CN205558991U - 基于orc系统的地热井口电站系统 - Google Patents
基于orc系统的地热井口电站系统 Download PDFInfo
- Publication number
- CN205558991U CN205558991U CN201620269434.6U CN201620269434U CN205558991U CN 205558991 U CN205558991 U CN 205558991U CN 201620269434 U CN201620269434 U CN 201620269434U CN 205558991 U CN205558991 U CN 205558991U
- Authority
- CN
- China
- Prior art keywords
- screw expander
- orc system
- electromotor
- connects
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本实用新型揭示了一种基于ORC系统的地热井口电站系统,所述地热井口电站系统包括第二气液分离器、闪蒸灌、第三螺杆膨胀机、第四螺杆膨胀机、第三发电机、第四发电机、第一ORC系统、第二ORC系统;第二气液分离器的第一端连接第三螺杆膨胀机,饱和蒸汽进入第三螺杆膨胀机;第三螺杆膨胀机排气口连接第一ORC系统以及第四螺杆膨胀机的排气口;第二气液分离器的第二端连接闪蒸罐,闪蒸罐连接第四螺杆膨胀机,高温高压卤水进入闪蒸罐;第四螺杆膨胀机还连接第一ORC系统;所述闪蒸罐连接第二ORC系统,闪蒸后的高温卤水进入第二ORC系统。本实用新型提出的基于ORC系统的地热井口电站系统及其发电方法,可提高对地热的利用效率。
Description
技术领域
本实用新型属于地热发电技术领域,涉及一种地热井口电站系统,尤其涉及一种基于ORC系统的地热井口电站系统。
背景技术
地热电站是利用地下热水、高温岩体或蒸汽作一次能源的发电站。现有的地热电站对能源的利用率低。现有地热发电站需要将不同地区的地热井热水收集在一起使用,长距离输送使热量受到损失,并且该利用方式单一,无法分级充分利用热能。
有鉴于此,如今迫切需要设计一种新的地热井口电站系统,以便克服现有地热井口电站系统存在的上述缺陷。
实用新型内容
本实用新型所要解决的技术问题是:提供一种基于ORC系统的地热井口电站系统,可提高对地热的利用效率。
此外,本实用新型还提供上述地热井口电站系统的发电方法,可提高对地热的利用效率。
为解决上述技术问题,本实用新型采用如下技术方案:
一种基于ORC系统的地热井口电站系统,所述地热井口电站系统包括:第二气液分离器、闪蒸灌、第三螺杆膨胀机、第四螺杆膨胀机、第三发电机、第四发电机、第一ORC系统、第二ORC系统;所述第三发电机、第四发电机为同一双出轴发电机;
所述第二气液分离器的第一端连接第三螺杆膨胀机,饱和蒸汽进入第三螺杆膨胀机;第三螺杆膨胀机连接第三发电机,第三螺杆膨胀机排气口连接第一ORC系统以及第四螺杆膨胀机的排气口;
所述第二气液分离器的第二端连接闪蒸罐,闪蒸罐连接第四螺杆膨胀机,高温高压卤水进入闪蒸罐,闪蒸出来的蒸汽进入第四螺杆膨胀机,第四螺杆膨胀机出口蒸汽与第三螺杆膨胀机出口蒸汽混合,混合后的蒸汽进入第一ORC系统;第四螺杆膨胀机连接第四发电机,第四螺杆膨胀机还连接第一ORC系统;所述闪蒸罐连接第二ORC系统;所述闪蒸罐出口还连接一第三气液分离器;
所述第一ORC系统包括第一蒸发器、第一预热器、第一工质输送机构、第一冷凝器、第一螺杆膨胀机、第一发电机、第一气液分离器;第三螺杆膨胀机、第四螺杆膨胀机分别连接第一蒸发器;第一蒸发器、第一预热器、第一工质输送机构、第一冷凝器、第一螺杆膨胀机依次连接,第一螺杆膨胀机分别连接第一发电机、第一蒸发器;第一预热器连接第一气液分离器,第一气液分离器分离出的不凝性气体排空,分离下来的液体由第一输送机构输送至回灌井,重新注入地下;
所述第二ORC系统包括第二蒸发器、第二预热器、第二工质输送机构、第二冷凝器、第二螺杆膨胀机、第二发电机;所述闪蒸罐连接第二蒸发器;第二蒸发器、第二预热器、第二工质输送机构、第二冷凝器、第二螺杆膨胀机依次连接,第二螺杆膨胀机分别连接第二发电机、第二蒸发器;第二预热器的出口卤水由第二输送机构输送至回灌井,重新注入地下;
所述第一冷凝器、第二冷凝器为风冷式冷凝器、水冷式冷凝器或者蒸发式冷凝器。
一种基于ORC系统的地热井口电站系统,所述地热井口电站系统包括:第二气液分离器、闪蒸灌、第三螺杆膨胀机、第四螺杆膨胀机、第三发电机、第四发电机、第一ORC系统、第二ORC系统;
所述第二气液分离器的第一端连接第三螺杆膨胀机,饱和蒸汽进入第三螺杆膨胀机;第三螺杆膨胀机连接第三发电机,第三螺杆膨胀机排气口连接第一ORC系统以及第四螺杆膨胀机的排气口;
所述第二气液分离器的第二端连接闪蒸罐,闪蒸罐连接第四螺杆膨胀机,高温高压卤水进入闪蒸罐,闪蒸出来的蒸汽进入第四螺杆膨胀机,第四螺杆膨胀机出口蒸汽与第三螺杆膨胀机出口蒸汽混合,混合后的蒸汽进入第一ORC系统;第四螺杆膨胀机连接第四发电机,第四螺杆膨胀机还连接第一ORC系统;所述闪蒸罐连接第二ORC系统。
作为本实用新型的一种优选方案,所述第一ORC系统包括第一蒸发器、第一预热器、第一工质输送机构、第一冷凝器、第一螺杆膨胀机、第一发电机、第一气液分离器;第三螺杆膨胀机、第四螺杆膨胀机分别连接第一蒸发器;第一蒸发器、第一预热器、第一工质输送机构、第一冷凝器、第一螺杆膨胀机依次连接,第一螺杆膨胀机分别连接第一发电机、第一蒸发器;第一预热器连接第一气液分离器,第一气液分离器分离出的不凝性气体排空,分离下来的液体由第一输送机构输送至回灌井,重新注入地下;
作为本实用新型的一种优选方案,所述第二ORC系统包括第二蒸发器、第二预热器、第二工质输送机构、第二冷凝器、第二螺杆膨胀机、第二发电机;所述闪蒸罐连接第二蒸发器;第二蒸发器、第二预热器、第二工质输送机构、第二冷凝器、第二螺杆膨胀机依次连接,第二螺杆膨胀机分别连接第二发电机、第二蒸发器;第二预热器的出口卤水由第二输送机构输送至回灌井,重新注入地下。
作为本实用新型的一种优选方案,所述第三发电机、第四发电机为同一双出轴发电机。
作为本实用新型的一种优选方案,所述闪蒸罐出口连接一第三气液分离器。
作为本实用新型的一种优选方案,所述第一ORC系统、第二ORC系统的冷凝器为风冷式冷凝器、水冷式冷凝器或者蒸发式冷凝器。
一种上述的地热井口电站系统的发电方法,所述发电方法包括如下步骤:
步骤S1、由地热井输出的汽水混合物预先进入第二气液分离器,经过一次分离之后,饱和蒸汽进入第三螺杆膨胀机,高温高压卤水进入闪蒸罐;
步骤S2、闪蒸出来的蒸汽进入第四螺杆膨胀机;
步骤S3、第四螺杆膨胀机出口蒸汽与第三螺杆膨胀机出口蒸汽混合,混合后的蒸汽进入第一ORC系统;第一ORC系统配置气液分离器,将其中的不凝性气体排空,分离下来的液体由第一输送机构输送至回灌井,重新注入地下;
步骤S4、由闪蒸罐出来的高温卤水进入第二ORC系统,第二ORC系统的预热器出口卤水由第二输送机构输送至回灌井,重新注入地下。
本实用新型的有益效果在于:本实用新型提出的基于ORC系统的地热井口电站系统及其发电方法,可提高对地热的利用效率。本实用新型可以针对单一地热井配置方案,系统简便,便于安装。该系统可以实现能源分级利用,首先利用地热井口的压力能发电,其次利用地热热能进行二次发电,热能利用效率高。另外该系统是100%的环保系统,可以实现100%地热水回灌。本实用新型针对单一地热井的利用方式,是一种一井一站的高效地热利用方式。
附图说明
图1为本实用新型地热井口电站系统的组成示意图。
具体实施方式
下面结合附图详细说明本实用新型的优选实施例。
实施例一
请参阅图1,本实用新型揭示了一种基于ORC系统的地热井口电站系统,所述地热井口电站系统包括:第二气液分离器1、闪蒸灌2、第三螺杆膨胀机3、第四螺杆膨胀机4、第三发电机、第四发电机、第一ORC系统、第二ORC系统;所述第三发电机、第四发电机可以为同一双出轴发电机5。
所述第二气液分离器1的第一端连接第三螺杆膨胀机3,饱和蒸汽进入第三螺杆膨胀机3;第三螺杆膨胀机3连接双出轴发电机5,第三螺杆膨胀机3连接第一ORC系统。
所述第二气液分离器1的第二端连接闪蒸罐2,闪蒸罐连2接第四螺杆膨胀机4,高温高压卤水进入闪蒸罐2,闪蒸出来的蒸汽进入第四螺杆膨胀机4,第四螺杆膨胀机4出口蒸汽与第三螺杆膨胀机3出口蒸汽混合,混合后的蒸汽进入第一ORC系统;第四螺杆膨胀机4连接双出轴发电机5,第四螺杆膨胀机4还连接第一ORC系统。所述闪蒸罐2连接第二ORC系统;所述闪蒸罐出口还可以连接一第三气液分离器。
所述第一ORC系统包括第一蒸发器11、第一预热器12、第一工质输送机构13、第一冷凝器14、第一螺杆膨胀机15、第一发电机16、第一气液分离器17。第三螺杆膨胀机3、第四螺杆膨胀机4分别连接第一蒸发器11;第一蒸发器11、第一预热器12、第一工质输送机构13、第一冷凝器14、第一螺杆膨胀机15依次连接,第一螺杆膨胀机15分别连接第一发电机16、第一蒸发器11;第一预热器12连接第一气液分离器17,第一气液分离器17分离出的不凝性气体排空,分离下来的液体由第一输送机构输送至回灌井,重新注入地下。
所述第二ORC系统包括第二蒸发器21、第二预热器22、第二工质输送机构23、第二冷凝器24、第二螺杆膨胀机25、第二发电机26;所述闪蒸罐2连接第二蒸发器21;第二蒸发器21、第二预热器22、第二工质输送机构23、第二冷凝器24、第二螺杆膨胀机25依次连接,第二螺杆膨胀机25分别连接第二发电机26、第二蒸发器21;第二预热器22的出口卤水由第二输送机构输送至回灌井,重新注入地下。
本实施例中,所述第一冷凝器、第二冷凝器为风冷式冷凝器、水冷式冷凝器或者蒸发式冷凝器。
以上介绍了本实用新型基于ORC系统的地热井口电站系统的组成,本实用新型在解释上述系统的同时,还揭示上述地热井口电站系统的发电方法,所述发电方法包括如下步骤:
步骤S1、由地热井输出的汽水混合物预先进入第二气液分离器,经过一次分离之后,饱和蒸汽进入第三螺杆膨胀机,高温高压卤水进入闪蒸罐;
步骤S2、闪蒸出来的蒸汽进入第四螺杆膨胀机;
步骤S3、第四螺杆膨胀机出口蒸汽与第三螺杆膨胀机出口蒸汽混合,混合后的蒸汽进入第一ORC系统;第一ORC系统配置气液分离器,将其中的不凝性气体排空,分离下来的液体由第一输送机构输送至回灌井,重新注入地下;
步骤S4、由闪蒸罐出来的高温卤水进入第二ORC系统,第二ORC系统的预热器出口卤水由第二输送机构输送至回灌井,重新注入地下。
实施例二
本实施例与实施例一的区别在于,本实施例中,工质输送机构(第一工质输送机构、第二工质输送机构)为组合工质泵,所述组合工质泵包括至少一个变频泵和至少一个定频泵,各变频泵、定频泵并联。
在热机阶段、开机启动阶段以及部分负荷工况情况下,只采用变频泵,或者,采用部分或全部变频泵及部分或全部定频泵的组合;在满负荷工况,将变频泵和定频泵全部打开。
同时,所述系统还包括第二工况自动识别模块、第二需求计算模块、第二切换模块。
所述第二工况自动识别模块用以识别系统所处的工况,判断系统处于热机阶段、开机启动阶段、部分负荷工况、满负荷工况中的何种工况。
所述第二需求计算模块用以根据所述第二模块识别的结果计算需要的工质泵的种类及数量。
所述第二切换模块用以根据所述第二需求计算模块计算的结果自动控制组合工质泵中的各个工质泵的开关。
此外,所述系统包括数据库模块,数据库模块中包括第一对照表,第一对照表中存储有各个关键工况需要工质输送机构的种类及数量。
实施例三
本实施例与实施例一的区别在于,本实施例中,冷凝器(第一冷凝器、第二冷凝器)为组合冷凝器,组合冷凝器包括至少一个风冷式冷凝器和至少一个蒸发式冷凝器,各风冷式冷凝器、蒸发式冷凝器并联。
当在环境温度高于第一设定温度时,蒸发式冷凝器起主要作用,降低系统的冷凝温度。当在环境温度低于第二设定温度时,风冷式冷凝器起主要作用,降低系统的冷凝温度。
此外,所述系统还包括第二工况自动识别模块、第二需求计算模块、第二切换模块。
所述第二工况自动识别模块用以识别系统所处的工况,判断环境是否高于第一设定温度、是否低于第二设定温度。
所述组合冷凝器包括若干冷凝器单元,所述第二需求计算模块用以根据所述第二工况自动识别模块识别的结果计算需要的冷凝器单元的种类及数量。
所述第二切换模块用以根据所述第二需求计算模块计算的结果自动控制组合冷凝器中的各个冷凝器单元的开关。
此外,所述系统还可以包括数据库模块,数据库模块中包括第二对照表,第二对照表中存储有各个关键环境温度需要冷凝器单元的种类及数量。
综上所述,本实用新型提出的基于ORC系统的地热井口电站系统及其发电方法,可提高对地热的利用效率。本实用新型可以针对单一地热井配置方案,系统简便,便于安装。该系统可以实现能源分级利用,首先利用地热井口的压力能发电,其次利用地热热能进行二次发电,热能利用效率高。另外该系统是100%的环保系统,可以实现100%地热水回灌。本实用新型针对单一地热井的利用方式,是一种一井一站的高效地热利用方式。
这里本实用新型的描述和应用是说明性的,并非想将本实用新型的范围限制在上述实施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本实用新型的精神或本质特征的情况下,本实用新型可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本实用新型范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。
Claims (7)
1.一种基于ORC系统的地热井口电站系统,其特征在于,所述地热井口电站系统包括:第二气液分离器、闪蒸灌、第三螺杆膨胀机、第四螺杆膨胀机、第三发电机、第四发电机、第一ORC系统、第二ORC系统;所述第三发电机、第四发电机为同一双出轴发电机;
所述第二气液分离器的第一端连接第三螺杆膨胀机,饱和蒸汽进入第三螺杆膨胀机;第三螺杆膨胀机连接第三发电机,第三螺杆膨胀机排气口连接第一ORC系统以及第四螺杆膨胀机的排气口;
所述第二气液分离器的第二端连接闪蒸罐,闪蒸罐连接第四螺杆膨胀机,高温高压卤水进入闪蒸罐,闪蒸出来的蒸汽进入第四螺杆膨胀机,第四螺杆膨胀机出口蒸汽与第三螺杆膨胀机出口蒸汽混合,混合后的蒸汽进入第一ORC系统;第四螺杆膨胀机连接第四发电机,第四螺杆膨胀机还连接第一ORC系统;所述闪蒸罐连接第二ORC系统,闪蒸后的高温卤水进入第二ORC系统;所述闪蒸罐出口还连接一第三气液分离器;
所述第一ORC系统包括第一蒸发器、第一预热器、第一工质输送机构、第一冷凝器、第一螺杆膨胀机、第一发电机、第一气液分离器;第三螺杆膨胀机、第四螺杆膨胀机分别连接第一蒸发器;第一蒸发器、第一预热器、第一工质输送机构、第一冷凝器、第一螺杆膨胀机依次连接,第一螺杆膨胀机分别连接第一发电机、第一蒸发器;第一预热器连接第一气液分离器,第一气液分离器分离出的不凝性气体排空,分离下来的液体由第一输送机构输送至回灌井,重新注入地下;
所述第二ORC系统包括第二蒸发器、第二预热器、第二工质输送机构、第二冷凝器、第二螺杆膨胀机、第二发电机;所述闪蒸罐连接第二蒸发器;第二蒸发器、第二预热器、第二工质输送机构、第二冷凝器、第二螺杆膨胀机依次连接,第二螺杆膨胀机分别连接第二发电机、第二蒸发器;第二预热器的出口卤水由第二输送机构输送至回灌井,重新注入地下;
所述第一冷凝器、第二冷凝器为风冷式冷凝器、水冷式冷凝器或者蒸发式冷凝器。
2.一种基于ORC系统的地热井口电站系统,其特征在于,所述地热井口电站系统包括:第二气液分离器、闪蒸灌、第三螺杆膨胀机、第四螺杆膨胀机、第三发电机、第四发电机、第一ORC系统、第二ORC系统;
所述第二气液分离器的第一端连接第三螺杆膨胀机,饱和蒸汽进入第三螺杆膨胀机;第三螺杆膨胀机连接第三发电机,第三螺杆膨胀机排气口连接第一ORC系统以及第四螺杆膨胀机的排气口;
所述第二气液分离器的第二端连接闪蒸罐,闪蒸罐连接第四螺杆膨胀机,高温高压卤水进入闪蒸罐,闪蒸出来的蒸汽进入第四螺杆膨胀机,第四螺杆膨胀机出口蒸汽与第三螺杆膨胀机出口蒸汽混合,混合后的蒸汽进入第一ORC系统;第四螺杆膨胀机连接第四发电机,第四螺杆膨胀机还连接第一ORC系统;所述闪蒸罐连接第二ORC系统。
3.根据权利要求2所述的基于ORC系统的地热井口电站系统,其特征在于:
所述第一ORC系统包括第一蒸发器、第一预热器、第一工质输送机构、第一冷凝器、第一螺杆膨胀机、第一发电机、第一气液分离器;第三螺杆膨胀机、第四螺杆膨胀机分别连接第一蒸发器;第一蒸发器、第一预热器、第一工质输送机构、第一冷凝器、第一螺杆膨胀机依次连接,第一螺杆膨胀机分别连接第一发电机、第一蒸发器;第一预热器连接第一气液分离器,第一气液分离器分离出的不凝性气体排空,分离下来的液体由第一输送机构输送至回灌井,重新注入地下。
4.根据权利要求2所述的基于ORC系统的地热井口电站系统,其特征在于:
所述第二ORC系统包括第二蒸发器、第二预热器、第二工质输送机构、第二冷凝器、第二螺杆膨胀机、第二发电机;所述闪蒸罐连接第二蒸发器;第二蒸发器、第二预热器、第二工质输送机构、第二冷凝器、第二螺杆膨胀机依次连接,第二螺杆膨胀机分别连接第二发电机、第二蒸发器;第二预热器的出口卤水由第二输送机构输送至回灌井,重新注入地下。
5.根据权利要求2所述的基于ORC系统的地热井口电站系统,其特征在于:
所述第三发电机、第四发电机为同一双出轴发电机。
6.根据权利要求2所述的基于ORC系统的地热井口电站系统,其特征在于:
所述闪蒸罐出口连接一第三气液分离器。
7.根据权利要求2所述的基于ORC系统的地热井口电站系统,其特征在于:
所述第一ORC系统、第二ORC系统的冷凝器为风冷式冷凝器、水冷式冷凝器或者蒸发式冷凝器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620269434.6U CN205558991U (zh) | 2016-04-01 | 2016-04-01 | 基于orc系统的地热井口电站系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620269434.6U CN205558991U (zh) | 2016-04-01 | 2016-04-01 | 基于orc系统的地热井口电站系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN205558991U true CN205558991U (zh) | 2016-09-07 |
Family
ID=56812810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201620269434.6U Active CN205558991U (zh) | 2016-04-01 | 2016-04-01 | 基于orc系统的地热井口电站系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN205558991U (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105673103A (zh) * | 2016-04-01 | 2016-06-15 | 上海开山能源装备有限公司 | 基于orc系统的地热井口电站系统及其发电方法 |
CN109296416A (zh) * | 2018-11-15 | 2019-02-01 | 中国华能集团清洁能源技术研究院有限公司 | 一种地热能梯级利用的热电联产装置与方法 |
CN110131005A (zh) * | 2019-04-30 | 2019-08-16 | 云南大学 | 双压吸热非共沸有机闪蒸-朗肯循环中低温热能利用系统 |
-
2016
- 2016-04-01 CN CN201620269434.6U patent/CN205558991U/zh active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105673103A (zh) * | 2016-04-01 | 2016-06-15 | 上海开山能源装备有限公司 | 基于orc系统的地热井口电站系统及其发电方法 |
CN109296416A (zh) * | 2018-11-15 | 2019-02-01 | 中国华能集团清洁能源技术研究院有限公司 | 一种地热能梯级利用的热电联产装置与方法 |
CN110131005A (zh) * | 2019-04-30 | 2019-08-16 | 云南大学 | 双压吸热非共沸有机闪蒸-朗肯循环中低温热能利用系统 |
CN110131005B (zh) * | 2019-04-30 | 2021-07-02 | 云南大学 | 双压吸热非共沸有机闪蒸-朗肯循环中低温热能利用系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205047261U (zh) | 基于余热回收的跨临界co2热泵和朗肯循环的耦合系统 | |
EP3054155A1 (en) | Electrical energy storage and discharge system | |
CN105102768A (zh) | 存储能量的装置和方法 | |
CN105673103A (zh) | 基于orc系统的地热井口电站系统及其发电方法 | |
CN106969337B (zh) | 一种热泵蒸汽机组 | |
CN102287344B (zh) | 一种新型地热和光热联合发电系统 | |
CN205558991U (zh) | 基于orc系统的地热井口电站系统 | |
CN101344075B (zh) | 自复叠式太阳能低温朗肯循环系统 | |
CN102797525A (zh) | 采用非共沸混合工质变组分的低温朗肯循环系统 | |
CN104912669A (zh) | 燃气蒸汽联合循环电厂的进气空调系统及其使用方法 | |
CN104728063B (zh) | 一种太阳能辅助的液化天然气电热冷联供系统及其方法 | |
CN105736263A (zh) | 一种地热井口电站系统及其发电方法 | |
CN104018901A (zh) | 天然气压能冷能联合发电系统 | |
CN103343734B (zh) | 一种增加润滑油循环回路的单螺杆膨胀机中低温地热发电系统 | |
CN105507971B (zh) | 太阳能热动力储能系统 | |
CN201199118Y (zh) | 一种新型节能冷库 | |
US20140360191A1 (en) | Energy storage apparatus for the preheating of feed water | |
CN216408920U (zh) | 一种双热源热工混合压缩热泵蒸汽系统 | |
CN108252749A (zh) | 一种基于sagd稠油开采余热利用的冷热电三联供方法 | |
CN204098972U (zh) | 采用回热循环技术的低温水发电系统 | |
CN111908542A (zh) | 一种利用燃机余热的海水淡化系统及方法 | |
CN205558992U (zh) | 地热井口电站系统 | |
EP3236066A1 (en) | High-efficiency ocean thermal energy conversion power system using liquid-vapor ejector and motive pump | |
CN205689368U (zh) | 一种地热井口电站系统 | |
CN211372757U (zh) | 一种蒸汽与热水联动发生系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |