本参量、微分控制项以及当前状态进行状态分析,结合分析结果对PID参量进行智能修正;其原理图如图6所示。 The temperature control method adopts Fuzzy-intelligent PID compound control algorithm, the algorithm is based on Fuzzy fuzzy control theory and intelligent PID control strategy, find out the control parameters K p (proportional control factor), K i (integral control factor), K D (differential control factor) Factor) and the relationship between the input quantity e (the deviation between the target temperature and the measured temperature), e c (the rate of change of the deviation of e), to realize the real-time correction of the three control parameters. First, the basic PID parameters are provided by the fuzzy controller of the input quantity, the state analysis is carried out according to the basic parameters, differential control items and the current state, and the PID parameters are intelligently corrected according to the analysis results; the schematic diagram is shown in Figure 6.
控制程序流程图如图7所示;初始化主要是对各设备以及变量进行初始化,系统各部分准备就绪;由键盘输入设定温度值和上下限温度(如:20±0.010C));启动温度测量电路进行温度采集;判定温度是否等于预想温度;如若等于预想温度启动显示模块进行温度显示,如若不等于预想温度,启动Fuzzy-智能PID复合算法控制器,输出PWM波形调控后端执行电路、进行温度调控,调控后延迟10ms,再次进行温度采集,直到温度等于预想温度,并进行显示。 The flow chart of the control program is shown in Figure 7; the initialization is mainly to initialize the various devices and variables, and all parts of the system are ready; input the set temperature value and upper and lower limit temperatures (such as: 20±0.01 0 C)) through the keyboard; start The temperature measurement circuit collects temperature; determines whether the temperature is equal to the expected temperature; if it is equal to the expected temperature, start the display module for temperature display; Perform temperature regulation, delay 10ms after regulation, and collect temperature again until the temperature is equal to the expected temperature, and display it.
本实用新型提供的一种用于光学微球腔的高精度温控系统,本申请虽然已经给出了本实用新型的一些实施例,但是本领域的技术人员应当理解,在不脱离本实用新型精神的情况下,可以对本申请的实施例进行改变。上述实施例只是示例性的,不应以本申请的实施例作为本实用新型权利范围的限定。 The utility model provides a high-precision temperature control system for an optical microsphere cavity. Although the application has provided some embodiments of the utility model, those skilled in the art should understand that without departing from the utility model Changes may be made to the embodiments of the present application within the spirit of the invention. The above-mentioned embodiments are only exemplary, and the embodiments of the present application should not be used as limitations on the scope of rights of the present utility model.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620363364.0U CN205581683U (en) | 2016-04-27 | 2016-04-27 | A high accuracy temperature control system for optics microballon chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620363364.0U CN205581683U (en) | 2016-04-27 | 2016-04-27 | A high accuracy temperature control system for optics microballon chamber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205581683U true CN205581683U (en) | 2016-09-14 |
Family
ID=56860488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201620363364.0U Expired - Fee Related CN205581683U (en) | 2016-04-27 | 2016-04-27 | A high accuracy temperature control system for optics microballon chamber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205581683U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109637313A (en) * | 2018-12-29 | 2019-04-16 | 陕西师范大学 | Transparent solid medium thermo-optic effect demonstrating experiment device |
CN110187186A (en) * | 2019-06-28 | 2019-08-30 | 广东电网有限责任公司 | A kind of modified segmentation circuit resistance tester |
CN114060727A (en) * | 2020-08-06 | 2022-02-18 | 中国石油化工股份有限公司 | Device for realizing scale monitoring of oil field gathering and transportation pipeline based on differential thermal resistance method |
-
2016
- 2016-04-27 CN CN201620363364.0U patent/CN205581683U/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109637313A (en) * | 2018-12-29 | 2019-04-16 | 陕西师范大学 | Transparent solid medium thermo-optic effect demonstrating experiment device |
CN110187186A (en) * | 2019-06-28 | 2019-08-30 | 广东电网有限责任公司 | A kind of modified segmentation circuit resistance tester |
CN114060727A (en) * | 2020-08-06 | 2022-02-18 | 中国石油化工股份有限公司 | Device for realizing scale monitoring of oil field gathering and transportation pipeline based on differential thermal resistance method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103034264B (en) | Attemperating unit | |
CN205581683U (en) | A high accuracy temperature control system for optics microballon chamber | |
CN108803308A (en) | The mostly logical pond temperature control system of gas based on adaptive section PID control and method | |
CN108666856A (en) | Power stable solid-state laser and control method | |
CN101769800A (en) | High-precision temperature checking method and instrument based on ARM | |
CN201229510Y (en) | High precision temperature control device for infrared focus plane | |
CN104950954A (en) | Multi-heating point coordinate temperature control method for realizing uniform temperature field of gyroscope | |
CN111595402A (en) | A constant temperature differential thermal gas mass flowmeter | |
CN204481323U (en) | Be provided with the tunable semiconductor laser temperature control device of design device | |
CN108427453A (en) | The automation temperature control system and method for sample heat treatment process under a kind of ultrahigh vacuum | |
CN104199488B (en) | The cuvette reactant liquor thermostatically-controlled equipment of a kind of automatic clinical chemistry analyzer and method | |
CN115047925A (en) | Passive radiation type constant temperature control system and control method based on PID controller | |
CN105528000A (en) | Intelligent temperature control meter for aircraft | |
RU2010117505A (en) | GAS MEASURING DEVICE AND METHOD OF ITS WORK | |
CN107329507A (en) | A kind of thermostatic control system | |
CN110514854B (en) | Device for improving measurement stability of full-automatic immunity analyzer and control method | |
CN106595913A (en) | Silicon piezoresistive pressure sensor with temperature control function | |
CN104048981A (en) | Thermostatic control system for X ray fluorescence spectrophotometer and control method using the same | |
CN116148214A (en) | Laser Methane Detector | |
CN101995279B (en) | Thermal flow sensor | |
CN103675035B (en) | Dyeing and finishing drying room humidity measuring circuit | |
CA2838390A1 (en) | Pressure adjustment apparatus | |
CN211528138U (en) | Temperature control device of liquid phase diffusion coefficient measuring instrument | |
CN103197693B (en) | Air quality and flow control device | |
CN201680927U (en) | High-precision temperature checking instrument based on ARM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160914 Termination date: 20170427 |
|
CF01 | Termination of patent right due to non-payment of annual fee |