CN205353238U - 一种电光晶体半波电场及响应特性测量装置 - Google Patents

一种电光晶体半波电场及响应特性测量装置 Download PDF

Info

Publication number
CN205353238U
CN205353238U CN201620074993.1U CN201620074993U CN205353238U CN 205353238 U CN205353238 U CN 205353238U CN 201620074993 U CN201620074993 U CN 201620074993U CN 205353238 U CN205353238 U CN 205353238U
Authority
CN
China
Prior art keywords
electro
optic crystal
electric field
response characteristic
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620074993.1U
Other languages
English (en)
Inventor
刘红文
王科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Yunnan Power System Ltd
Original Assignee
Electric Power Research Institute of Yunnan Power System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Yunnan Power System Ltd filed Critical Electric Power Research Institute of Yunnan Power System Ltd
Priority to CN201620074993.1U priority Critical patent/CN205353238U/zh
Application granted granted Critical
Publication of CN205353238U publication Critical patent/CN205353238U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本实用新型实施例公开了一种电光晶体半波电场及响应特性测量装置,包括电压发生装置、信号处理装置、两个完全相同的金属极板和由光纤依次连接的激光源、起偏器、电光晶体、检偏器和光电探测器,两个所述金属极板水平方向上平行、且贴紧所述电光晶体的上下表面,其中一个所述金属极板接地,所述电压发生装置和所述信号处理装置均与另一个所述金属极板电连接,所述光电探测器与所述信号处理装置电连接。本实用新型用所提供的装置于测量各种电光晶体的半波电场和响应特性,对于研究光纤电压传感器具有十分重要的作用,为传感器的材料选取、尺寸设计等提供重要理论支撑。测量方法直接有效,测量装置便于搭建,结构简单,便于推广和应用。

Description

一种电光晶体半波电场及响应特性测量装置
技术领域
本实用新型涉及电压及电场智能感知技术领域,特别是涉及一种电光晶体半波电场及响应特性测量装置。
背景技术
电压互感器在电力系统中有着重要的应用,是电力系统监测基本设备之一。随着当今社会对电力需求的增长和电能质量的提高,电力系统正朝着超/特高压、大容量的趋势发展。而普遍使用的传统电磁式电压互感器在高压情况下,存在易受电磁干扰、绝缘结构复杂、造价高、体积庞大、存在铁磁饱和以及爆炸危险等缺陷。
光纤电压传感器引入光学器件作为一次部分的传感头,没有铁芯和线圈,不存在电磁耦合,以光纤作为传输介质,有效克服了传统电磁式电压互感器的缺点。与传统电磁式电压互感器相比,具有安全性、可靠性、稳定性、电磁兼容性,频率响应宽、动态范围大,无火灾爆炸等危险,体积小、智能化等优点。
光纤电压传感器的一个核心部分则是电光晶体,通过电光晶体实现电信号到光信号之间的有效转换,选取合适的电光晶体直接影响到光纤电压传感器的工作性能,目前对于应用在光纤电压传感器的电光晶体材料及性质的研究仍处于发展阶段。
实用新型内容
本实用新型实施例中提供了一种电光晶体半波电场及响应特性测量装置,以解决现有技术中根据电光晶体的材料和性质选取电光晶体不合适,而直接影响光纤电压传感器的工作性能问题。
为了解决上述技术问题,本实用新型实施例公开了如下技术方案:
本实用新型提供了一种电光晶体半波电场及响应特性测量装置,所述装置包括电压发生装置、信号处理装置、两个完全相同的金属极板和由光纤依次连接的激光源、起偏器、电光晶体、检偏器和光电探测器,两个所述金属极板水平方向上平行、且贴紧所述电光晶体的上下表面,其中一个所述金属极板接地,所述电压发生装置和所述信号处理装置均与另一个所述金属极板电连接,所述光电探测器与所述信号处理装置电连接。
优选地,所述测量装置还包括高度可调的绝缘支柱和光学隔振平台,所述绝缘支柱一端面上设置所述电光晶体及所述金属极板,所述激光源、起偏器、绝缘支柱、检偏器和光电探测器依次固定设置于所述光学隔振平台上,且所述激光源、起偏器、检偏器、电光晶体和光电探测器的中心位于同一水平线上。
优选地,所述电压发生装置包括任意函数电压发生器和高压放大器,所述任意函数电压发生器输出端与所述高压放大器输入端连接,所述高压放大器输出端与所述金属极板的正极电连接。
优选地,所述信号处理装置包括标准分压器和多通道示波器,所述多通道示波器与所述光电探测器输出端电连接,所述标准分压器输入端与所述金属极板的正极电连接,所述标准分压器输出端与所述多通道示波器电连接。
优选地,所述起偏器的通光轴角度为45°,所述起偏器和所述检偏器呈彼此正交设置,且所述起偏器和所述检偏器之间设置有四分之一波片。
优选地,所述电光晶体包括铌酸锂晶体。
由以上技术方案可见,本实用新型实施例提供的一种电光晶体半波电场及响应特性测量方法及装置,电光晶体半波电场及响应特性测量装置包括:电压发生装置、信号处理装置、两完全相同的金属极板和由光纤依次连接的激光源、起偏器、电光晶体、检偏器和光电探测器,所述两金属极板水平方向上平行且贴紧所述电光晶体的上下表面,其中一所述金属极板接地,所述电压发生装置和所述信号处理装置均与另一所述金属极板电连接,所述光电探测器与所述信号处理装置电连接。
本实用新型用于测量各种电光晶体的半波电场和响应特性,对于研究光纤电压传感器具有十分重要的作用,为传感器的材料选取、尺寸设计等提供重要理论支撑。测量方法直接有效,测量装置便于搭建,结构简单,便于推广和应用。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例提供的一种电光晶体半波电场及响应特性测量装置的结构示意图;
图2为本实用新型实施例提供的一种电光晶体半波电场及响应特性测量装置的原理示意图;
图3为本实用新型实施例提供的一种对电光晶体进行横向调制的示意图;
图1-图3,符号表示:
1-激光源、2-起偏器、3-检偏器、4-光电探测器、5-绝缘支柱、6-金属极板、7-任意函数电压发生器、8-高压放大器、9-多通道示波器、10-标准分压器、11-光学隔振平台、12-电光晶体、13-四分之一波片。
具体实施方式
为了使本技术领域的人员更好地理解本实用新型中的技术方案,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本实用新型保护的范围。
参见图1,图1为本实用新型实施例提供的一种电光晶体半波电场及响应特性测量装置的结构示意图,所述装置包括电压发生装置、信号处理装置、两个完全相同的金属极板6和由光纤依次连接的激光源1、起偏器2、电光晶体12、检偏器3和光电探测器4,两个所述金属极板6水平方向上平行、且贴紧所述电光晶体12的上下表面,其中一个所述金属极板6接地,所述电压发生装置和所述信号处理装置均与另一个所述金属极板6电连接,所述光电探测器4与所述信号处理装置电连接。
所述激光源1可发射各种波长的平行激光,所述光电探测器4可探测各种波长激光的光功率,并将其转换为能用示波器直接测量的电压信号;所述金属极板6的尺寸可以根据被测电光晶体12尺寸调节,极板间高度可调节。
本实用新型中所述电光晶体12采用铌酸锂晶体。不同电光晶体12在相同外加电场下的电光效应强弱是不同的,选择适当电光系数的铌酸锂晶体可以在保证较大半波电场情况下极大的提高传感器感应电场的灵敏度。
起偏器2是用于从激光源1发出的自然光中获得偏振光的器件。常用的起偏器2有偏振片,尼科耳棱镜等,本实用新型实施例中的起偏器2为偏振片。
两向色性的有机晶体,如硫酸碘奎宁,电气石或聚乙烯醇薄膜在碘溶液中浸泡后,在高温下拉伸,烘干,然后粘在两个玻璃片之间就形成了偏振片。偏振光是一种人工膜片,其中有大量按一定规则排列的微小晶粒,对不同方向的光振动有选择吸收的性能,从而使膜片中有一个特殊的方向,当一束自然光射到膜片上时,与此方向垂直的光振动分量完全被吸收,只让平行于该方向的光振动分量通过,从而获得线偏振光。偏振片只允许沿某一特定方向的光通过。本实用新型中的起偏器2的偏振方向可360°调节。
检偏器3是由偏振片组成的,通常与起偏器2连用。起偏器2用来使自然光、部分偏振光等成为线偏振光,检偏器3就是用来检验某一束光是否偏振光。所述检偏器3偏振方向可360°。
如图2所示,图2为本实用新型实施例提供的一种电光晶体半波电场及响应特性测量装置的原理示意图。所述测量装置还包括高度可调的绝缘支柱5和光学隔振平台11,所述绝缘支柱5一端面上设置所述电光晶体12及所述金属极板6,所述激光源1、起偏器2、绝缘支柱5、检偏器3和光电探测器4依次固定设置于所述光学隔振平台11上,且所述激光源1、起偏器2、检偏器3、电光晶体12和光电探测器4的中心位于同一水平线上。
所述绝缘支柱5最高耐压等级为60kV,高度可调;所述光学隔振平台11尺寸可调。
所述电压发生装置包括任意函数电压发生器7和高压放大器8,所述任意函数电压发生器7输出端与所述高压放大器8输入端连接,所述高压放大器8输出端与所述金属极板6的正极电连接。
所述任意函数电压发生器7可产生标准正弦、三角、方波以及各类自定义函数波形,频率范围为0-1GHz,幅值范围为0-100V;所述高压放大器8可将输入电压幅值放大5000倍。
所述信号处理装置包括标准分压器10和多通道示波器9,所述多通道示波器9与所述光电探测器4输出端电连接,所述标准分压器10输入端与所述金属极板6的正极电连接,所述标准分压器10输出端与所述多通道示波器9电连接。
所述标准分压器10分压比可调;所述多通道示波器9各通道具有独立触发功能,采样率为200MHz。
本实用新型实施例提供的电光晶体半波电场及响应特性测量装置中,所述起偏器2的通光轴角度为45°,将所述起偏器2和所述检偏器3呈彼此正交设置,且所述起偏器2和所述检偏器3之间设置有四分之一波片13,用来调节固有相位的延迟。
四分之一波片13是有一定厚度的双折射单晶薄片。当光法向入射透过时,寻常光(o光)和非常光(e光)之间的位相差等于π/2或其奇数倍,这样的晶片称为四分之一波片。当线偏振光垂直入射四分之一波片13,并且光的偏振和云母的光轴面(垂直自然裂开面)成θ角,出射后成椭圆偏振光,特别当θ=45°时,出射光为圆偏振光。
铌酸锂晶体为单轴晶体,不同的通光方向和电压方向的组合会导致电光调制的效果有所差异,两种典型的调制方式是横向调制和纵向调制。
对于低电压的测量,横向调制因为可以通过改变晶体尺寸来调整感应灵敏度,所以更有优势,故本实用新型采用横向调制方式来对电光晶体12进行检测,如图3所示,图3为本实用新型实施例提供的一种对电光晶体进行横向调制的示意图。将一块铌酸锂晶体放在两个彼此正交的起偏器2和检偏器3之间,采用横向调制,电光晶体12的光轴(z轴)方向与偏振方向成45°通过在铌酸锂晶体和起偏器2之间增加四分之一波片13,调节使固有相位延迟
如图1,本实用新型实施例提供的一种电光晶体半波电场及响应特性测量装置是基于一次电光效应原理设计,当电光晶体12受外施电场作用时,通过晶体内部的激光会受到外施电场影响,发生双折射现象,从而导致射出激光中的寻常光与非常光产生相位差,通过检偏器3将该相位差的变化转化为直观可见的激光光功率的变化即可监测出该电光晶体12受外施电场的作用情况,从而研究其各项电光特性。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本实用新型的具体实施方式,使本领域技术人员能够理解或实现本实用新型。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下,在其它实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

1.一种电光晶体半波电场及响应特性测量装置,其特征在于,包括:电压发生装置、信号处理装置、两个完全相同的金属极板(6)和由光纤依次连接的激光源(1)、起偏器(2)、电光晶体(12)、检偏器(3)和光电探测器(4),两个所述金属极板(6)水平方向上平行、且贴紧所述电光晶体(12)的上下表面,其中一个所述金属极板(6)接地,所述电压发生装置和所述信号处理装置均与另一个所述金属极板(6)电连接,所述光电探测器(4)与所述信号处理装置电连接。
2.根据权利要求1所述的电光晶体半波电场及响应特性测量装置,其特征在于,所述测量装置还包括高度可调的绝缘支柱(5)和光学隔振平台(11),所述绝缘支柱(5)一端面上设置所述电光晶体(12)及所述金属极板(6),所述激光源(1)、起偏器(2)、绝缘支柱(5)、检偏器(3)和光电探测器(4)依次固定设置于所述光学隔振平台(11)上,且所述激光源(1)、起偏器(2)、检偏器(3)、电光晶体(12)和光电探测器(4)的中心位于同一水平线上。
3.根据权利要求1所述的电光晶体半波电场及响应特性测量装置,其特征在于,所述电压发生装置包括任意函数电压发生器(7)和高压放大器(8),所述任意函数电压发生器(7)输出端与所述高压放大器(8)输入端连接,所述高压放大器(8)输出端与所述金属极板(6)的正极电连接。
4.根据权利要求1所述的电光晶体半波电场及响应特性测量装置,其特征在于,所述信号处理装置包括标准分压器(10)和多通道示波器(9),所述多通道示波器(9)与所述光电探测器(4)输出端电连接,所述标准分压器(10)输入端与所述金属极板(6)的正极电连接,所述标准分压器(10)输出端与所述多通道示波器(9)电连接。
5.根据权利要求1所述的电光晶体半波电场及响应特性测量装置,其特征在于,所述起偏器(2)的通光轴角度为45°,所述起偏器(2)和所述检偏器(3)呈彼此正交设置,且所述起偏器(2)和所述检偏器(3)之间设置有四分之一波片(13)。
6.根据权利要求1所述的电光晶体半波电场及响应特性测量装置,其特征在于,所述电光晶体(12)包括铌酸锂晶体。
CN201620074993.1U 2016-01-26 2016-01-26 一种电光晶体半波电场及响应特性测量装置 Active CN205353238U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620074993.1U CN205353238U (zh) 2016-01-26 2016-01-26 一种电光晶体半波电场及响应特性测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620074993.1U CN205353238U (zh) 2016-01-26 2016-01-26 一种电光晶体半波电场及响应特性测量装置

Publications (1)

Publication Number Publication Date
CN205353238U true CN205353238U (zh) 2016-06-29

Family

ID=56184252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620074993.1U Active CN205353238U (zh) 2016-01-26 2016-01-26 一种电光晶体半波电场及响应特性测量装置

Country Status (1)

Country Link
CN (1) CN205353238U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486962A (zh) * 2016-01-26 2016-04-13 云南电网有限责任公司电力科学研究院 一种电光晶体半波电场及相应特性测量装置及方法
CN116499717A (zh) * 2023-06-27 2023-07-28 成都沃达惠康科技股份有限公司 一种基于激光晶体的测试系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486962A (zh) * 2016-01-26 2016-04-13 云南电网有限责任公司电力科学研究院 一种电光晶体半波电场及相应特性测量装置及方法
CN116499717A (zh) * 2023-06-27 2023-07-28 成都沃达惠康科技股份有限公司 一种基于激光晶体的测试系统

Similar Documents

Publication Publication Date Title
CN105486962A (zh) 一种电光晶体半波电场及相应特性测量装置及方法
CN102087307B (zh) 高精度全光纤电流互感器
CN203405513U (zh) 一种基于光纤电场传感器的输电线路绝缘子检测装置
CN109709372A (zh) 一种地铁/煤矿杂散电流光纤传感器闭环控制装置及方法
WO2013060194A1 (zh) 一种全光学高压电压互感器
Kyuma et al. Fiber-optic current and voltage sensors using a Bi 12 GeO 20 single crystal
Li et al. Magnetic field sensor exploiting light polarization modulation of microfiber with magnetic fluid
CN106526277A (zh) 一种用于低压光学电流传感器的新型光路传感单元
CN205353238U (zh) 一种电光晶体半波电场及响应特性测量装置
CN201382851Y (zh) 一种液晶空间光调制器特性参数的高精度测试装置
CN105182093A (zh) 具有温度补偿的强电场传感器及其测量方法
Pang et al. Influencing factors analysis on the detector output signal of fiber optic current transformer with sine modulation
CN101907650B (zh) 磁光平衡型光纤电流互感器
CN105203828A (zh) 基于Pockels效应的光电式交直流电压传感器
CN103913298B (zh) 一种测量高非线性光纤Verdet常数的装置和方法
Qi et al. Novel fiber optic current transformer with new phase modulation method
CN103995166A (zh) 一种温度补偿的光学电流测量模块及光学电流互感器
Nascimento et al. Novel optical current sensor for metering and protection in high power applications
US5255428A (en) Electrooptic polymer voltage sensor and method of manufacture thereof
CN211180014U (zh) 一种便携式光纤用户电能质量检测分析装置
CN103456206A (zh) 法拉第效应实验装置
CN203520707U (zh) 法拉第效应实验装置
Li et al. Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate
CN203909120U (zh) 温度补偿的光学电流测量模块及光学电流互感器
Rosolem et al. Optical sensors technologies evolution applied for power quality monitoring in the medium-voltage

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant