CN205366050U - 一种固定翼无人飞行器 - Google Patents

一种固定翼无人飞行器 Download PDF

Info

Publication number
CN205366050U
CN205366050U CN201620136211.2U CN201620136211U CN205366050U CN 205366050 U CN205366050 U CN 205366050U CN 201620136211 U CN201620136211 U CN 201620136211U CN 205366050 U CN205366050 U CN 205366050U
Authority
CN
China
Prior art keywords
wing
fixed
fuselage
equal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620136211.2U
Other languages
English (en)
Inventor
李宛隆
陈业宏
赵丽丽
林晓鑫
曾祥辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong hi tech Development Co., Ltd.
Original Assignee
Guangdong Airace Hi-Tech Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Airace Hi-Tech Development Co Ltd filed Critical Guangdong Airace Hi-Tech Development Co Ltd
Priority to CN201620136211.2U priority Critical patent/CN205366050U/zh
Application granted granted Critical
Publication of CN205366050U publication Critical patent/CN205366050U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Toys (AREA)

Abstract

本实用新型涉及飞行器技术领域,尤其涉及一种固定翼无人飞行器,包括机身和设置于所述机身两侧的机翼,所述机翼沿所述机身轴向的剖视图为闭合面,所述闭合面的曲线方程可在直角坐标系里用二阶方程表达:以所述机翼的前端部为原点,X轴的数值表示所述机翼的宽度,Y轴的数值表示所述机翼的长度,所述曲线方程为分段函数,所述闭合面的上半部分边缘的曲线方程满足:Y=-0.0076*X2+0.5538*X+1.2591(0≦X<32);Y=-0.0012*X2+0.177*X+7.08451(32≦X<95.7);Y=-0.0007*X2+0.1276*X+7.1721(95.7≦X<155.07);Y=0.0007*X2-0.3353*X+44.9996(155.07≦X<180.68);Y=0.0036*X2-1.3702*X+137.431(180.68≦X≦200)。本实用新型采用上述方程得到的翼型,较之现有无人机的翼型,减小了机翼的S翼型弧度,不仅可增加俯仰安定性,而且在起飞时不会出现失速等不良特性,减小了转弯掉高的现象。

Description

一种固定翼无人飞行器
技术领域
本实用新型涉及飞行器技术领域,尤其涉及一种固定翼无人飞行器。
背景技术
无人机被广泛应用于军事、安保、交通、农业、勘探、测绘、气象等各个领域,在上述领域中,对无人机的气动稳定性、操作可靠性及简易性有着很高的要求。
目前小型固定翼无人飞机器一般采用的S形的翼型,即S翼型,S翼型是指机翼在机身的轴向上的截面形状成闭合面,闭合面的上半部分为水平放置的S型,下半部分为圆弧形。即机翼的上曲面为波浪形,并且在机翼上曲面靠近机尾的部位向上翘起,气流流经这部分时产生一个作用于机翼后缘的力,使无人机产生抬头力矩,从而得到较好的俯仰安定性。
但由于机翼上曲面靠近机尾的部位向上翘起的弧度较大,S型比较明
显,所产生的抬头力矩比较大,会导致不良的起飞特性,在转弯时会产生飞行高度降低较大的现象,使得固定翼无人飞行器的飞行稳定性较差,操控性也较差,无法满足对固定翼无人飞行器飞行稳定性要求较高的领域的要求。
实用新型内容
本实用新型的发明目的在于提供一种固定翼无人飞行器,以解决目前采用S翼型的固定翼无人机转弯时飞行高度降低较大的操控性能不良的技术问题。
为了解决上述技术问题,本实用新型提供一种固定翼无人飞行器,包括机身和两个分别设置于所述机身两侧的机翼,所述机翼沿所述机身轴向的剖视图为闭合面,所述闭合面的曲线方程在直角坐标系里用二阶方程表达:以所述机翼的前顶端部为原点,X轴的数值表示所述机翼的宽度,Y轴的数值表示所述机翼的长度,所述曲线方程为分段函数,所述闭合面的上半部分边缘的曲线方程满足:
Y=-0.0076*X2+0.5538*X+1.2591(0≦X<32);
Y=-0.0012*X2+0.177*X+7.08451(32≦X<95.7);
Y=-0.0007*X2+0.1276*X+7.1721(95.7≦X<155.07);
Y=0.0007*X2-0.3353*X+44.9996(155.07≦X<180.68);
Y=0.0036*X2-1.3702*X+137.431(180.68≦X≦200)。
所述曲线方程为分段函数,所述闭合面的下半部分边缘的曲线方程满足:
Y=0.00659*X2-0.3526*X-1.2742(0≦X<7.71);
Y=0.00557*X2-0.2994*X-1.4873(7.71≦X<25.89);
Y=0.0006*X2-0.05861*X-4.6628(25.89≦X<119.02);
Y=0.0001*X2+0.007*X-5.3521(119.02≦X<153.76);
Y=0.0006*X2-0.1289*X+3.8854(153.76≦X<190.13);
Y=0.0005*X2-0.091*X+0.1945(190.13≦X≦200)。
进一步的,所述机翼的相对厚度为0.1。
进一步的,所述机翼的前缘后掠角为25°~26.5°;
进一步的,在所述机翼的末端设置有垂直于所述机翼向下的小翼;所述小翼的方向与所述机身的轴向平行。
进一步的,两个所述机翼分别位于所述机身两侧的上半部。
由上可见,应用本实用新型实施例的技术方案,有如下有益效果:
本实用新型采用上述方程得到的上曲面为S形的翼型,较之现有无人机的翼型,减小了机翼上曲面的后部向上翘起的弧度,减小了气流流经这部分时空气对机翼的作用力,进而减小了空气对无人机产生的抬头力矩,不仅可增加俯仰安定性,而且在起飞时不会出现失速等不良特性,减小了转弯掉高的现象。因此,根据本实用新型提供的技术方案可以为固定翼无人飞行器提高较高的飞行稳定性。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对本实用新型实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本实用新型的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例俯视图;
图2为本实用新型实施例机翼剖视图;
图3为本实用新型实施例正视图;
图4为本实用新型实施例机翼的压强分布图;
图5为本实用新型实施例机翼空气动力分解图。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚地描述。显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例提出的技术方案,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
实施例
如图1所示,本实施例公开了一种固定翼无人飞行器,包括机身10、两个分别设置于机身10两侧的机翼20。当飞行器在空中飞行时,作用在飞行器上的升力主要是由机翼20产生,同时机翼20上也会产生阻力。机翼20上的空气动力的大小和方向,在很大程度上又取决于机翼的外形,即机翼翼型
(或翼剖面)几何形状、机翼平面几何形状等。飞行器机翼20上平行于飞行器对称面或垂直于飞行器前缘的剖面形状,称为翼型,又称为翼剖面。
翼型具有各种不同的形状,人们在飞行实践的过程中,发现把翼剖面做成像鸟翼那样的弯拱形状,即薄的单凸翼剖面,对升力特性有改进。随着飞机的发展,机翼剖面也从单凸翼剖面发展到凹凸形翼剖面、平凸形翼剖面、双凸形翼剖面、S形翼剖面、“层流翼剖面”、菱形翼剖面和双弧形翼剖面。其中S形翼剖面的中线呈S形的,它的特点是尾部稍稍向上翘,使得压力中心不会前后移动。
飞行器在飞行时可以认为在空中飞行的飞行器是不动的,而空气以同样的速度流过飞机。当气流流过机翼时,由于翼型的上表面凸些,此处的气流流线变密,流管变细,相反翼型的下表面平坦些,这里的流线变化不大(与远前方流线相比)。根据连续性定理和伯努利定理可知,在翼型的上表面,由于流管变细,即流管截面积减小,气流速度增大,故压强减小;而翼型的下表面,由于流管变化不大使压强基本不变。根据翼型上下表面各处的压强,可以绘制出翼型的压强分布图(压力分布图),如图4所示。图中自机翼表面向外指的箭头,代表吸力;指向表面的箭头,代表压力。箭头都与表面垂直,其长短表示负压(与吸力对应)或正压(与压力对应)的大小。由图4可看出,上表面的吸力占升力的大部分。靠近前缘处稀薄度最大,即这里的吸力最大。这样,翼型上下表面产生了压强差,形成了总空气动力R,R的方向向后向上。根据气流对飞行器实际所起的作用,如图5所示,可把R分成两个分力:一个与气流速度v垂直,起支托飞机重量的作用,就是升力L;另一个与流速v平行,起阻碍飞机前进的作用,就是阻力D。此时产生的阻力除了摩擦阻力外,还有一部分是由于翼型前后压强不等引起的,称之为压差阻力。
采用无因次的升力系数CL来表示升力与迎角的关系,作用在飞机上的升力可以表示为:L=CLqS,其中为动压(指空气流动时产生的压力),S为机翼参考面积。对于没有增升装置的对称翼型,升力系数可以表示为:CL=C·α,C为升力线斜率,α为迎角,飞行速度(飞机质心相对于未受飞机流场影响的空气的速度)在飞机参考平面上的投影与某一固定基准线(一般取机翼翼根弦线或机身轴线)之间的夹角,称为迎角,用α表示。对于非对称翼型,升力系数可以表示为:CL=C·(α-α0),α0为零升迎角,取决于机翼的弯度等特性。其中S翼型的零升迎角为0,即S翼型的仰角为0°时即能够达到飞行器起飞的效果。
根据上述结论,现有固定翼无人飞行器的翼型一般采用的S翼型,机翼的上曲面为波浪形,并且在机翼上曲面靠近机尾的部位向上翘起,即机翼的上曲面为波浪形,并且在机翼上曲面靠近机尾的部位向上翘起,在气流流经这部分时产生一个作用于机翼后缘的力,使无人机产生抬头力矩,从而得到较好的俯仰安定性。但由于现有固定翼无人飞行器的机翼上曲面靠近机尾的部位向上翘起的弧度较大,S型比较明显,空气对固定翼无人飞行器所产生的抬头力矩比较大,会导致不良的起飞特性,在转弯时会产生飞行高度降低较大的现象,使得固定翼无人飞行器的飞行稳定性较差,操控性也较差,无法满足对固定翼无人飞行器飞行稳定性要求较高的领域的要求。
在本实施例采用的所述机翼20中,机翼20沿所述机身10轴向的剖视图为闭合面,如图2所示,闭合面的曲线方程在直角坐标系里用二阶方程表达:以所述机翼20的前顶端部为原点,X轴的数值表示所述机翼20的宽度,Y轴的数值表示所述机翼20的长度,所述曲线方程为分段函数,所述闭合面的上半部分边缘的曲线方程满足:
Y=-0.0076*X2+0.5538*X+1.2591(0≦X<32);
Y=-0.0012*X2+0.177*X+7.08451(32≦X<95.7);
Y=-0.0007*X2+0.1276*X+7.1721(95.7≦X<155.07);
Y=0.0007*X2-0.3353*X+44.9996(155.07≦X<180.68);
Y=0.0036*X2-1.3702*X+137.431(180.68≦X≦200)。
所述曲线方程为分段函数,所述闭合面的下半部分边缘的曲线方程满足:
Y=0.00659*X2-0.3526*X-1.2742(0≦X<7.71);
Y=0.00557*X2-0.2994*X-1.4873(7.71≦X<25.89);
Y=0.0006*X2-0.05861*X-4.6628(25.89≦X<119.02);
Y=0.0001*X2+0.007*X-5.3521(119.02≦X<153.76);
Y=0.0006*X2-0.1289*X+3.8854(153.76≦X<190.13);
Y=0.0005*X2-0.091*X+0.1945(190.13≦X≦200)。
采用上述方程得到的翼型,较之现有固定翼无人机的翼型,减小了机翼20的S翼型弧度,不仅可减小转弯时飞行高度急剧减小的现象,增加俯仰安定性,提高了固定翼无人飞行器的飞行稳定性。
机翼20的厚度是垂直于翼弦的翼型上下表面之间的直线段长度,翼弦是指机翼前缘到后缘的连线,相对厚度是指翼型最大厚度tmax与翼弦c之比,称为翼型的相对厚度,并常用百分数表示。在该技术方案中,所述机翼20的相对厚度为0.1,该取值的相对厚度使无人机的阻力较低,使无人机可适应高速飞行。
如图3所示,两个机翼20分别位于机身10两侧的上半部,上单翼布局可减小固定翼无人飞行器飞行时空气对飞行器的干扰阻力。
同时机翼20的前缘后掠角21为25°~26.5°,其中后掠角是指从机翼20平均气动弦长连线自翼根到翼尖向后歪斜的角度,前缘后掠角是机翼前缘线的歪斜角。结合上述曲线方程组得到的翼型设计,该范围的前缘后掠角使固定翼无人飞行器的最大升力系数达到最好的取值范围,不仅使升力大小满足要求,还增加了固定翼无人飞行器的航向稳定性和提高了固定翼无人飞行器的临界马赫数,优选的,当前缘后掠角21为26.2°时可取得较好的无人机稳定性。
飞行器在飞行中,机翼产生正升力的情况下,下翼面的压力总要比上翼面的大,有限翼展机翼下表面的高压气流会绕过翼尖而流向上翼面低压区,形成绕翼尖的漩涡,漩涡使得下翼面存在着流向翼尖的展向流动,而上翼面存在着流向翼根的展向流动,因而当上下翼面气流在机翼后缘流过而混合时,这一上下相反的展向流动将形成漩涡而从机翼后缘拖出,后缘漩涡与翼尖漩涡组成了机翼后面的尾涡面,在机翼附近诱导出一个向下的速度,称为下洗速度。如图3所示,在机翼20的末端设置有垂直于机翼向下的小翼22,小翼22的方向与机身10的轴向平行,形成下单小翼,翼梢小翼部分地阻断了上绕气流,使涡流减弱,从而减小了下洗速度。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (6)

1.一种固定翼无人飞行器,包括机身和两个分别设置于所述机身两侧的机翼,其特征在于,
所述机翼沿所述机身轴向的剖视图为闭合面,所述闭合面的曲线方程在直角坐标系里用二阶方程表达:以所述机翼的前端部为原点,X轴的数值表示所述机翼的宽度,Y轴的数值表示所述机翼的长度,所述曲线方程为分段函数,所述闭合面的上半部分边缘的曲线方程满足:
Y=-0.0076*X2+0.5538*X+1.2591(0≦X<32);
Y=-0.0012*X2+0.177*X+7.08451(32≦X<95.7);
Y=-0.0007*X2+0.1276*X+7.1721(95.7≦X<155.07);
Y=0.0007*X2-0.3353*X+44.9996(155.07≦X<180.68);
Y=0.0036*X2-1.3702*X+137.431(180.68≦X≦200)。
2.根据权利要求1所述的固定翼无人飞行器,其特征在于,所述曲线方程为分段函数,所述闭合面的下半部分边缘的曲线方程满足:
Y=0.00659*X2-0.3526*X-1.2742(0≦X<7.71);
Y=0.00557*X2-0.2994*X-1.4873(7.71≦X<25.89);
Y=0.0006*X2-0.05861*X-4.6628(25.89≦X<119.02);
Y=0.0001*X2+0.007*X-5.3521(119.02≦X<153.76);
Y=0.0006*X2-0.1289*X+3.8854(153.76≦X<190.13);
Y=0.0005*X2-0.091*X+0.1945(190.13≦X≦200)。
3.根据权利要求2所述的固定翼无人飞行器,其特征在于:
所述机翼的相对厚度为0.1。
4.根据权利要求2所述的固定翼无人飞行器,其特征在于:
所述机翼的前缘后掠角为25°~26.5°。
5.根据权利要求2所述的固定翼无人飞行器,其特征在于:
在所述机翼的末端设置有垂直于所述机翼向下的小翼;
所述小翼的方向与所述机身的轴向平行。
6.根据权利要求5所述的固定翼无人飞行器,其特征在于:
两个所述机翼分别位于所述机身两侧的上半部。
CN201620136211.2U 2016-02-23 2016-02-23 一种固定翼无人飞行器 Active CN205366050U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620136211.2U CN205366050U (zh) 2016-02-23 2016-02-23 一种固定翼无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620136211.2U CN205366050U (zh) 2016-02-23 2016-02-23 一种固定翼无人飞行器

Publications (1)

Publication Number Publication Date
CN205366050U true CN205366050U (zh) 2016-07-06

Family

ID=56271081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620136211.2U Active CN205366050U (zh) 2016-02-23 2016-02-23 一种固定翼无人飞行器

Country Status (1)

Country Link
CN (1) CN205366050U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107444612A (zh) * 2017-08-15 2017-12-08 中国空气动力研究与发展中心高速空气动力研究所 一种λ机翼飞翼布局无人飞行器的变机翼前缘装置
CN112339991A (zh) * 2020-11-05 2021-02-09 江西洪都航空工业股份有限公司 一种增稳减阻的飞行器尾部构型

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107444612A (zh) * 2017-08-15 2017-12-08 中国空气动力研究与发展中心高速空气动力研究所 一种λ机翼飞翼布局无人飞行器的变机翼前缘装置
CN112339991A (zh) * 2020-11-05 2021-02-09 江西洪都航空工业股份有限公司 一种增稳减阻的飞行器尾部构型

Similar Documents

Publication Publication Date Title
CN104691739B (zh) 一种低阻高阻力发散马赫数的高升力层流翼型
CN101795939B (zh) 斜置翼身融合飞机
US20070262205A1 (en) Retractable multiple winglet
BR102013007856B1 (pt) Sistema de aleta para uma aeronave e método de melhorar o desempenho de uma aeronave
US20110260008A1 (en) Fluid flow control device for an aerofoil
CN108639339B (zh) 一种无人机气动布局
US20170073062A1 (en) Variable Geometry Wingtip
CN106043668B (zh) 一种三翼面飞机的气动布局
CN110498037B (zh) 一种适用于低空低速无人机的高升阻比层流翼型
CN107757871B (zh) 一种轻小型固定翼无人机用翼型
CN207826548U (zh) 一种高效低噪旋翼
EP2247498A2 (en) Wing control devices
CN103171766A (zh) 短距起降无人飞翼
CN205366050U (zh) 一种固定翼无人飞行器
Boermans Research on sailplane aerodynamics at Delft University of Technology
US10919618B2 (en) Fluid flow control for an aerofoil
CN203714171U (zh) 一种高效且稳定的斜形逆变机翼
CN208647149U (zh) 一种无人机气动布局
CN207902734U (zh) 一种气动布局的无人机
Teli et al. Unmanned aerial vehicle for surveillance
JP3192450U (ja) 模型飛行機
CN208760898U (zh) 一种亚音速靶机气动布局
CN107284641B (zh) 一种适于超音速飞行的小型飞机气动外形
CN206351775U (zh) 一种适用于航测无人机的大展弦比机翼
CN105775108A (zh) 一种外载式布局高空螺旋桨

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Huizhou City, Guangdong province 516001 Po Road Huicheng District No. 19 Building 7 storey building

Patentee after: Guangdong hi tech Development Co., Ltd.

Address before: Huizhou City, Guangdong province 516001 Po Road Huicheng District No. 19 Building 7 storey building

Patentee before: GUANGDONG AIRACE HI-TECH DEVELOPMENT CO., LTD.