CN205178526U - 角型三相交流串联式光伏方阵 - Google Patents

角型三相交流串联式光伏方阵 Download PDF

Info

Publication number
CN205178526U
CN205178526U CN201520732031.6U CN201520732031U CN205178526U CN 205178526 U CN205178526 U CN 205178526U CN 201520732031 U CN201520732031 U CN 201520732031U CN 205178526 U CN205178526 U CN 205178526U
Authority
CN
China
Prior art keywords
square formation
power
photovoltaic square
tandem photovoltaic
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201520732031.6U
Other languages
English (en)
Inventor
王哲
许洪华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Corona Science and Technology Co Ltd
Original Assignee
Beijing Corona Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Corona Science and Technology Co Ltd filed Critical Beijing Corona Science and Technology Co Ltd
Priority to CN201520732031.6U priority Critical patent/CN205178526U/zh
Application granted granted Critical
Publication of CN205178526U publication Critical patent/CN205178526U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

一种角型三相交流串联式光伏方阵,由三个单相交流串联式光伏方阵通过角型连接组成角型三相交流串联式光伏方阵。单相交流串联式光伏方阵由m台串联式光伏方阵高压隔离交流功率调节装置串联组成,m为≥1的整数。组成角型连接的三相交流串联式光伏方阵的每相交流串联式光伏方阵首尾端分别对应接入第一储能电池组、第二储能电池组、第三储能电池组;三相交流串联式光伏方阵输出端与星角型并网平衡控制器的输入端连接;星角型并网平衡控制器的输出端与并网点电网三相交流电源连接。角型三相交流串联式光伏方阵在星角型并网平衡控制器控制下,协调三相交流串联式光伏方阵平衡输出。

Description

角型三相交流串联式光伏方阵
技术领域
本实用新型涉及一种太阳能光伏发电系统。
背景技术
目前光伏电站在国家的政策激励下飞速发展,光伏方阵是光伏发电系统的重要组成之一。由光伏组串串并联组成的方阵容量大小直接影响系统的发电量。光伏组串由若干块光伏组件串联组成,组件是组串的最小单元。串联光伏组件数量最多22块,串联的数量主要取决于组件承受的耐压。目前国内外组件串联后的组串电压≤1000V功率最大≤7kWp。为提高发电功量,目前国内外采两种方式:一是用大量光伏组串并联组成并联方阵增大输出电流,提高并联方阵功率输出,在经逆变器逆变交流输出,此方法也被称为集中式或并联式结构,如图5所示。二是如图6所示的组串型光伏发电系统,采用一种组串型逆变器,将多组组串直接输入组串型逆变器中,首先实现每个光伏组串的独立MPPT最大功率点跟踪,之后在并联逆变交流输出,此类型功率、体积较小,安装方便。为进一步增加功率再由多台组串型逆变器通过交流汇流柜并联。两种类型其实质都是组串之间的并联,电压低≤1000V、电流大、电缆设备损耗大、汇流设备多、电缆数量多,而且逆变器为电流型拓扑结构,功率损耗大。集中式或并联式则要求组串性能参数相近,又无法实现组串独立最大功率点(MPPT)自动跟踪使功率损失,而且需要相对规模的逆变器室安装及配套相关设施,使建设成本及管理成本提高。对分布式屋顶电站面积所限,为满足各组串电压相等安装组串时必须考虑取舍,造成有限的面积浪费。组串式逆变器由于并网数量多,以10MW电站为例采用28kW组串式逆变器,则有357台逆变器并联,极易引起系统震荡,特别并网点处于大电网的尾端弱电网和远离负载时,由于震荡造成脱网。大面积的脱网给业主造成近千万的损失。
再有,受光伏组串的并联结构所限,使每串光伏组串并联输出电压依据并网电压等级而提高,才能满足逆变器的输入启动电压基本条件,如在380v交流电网系统中,光伏组串输出直流电压才能满足启动逆变器基本工作条件,启动电压高所获得电量有限。
同样受光伏组串的并联结构输入直流电压<1000v所限,只能满足逆变器交流输出电压≤400v等级系统无变压器并网,更高电压等级并网则须经变压器升压输出。
由此将多组组串在串联提高输出电压降低传输电流增加功率,满足更高等级无变压器并网、使光伏组串更低电压输出能量被利用、减少电缆及汇流设备数量、减小储能DC/AC转换设备体积采用自然冷却,就近安装,实现减少线路、将传统集中型逆变器化整为零、降低电缆、汇流设备、变压器及逆变器控制室成本,提高光伏组串发电效率,适应分布式、大型光伏电站及未来中、高电压直流输电的需求。
目前光伏系统升压输出基本有四种方式,一为光伏组串并联(并联方阵)经汇流、逆变器交流变压器升压输出,多为集中式;二为光伏组串并联经逆变器交流汇流再经变压器升压输出,多为组串式;三为伏组串并联(并联方阵)经汇流经DC/DC有限的升压输出。其实质还是利用大量组串之间并联(并联式方阵)提高光伏方阵输出功率,其缺点除线路、设备损耗大之外,在相对高压交流输出时还需要升压变压器升压输出;四为串联式直流光伏方阵,利用光伏组串隔离装置将光伏组串与光伏组串进行高压隔离,并由光伏组串隔离装置输出直流功率,再将若干台光伏组串隔离装置正负输出端依次串联组成串联式直流光伏方阵,串联式直流光伏方阵输出高压直流提供高压逆变器输入直流电压,在由高压逆变器转换交流并网输出。由于串联式直流光伏方阵采用直流输出,则存在着如下不足:
1.整流器输出损耗:每个光伏组串隔离装置AC/DC转换输出时,采用高压整流电路,由于整流二级管的正向导通电压降,造成输出功率在高压整流二级管上增加了损耗。如整流二级管正向导通压降为1V,流过电流为50A,则一支高压整流二级管上损耗为50W,如采用全桥整流则损耗为100W。如光伏直流方阵容量为1MW,直流电压等级为±10kV,输出电流为50A,如需要光伏组串隔离装置50台,则串联式直流光伏方阵总的整流器损耗=100W*50台=5000W占输出功率的5KW/1000KW=0.5%;
2.由于串联式直流光伏方阵采用直流输出,如交流输出并网则需要直流高压输入逆变器转换交流输出并网。
发明内容
本实用新型目的是克服现有并联光伏组串并网逆变器占地面积大、逆变器输出电压低电流大,造成传输线路、配套设备损耗严重、成本高等缺点,提出一种角型三相交流串联式光伏方阵。
本实用新型角型三相交流串联式光伏方阵由三个单相交流串联式光伏方阵、三组储能电池组,以及星角型并网平衡控制器组成。三个单相交流串联式光伏方阵角型连接,组成角型三相交流串联式光伏方阵,角型三相交流串联式光伏方阵的三个连接点处分别对应与三组储能电池组连接。角型三相交流串联式光伏方阵输出与星角型并网平衡控制器输入连接,星角型并网平衡控制器的输出端与并网点电网三相交流电源连接。在星角型并网平衡控制器控制下,协调角型三相交流串联式光伏方阵平衡输出。
所述的单相交流串联式光伏方阵由m台串联式光伏方阵高压隔离交流功率调节装置串联组成,m为≥1的整数。
所述的单相交流串联式光伏方阵中,第1台串联式光伏方阵高压隔离交流功率调节装置的输出尾端与第2台串联式光伏方阵高压隔离交流功率调节装置的输出首端连接,第2台串联式光伏方阵高压隔离交流功率调节装置输出尾端与第3台串联式光伏方阵高压隔离交流功率调节装置输出首端连接,依此类推,第m-1台串联式光伏方阵高压隔离交流功率调节装置输出尾端与第m台串联式光伏方阵高压隔离交流功率调节装置输出首端连接,组成单相交流串联式光伏方阵。第1台串联式光伏方阵高压隔离交流功率调节装置输出的首端为单相交流串联式光伏方阵的首输出端,第m台串联式光伏方阵高压隔离交流功率调节装置输出尾端为单相交流串联式光伏方阵的尾输出端。每台串联式光伏方阵高压隔离交流功率调节装置的输入端连接光伏组串的输出端。其中单相交流串联式光伏方阵的首和尾输出端分别对应与两组储能电池组连接。
角型三相交流串联式光伏方阵中,A相交流串联光伏方阵的尾输出端与B相交流串联式光伏方阵的首输出端连接,并与第一储能电池组连接,连接点为Uab;B相交流串联光伏方阵的尾输出端与C相交流串联式光伏方阵的首输出端连接,并与第二储能电池组连接,连接点为Ubc;C相交流串联光伏方阵的尾输出端与A相交流串联式光伏方阵的首输出端连接,并与第三储能电池组连接,连接点为Uca;每相交流串联式光伏方阵首输出端和尾输出端端分别连接两个储能电池组。星角型并网平衡控制器输入与角型三相交流串联式光伏方阵的三个连接点Uab、Ubc和Uca连接,Uab、Ubc和Uca也是角型三相交流串联式光伏方阵的三相交流输出,输出电压值分别为Vab、Vbc、Vca。
考虑光伏组串发电易受到云的影响,输出功率波动较大,本实用新型利用角型三相交流串联式光伏方阵的三相交流串联式光伏方阵之间的公共连接,电位相等的特点,在三个公共连接处分别对应连接三组储能电池组,通过每相交流串联式光伏方阵对储能电池组的充放电控制,保证角型三相交流串联式光伏方阵输出功率相对稳定。
星角型并网平衡控制器由并网交流接触器、断路器、电流/电压传感器及PLC控制器组成。所述的断路器的输出端也是星角型并网平衡控制器的输出端与并网点三相电源连接;断路器的输入端和电流传感器串联,并与电压传感器、并网交流接触器输入并联;并网交流接触器输入端也是星角型并网平衡控制器的输入端与角型三相交流串联式光伏方阵的输出并联。角型三相交流串联式光伏方阵的输出端通过并网交流接触器、电流传感器、断路器与并网点电网三相电源连接。
所述的PLC控制器包括逻辑分析控制模块、时序控制模块、模拟控制模块、多机通信模块、输入控制模块和输出控制模块。多机通信模块通讯端口分别对应与三相交流串联式光伏方阵每相的串联式光伏方阵高压隔离交流功率调节装置连接,连接于控制器模块的通讯电路输入输出端口,多机通信模块与角型三相交流串联式光伏方阵每相的串联式光伏方阵高压隔离交流功率调节装置实时交互数据,PLC控制器依据控制策略计算分析,并提供相位、同步时间及输出功率数据;
时序控制模块同步输出端口分别对应与角型三相交流串联式光伏方阵每相的串联式光伏方阵高压隔离交流功率调节装置连接,连接于控制器模块的同步电路输入端子。PLC控制器通过时序控制模块同步输出端口实时为角型三相交流串联式光伏方阵每相中的串联式光伏方阵高压隔离交流功率调节装置提供同步过零点脉冲;
输入控制模块与电流、电压传感器数据输出端连接,实时监控电网电压、电流和频率变化,并将检测并网点三相电源的数据信息经逻辑分析控制模块进行分析计算,通过多机通信模块给出角型每相交流串联式光伏方阵相位及数据信息,通过时序控制模块输出角型每相交流串联式光伏方阵的过零点同步信号。
输出控制模块与并网交流接触器控制端连接,控制并网交流接触器的通断。
组成单相交流串联式光伏方阵的串联式光伏方阵高压隔离交流功率调节装置由n个最大功率跟踪模块、储能DC/AC转换模块、控制器模块、电源模块和交流隔离输出模块组成,n为≥1的整数。
所述的光伏组串的输出端与串联式光伏方阵高压隔离交流功率调节装置中最大功率跟踪模块的输入端连接,经该最大功率跟踪模块对光伏组串MPPT最大功率跟踪输出功率;n个最大功率跟踪模块的输出端并联,并联后的n个最大功率跟踪模块输出端再分别与储能DC/AC转换模块、电源模块输入端并联;n个最大功率跟踪模块提供储能DC/AC转换模块、电源模块电源;其中电源模块的输出与控制器模块的电源输入端连接,提供控制器模块的工作电源;控制器模块的采样输入端和控制输出端分别与n个最大功率跟踪模块,以及储能DC/AC转换模块连接;储能DC/AC转换模块的输出端与交流隔离输出模块输入连接,交流隔离输出模块的输出与相邻的串联式光伏方阵高压隔离交流功率调节装置输出串联;储能DC/AC转换模块与储能电池组连接。
所述的最大功率跟踪模块由储能电感、储能电容、功率开关、续流二极管、电流传感器和汇流母排组成。
每一串光伏组串的正输出端与最大功率跟踪模块的正负输入端连接,最大功率跟踪模块的正输入端与储能电感的一端连接,储能电感的另一端分别与功率开关的正端和续流二极管正极连接,续流二极管的负极分别与储能电容正极、电流传感器的正输入端连接;电流传感器的负输入端与汇流母排正端连接,光伏组串的负输入端分别与功率开关的负端、储能电容负极、汇流母排负端连接,汇流母排的正、负端也为最大功率跟踪模块的正、负输出端;功率开关的控制端与控制器光隔电路对应输出端连接。
所述的储能DC/AC转换模块由储能控制电路、H桥功率驱动电路、汇流母排电压传感器、相位监测电压传感器和保护继电器组成。H桥功率驱动电路的输入端分别与储能控制电路、汇流母排电压传感器在汇流母排上并联;H桥功率驱动电路输出端分别与保护继电器开关接点两端、相位监测电压传感器、交流隔离输出模块的输入端绕组并联。
在角型三相能量互补交流串联式光伏方阵正常工作时,当某串联式光伏方阵高压隔离交流功率调节装置没有功率输出或出现故障时,为保证角型三相交流串联式光伏方阵正常工作,H桥功率驱动电路输出端经保护继电器常闭接点短路,使变压器输入内阻r=0Ω,依据变压器原理,输出阻抗R=B2r,其中B为变压器变比,r为变压器输入阻抗,由此输出阻抗R=0Ω,不会影响角型三相交流串联式光伏方阵正常工作。
所述的H桥率驱动电路由相位监测电压传感器、4只功率开关管和4只续流二极管组成,每只功率开关管有一个控制输入端、一个功率输入端和一个功率输出端。每只功率开关管的输入端和输出端反向并联一只续流二极管;每2只功率开关管串联,组成2组H桥臂电路。每组H桥臂电路中,一只功率开关管功率的输入端与另一只功率开关管的输出端串联,连接点为H桥臂电路的功率输出端;2组H桥臂电路的两端分别为H桥臂电路的正输入端和负输入端;2组H桥臂电路并联组成H桥功率驱动电路,并联后的H桥臂电路的正端和负端也是H桥功率驱动电路的正端和负端,2组H桥臂电路的功率输出端也为H桥率驱动电路的2个功率输出端,4只功率开关管的控制输入端也是H桥功率驱动电路的4个控制输入端。
所述的储能控制电路由一只功率开关管和充放电电流检测传感器组成。功率开关管的一端通过串联的充放电电流检测传感器与H桥功率驱动电路的输入正端及汇流母排正极连接,功率开关管的另一端为储能控制电路的储能电池组充放电接入端,并与一组储能电池组正极连接;储能电池组负极与汇流母排负极连接;功率开关管控制端也是储能控制电路的控制端,并与控制器模块光隔驱动电路连接。
所述的控制器模块由CPU、A/D采样电路、光隔电路、同步电路和双向通讯电路组成。所述的A/D采样电路的输入端分别对应与每个最大功率跟踪模块的电流传感器、储能DC/AC转换模块充放电电流检测电流传感器的输出端连接,同时也分别与储能DC/AC转换模块的汇流母排、H桥功率驱动电路的相位监测电压传感器连接,其中A/D采样电路还有一个输入端口为储能电池组电压传感器检测端。所述光隔电路的输入端与控制器模块中CPU的I/O端口连接,光隔电路的输出端分别与每个最大功率跟踪模块的功率开关控制输入端、H桥功率驱动电路的4个控制输入端和保护继电器电路的控制开关管的控制输入端和储能电路控制端连接;双向通讯电路的一端与控制器模块中CPU的通讯端口连接,双向通讯电路的另一端也是串联式光伏方阵高压隔离交流功率调节装置的通讯端口,通过光纤或无线与星角型并网平衡控制器PLC中的多机通讯模块端口连接,实时交换数据;同步电路的一端与控制器模块中CPU的I/O端口连接,同步电路的另一端也是串联式光伏方阵高压隔离交流功率调节装置的同步输入端口,通过光纤或无线与星角型并网平衡控制器PLC中的时序控制模块输出端连接,实现每相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置输出与该相电网过零点同步。当星角型并网平衡控制器判断允许m个串联式光伏方阵高压隔离交流功率调节装置接入电网时,星角型并网平衡控制器控制并网交流接触器工作,电网通过断路器、电流/电压传感器及并网交流接触器接点与角型三相交流串联式光伏方阵连接,角型三相交流串联式光伏方阵中每个单相交流串联式光伏方阵的m个串联式光伏方阵高压隔离交流功率调节装置输出端将电网电压分压,并通过交流隔离输出模块高压隔离变压器反向将对应的角型三相交流串联式光伏方阵每相交流串联式光伏方阵的相位、频率、电压耦合到交流隔离输出模块的输入绕组端,串联式光伏方阵高压隔离交流功率调节装置的控制器模块通过相位监测电压传感器读取相位、频率及电压信息及星角型并网平衡控制器提供的过零点同步信号,并将此信息数据通过双向通讯电路通讯端口回传到星角型并网平衡控制器多机通讯模块端口中。星角型并网平衡控制器依据此三相交流串联式光伏方阵的相位、频率、电压数据及同步信息,分别通过多机通讯模块的端口和时序控制模块的端口对应的向串联式光伏方阵高压隔离交流功率调节装置发送控制数据及同步脉冲信号,串联式光伏方阵高压隔离交流功率调节装置的控制器模块依据此数据及同步脉冲信号,控制H电桥功率驱动电路经交流隔离输出模块交流输出。
所述的电源模块由DC/DC电源、避雷器和保护继电器电路组成。DC/DC电源的输入端与避雷器的两端并联,保护串联式光伏方阵高压隔离交流功率调节装置电器避免雷击。DC/DC电源的输出端与保护继电器电路的输入端并联;所述的保护继电器电路由继电器和控制开关管组成;控制开关管的功率输入端也是保护继电器电路的负输入端,控制开关管的功率输出端与继电器一端连接,继电器的另一端为保护继电器电路的正输入端,控制开关管的控制输入端也是保护继电器电路的控制输入端。
在DC/DC电源没有启动时,保护继电器电路两端没有电压,保护继电器常闭接点闭合,串联式光伏方阵高压隔离交流功率调节装置输出阻抗R=0Ω。当DC/DC电源启动输出直流电压时,保护继电器在控制器的控制下,依据需求控制常闭接点开闭,对串联式光伏方阵高压隔离交流功率调节装置输出阻抗R=0Ω或R=B2rΩ控制,r为交流隔离输出模块的功率输入内阻。
所述的交流隔离输出模块由高压隔离变压器、两个隔离开关和一个短路开关组成。所述的高压隔离变压器有一个功率输入绕组和一个功率输出绕组,其中高压隔离变压器的功率输入绕组也是交流隔离输出模块的输入端;功率输出绕组的两端分别与两个隔离开关的输入端连接,两个隔离开关的输出端分别与短路开关两端连接,短路开关两端是交流隔离输出模块的输出端,也是串联式光伏方阵高压隔离交流功率调节装置输出端,输出电压为Uac。并且高压隔离变压器隔离电压>Uacsmax。由于高压隔离变压器的加入,使串联式光伏方阵高压隔离交流功率调节装置的隔离电压>Uacsmax。所述的Uacsmax也称为系统最高交流电压。角型三相能量互补交流串联式光伏方阵分别输出最大A相电压:Uasmax=Ua1max+Ua2max+Ua3max,…,+Uammax;B相电压:Ubsmax=Ub1max+Ub2max+Ub3max,…,+Ubmmax;C相电压:Ucsmax=Uc1max+Uc2max+Uc3max,…,+Ucmmax;Uammax、Ubmmax,Ucmmax为第m个串联式光伏方阵高压隔离交流功率调节装置输出最大电压值。m为≥1的整数。
所述高压隔离变压器功率输入绕组的两端与储能DC/AC转换模块中H桥功率驱动电路功率输出端连接,储能DC/AC转换模块将n个最大功率跟踪模块的输出功率经功率输入绕组耦合到功率输出绕组输出交流功率。
串联式光伏方阵高压隔离交流功率调节装置中的H桥功率驱动电路对应输出角型三相交流串联式光伏方阵的相位、频率、功率,经交流隔离输出模块的高压隔离变压器耦合输出,并经两个隔离开关、短路开关输出交流功率。短路开关正常时处于开路状态,当某一串联式光伏方阵高压隔离交流功率调节装置维护或更换,退出角型三相交流串联式光伏方阵时,为不影响角型三相交流串联式光伏方阵正常工作,将短路开关闭合。所述的三组储能电池组分别与角型三相交流串联式光伏方阵连接时,其中一相交流串联式光伏方阵中的第m个串联式光伏方阵高压隔离交流功率调节装置输出尾端和汇流母排负极分别与另一相交流串联式光伏方阵中的第1个串联式光伏方阵高压隔离交流功率调节装置输出首端和汇流母排负极连接,使相邻两相交流串联式光伏方阵中的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置所处电位相等。由此可将相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端并联,并与一组储能电池组正端连接。相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中的储能DC/AC转换模块汇流母排负端并联,并与储能电池组负端连接。
其中A相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第三储能电池组正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第一储能电池组正负连接;其中B相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第一储能电池组正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第二储能电池组正负连接;其中C相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第二储能电池组正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第三储能电池组正负连接。
相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置的控制器中的A/D采样电路的储能电池组电压传感器检测端置并联,并与储能电池组电压传感器数据输出连接。
本实用新型的工作原理和工作过程如下:
由于光伏组串最高承受电压<1000v,如将光伏组串之间串联势必造成光伏组件电压击穿损坏,为此在每个光伏组串之间增加一个高压隔离环节,提高光伏组串的隔离电压能力。本实用新型将每个光伏组串通过串联式光伏方阵高压隔离交流功率调节装置进行高压电气隔离后输出,使每个串联式光伏方阵高压隔离交流功率调节装置的耐电压>交流系统电压Uacsmax,由此实现m个串联式光伏方阵高压隔离交流功率调节装置的串联。
由于串联式光伏方阵高压隔离交流功率调节装置的隔离电压提高,m个串联式光伏方阵高压隔离交流功率调节装置串联的输出电压分别为角型三相交流串联式光伏方阵输出的相电压Uabs、Ubcs、Ucas。Uabs、Ubcs、Ucas为每相串联式光伏方阵高压隔离交流功率调节装置输出电压之和:Uabs=Ua1+Ua2+Ua3+…Uam;Ubcs=Ub1+Ub2+Ub3+…Ubm;Ucas=Uc1+Uc2+Uc3+…Ucm。
由于每个串联式光伏方阵高压隔离交流功率调节装置中的光伏组件参数偏差、或某一时刻辐照量不同、或组成的光组串数量不同,使每个串联式光伏方阵高压隔离交流功率调节装置的输出电压Uam、Ubm、Ucm有可能不同,为保证角型三相交流串联式光伏方阵输出平衡,即Uabs=Ubcs=Ucas=Uacs及Pa=Pb=Pc,星角型并网平衡控制器对角型三相交流串联式光伏方阵中每个串联式光伏方阵高压隔离交流功率调节装置输出协调控制,使Uabs=Ua1+Ua2+Ua3+…Uam、Ubcs=Ub1+Ub2+Ub3+…Ubm、Ucas=Uc1+Uc2+Uc3+…Ucm并保证Ias=Ibs=Ics,其中Uacs为并网点交流电压,Ias、Ibs、Ics分别为角型三相交流串联式光伏方阵输出电流,Pa、Pb、Pc分别为角型三相交流串联式光伏方阵每相交流串联式光伏方阵输出功率。
角型三相交流串联式光伏方阵中串联式光伏方阵高压隔离交流功率调节装置在不同情形下的工作过程如下:
在没有辐照度或很低时,串联式光伏方阵高压隔离交流功率调节装置没有电源供给,此时由于保护继电器开关接点闭合,变压器输入内阻r=0Ω,依据变压器原理输出阻抗R=B2r,其中B为变压器变比,r为交流隔离输出模块的功率输入内阻,由此输出阻抗R=0Ω,没有功率输出。
在辐照度逐渐增加时,每相交流串联式光伏方阵中串联式光伏方阵高压隔离交流功率调节装置输入功率同步增加,为串联式光伏方阵高压隔离交流功率调节装置中的最大功率跟踪模块、储能DC/AC转换模块、电源模块提供电源。当输入电压满足电源模块中DC/DC启动电压时,DC/DC输出直流电压使控制器工作。控制器模块初始化,分别控制保护继电器电路中开关管导通,使保护继电器工作,保护继电器常闭接点断开,串联式光伏方阵高压隔离交流功率调节装置输出阻抗R=B2rΩ,r为交流隔离输出模块的功率输入内阻。
在角型三相交流串联式光伏方阵中,当每相交流串联式光伏方阵中第1个和第m个串联式光伏方阵高压隔离交流功率调节装置输入电压满足电源模块中DC/DC启动电压时,其控制器模块通过A/D采样电路的储能电池组电压传感器检测端置实时检测对应储能电池组的电压传感器数据,并分析电压值是否小于储能DC/AC转换模块汇流母排电压传感器电压值,当储能电池组的电压小于汇流母排电压传感器时,控制器模块控制储能控制电路对储能电池组充电,同时控制器模块实时监测储能DC/AC转换模块充放电电流检测传感器的电流值,当该电流值为零时,控制器模块控制储能控制电路对储能电池组停止充电。
同时,串联式光伏方阵高压隔离交流功率调节装置的控制器模块分别通过同步电路和双向通讯电路与星角型并网平衡控制器建立同步及通讯联系,串联式光伏方阵高压隔离交流功率调节装置进入默认工作状态。
默认工作模式:星角型并网平衡控制器与每相交流串联式光伏方阵中串联式光伏方阵高压隔离交流功率调节装置建立同步及通讯,并实时发送同步信号及交互数据,同时确认每相交流串联式光伏方阵中工作的串联式光伏方阵高压隔离交流功率调节装置的数量。当星角型并网平衡控制器监测到已进入工作的光伏方阵高压隔离交流功率调节装置的数量满足每相交流串联式光伏方阵最小数量Mmin=Uacs/Ummax时,星角型并网平衡控制器中的PLC控制器控制并网交流接触器吸合,使三相交流串联式光伏方阵并网,其中Ummax为串联式光伏方阵高压隔离交流功率调节装置最大输出电压;Mmin为串联式光伏方阵高压隔离交流功率调节装置最小数量。由于此时每相交流串联式光伏方阵中串联式光伏方阵高压隔离交流功率调节装置没有功率输出,输出阻抗为R=B2rΩ,则每相交流串联式光伏方阵中串联式光伏方阵高压隔离交流功率调节装置输出阻抗为R1=R2=R3=……Rm,其中R1、R2、R3、……Rm分别为一相交流串联式光伏方阵中的m个串联式光伏方阵高压隔离交流功率调节装置的输出阻抗。由于m个串联式光伏方阵高压隔离交流功率调节装置串联,当并网点电压加载到角型三相交流串联式光伏方阵时,流过每相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置的电流相等,则有每个串联式光伏方阵高压隔离交流功率调节装置输出端分压为Ua1=Ua2=Ua3=…Uam,Uam=Uas/m、Ub1=Ub2=Ub3=…Ubm,Ubm=Ubs/m、Uc1=Uc2=Uc3=…Ucm,Ucm=Ucs/m,该分压电压经交流隔离输出模块高压隔离变压器反向将对应角型三相交流串联式光伏方阵的相位、频率、电压耦合到交流隔离输出模块的输入端,控制器模块通过相位监测电压传感器读取此角型三相交流串联式光伏方阵的相位、频率及电压信息,并将信息上传到星角型并网平衡控制器。
此时,星角型并网平衡控制器依据此角型三相交流串联式光伏方阵的相位、频率、电压数据及同步信息,向对应的串联式光伏方阵高压隔离交流功率调节装置发送控制数据及同步脉冲信号,串联式光伏方阵高压隔离交流功率调节装置的控制器模块依据此数据及同步脉冲信号,控制H桥功率驱动电路经交流隔离输出模块交流输出,进入工作模式。
工作模式:
当串联式光伏方阵高压隔离交流功率调节装置的控制器模块依据此角型三相交流串联式光伏方阵的相位、频率、电压数据及同步脉冲信号,输出交流电压时,控制器模块中的CPU通过A/D采样电路分别采集每个最大功率跟踪模块的电流及汇流母排电压,并依据MPPT最大功率跟踪策略,通过控制光隔电路输出脉冲信号,控制最大功率跟踪模块的功率开关的开闭,实现MPPT最大功率跟踪。
其中最大功率跟踪模块由储能电感、续流二极管、储能电容、功率开关组成BOOST电路,控制器模块的CPU依据BOOST电路工作原理,通过控制功率开关导通或关闭的占空比,改变储能电感输出的能量,经续流二极管输出,对储能电容充电或放电,改变光伏组串的输出电流和电压,实现对光伏组串最大功率跟踪,并经电流传感器监测输出功率。此时CPU通过电流传感器检测到最大功率跟踪电路输出电流的变化及汇流母排电压,并依据此电流及电压数据进行分析,给出下一时间的MPPT最大功率跟踪控制脉冲。
此时每个串联式光伏方阵高压隔离交流功率调节装置中的控制器通过A/D采样电路分别检测n个最大功率跟踪模块、汇流母排和储能DC/AC转换模块的电流、电压,同样角型连接的每相交流串联式光伏方阵中的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中的控制器通过A/D采样电路分别检测储能电池组或超级电容的电流、电压。
并通过双向通讯电路经光纤或无线将数据上传到星角型并网平衡控制器中,星角型并网平衡控制器依据此数据及星角型并网平衡控制器监测的并网点相位、频率、电压信息进行三相平衡、相位、同步控制分析计算和功率优化策略分析计算,向对应的角型三相交流串联式光伏方阵中的光伏方阵高压隔离交流功率调节装置回传控制数据。每个光伏方阵高压隔离交流功率调节装置中的控制器依据接收数据,CPU通过光隔电路输出PWM信号,控制H桥功率驱动电路4个控制信号输入端,H桥功率驱动电路的输出功率经交流隔离输出模块的高压隔离变压器输入绕组耦合到高压隔离变压器输出绕组,再经交流隔离输出模块中的两个隔离开关、短路开关输出对应角型三相交流串联式光伏方阵的相位、频率、电压及电流。短路开关正常时处于开路状态,当某一串联式光伏方阵高压隔离交流功率调节装置维护或更换退出角型三相交流串联式光伏方阵时,为不影响角型三相交流串联式光伏方阵正常工作,将短路开关快速闭合。
对本实用新型角型三相交流串联式光伏方阵的控制策略具体如下:
设角型三相交流串联式光伏方阵三相功率分别为PA、PB、PC,角型三相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置中的输出功率分别为Pa1~Pam、Pb1~Pbm、Pc1~Pcm,m为≥1的整数。则PA=Pa1+Pa2……Pam;PB=Pb1+Pb2……Pbm;PC=Pc1+Pc2……Pcm。则有角型三相交流串联式光伏方阵总功率Pacs=PA+PB+PC;三相电流分别为Ias=PA/Vacs、Ibs=PB/Vacs、Ics=PC/Vacs,其中Vacs为并网点电压。
1、同步策略:
1)启动同步控制策略:当星角型并网平衡控制器监测到每相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置最小数量Mmin=Uacs/Ummax满足工作条件时,星角型并网平衡控制器中的PLC控制器控制并网交流接触器吸合,使A~C三相交流串联式光伏方阵并网。此时每相A~C三相交流串联式光伏方阵中串联式光伏方阵高压隔离交流功率调节装置没有功率输出,输出阻抗为R=B2rΩ。当并网点电压加载到角型三相交流串联式光伏方阵时,则有每个串联式光伏方阵高压隔离交流功率调节装置输出端分压为Ua1=Ua2=Ua3=…Uam、Ub1=Ub2=Ub3=…Ubm、Uc1=Uc2=Uc3=…Ucm,该分压电压经交流隔离输出模块高压隔离变压器反向将对应角型三相交流串联式光伏方阵的相位、频率、电压耦合到交流隔离输出模块的输入端,控制器模块通过相位监测电压传感器读取此角型三相交流串联式光伏方阵的相位、频率及电压信息,并将信息上传到星角型并网平衡控制器。
此时,星角型并网平衡控制器依据此角型三相交流串联式光伏方阵的相位、频率、电压数据及同步信息,向对应的串联式光伏方阵高压隔离交流功率调节装置发送控制数据及同步脉冲信号,串联式光伏方阵高压隔离交流功率调节装置的控制器模块依据此数据及同步脉冲信号,控制H桥功率驱动电路经交流隔离输出模块交流输出。
2)实时同步控制策略:当角型三相交流串联式光伏方阵正常工作时,星角型并网平衡控制器PLC控制器中的输入模块通过星角型并网平衡控制器中的电流传感器、电压传感器分别检测到并网点三相交流电源的相位、频率、电流及电压数据时,分别依据每相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置回传数据、各种工作策略及计算出过零点时间,分别通过PLC控制器中的通过多机通信模块、时序控制模块对应向每相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置发送控制数据及同步脉冲信号。串联式光伏方阵高压隔离交流功率调节装置的控制器模块依据此数据及同步脉冲信号,控制H桥功率驱动电路经交流隔离输出模块交流输出。
2、三相平衡控制策略:
模式1),由于云的影响,部分光伏组件输出功率出现波动,与此部分光伏组件对应的串联式光伏方阵高压隔离交流功率调节装置输入功率升高或下降,造成角型三相交流串联式光伏方阵失去平衡。由于串联式光伏方阵高压隔离交流功率调节装置中,控制器模块实时通过A/D采样电路实时检测汇流母排电压、每个最大功率跟踪模块电流及角型连接的每相交流串联式光伏方阵的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组的电流、电压,并通过双向通讯电路向星角型并网平衡控制器交互数据。星角型并网平衡控制器将获取的每个串联式光伏方阵高压隔离交流功率调节装置的数据分析计算,为保证角型三相交流串联式光伏方阵输出平衡,对每相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置输出功率大小调整,首先确保除每相交流串联式光伏方阵中的第1个和第m个以外的串联式光伏方阵高压隔离交流功率调节装置最大功率输出,不足功率通过第1个和第m个串联式光伏方阵高压隔离交流功率调节装置补充,将没有输出的多余功率通过第1个和第m个串联式光伏方阵高压隔离交流功率调节装置保存到对应的储能电池组中。由于角型三相交流串联式光伏方阵的三组储能电池组容量分别为三组相邻两相交流串联式光伏方阵共享储能电池组容量,则角型三相、交流串联式光伏方阵平衡输出,是在星角型并网平衡控制器通过每相交流串联式光伏方阵的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置对对应储能电池组进行充放电控制。如角型三相交流串联式光伏方阵PA相中的第二个串联式光伏方阵高压隔离交流功率调节装置输出功率Pa2下降,则PA<PB=PC,PB-PA=ΔPA,星角型并网平衡控制器依据已存前一次储能电池组容量数据及功率优化原理,并保证PA+ΔPA=PB=PC时,通过每相交流串联光伏方阵最大功率输出及系统电压求出交流串联光伏方阵最大电流Iacs=(PA+ΔPA)/Vacs,并利用此电流Iacs计算出每相串联光伏方阵中每个串联式光伏方阵高压隔离交流功率调节装置的输出电压,控制A相交流串联式光伏方阵的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置输出ΔPA功率输出。其中ΔPA为A相交流串联光伏方阵与B相或C相的差值。
如角型三相交流串联式光伏方阵ΔPA=Pa1+Pam,而A相交流串联光伏方阵中的第一和第m串联式光伏方阵高压隔离交流功率调节装置输出功率Pa1、Pam由星角型并网平衡控制器依据对应储能电池组前一次容量数据分配。当A相交流串联式光伏方阵的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置对应连接的两组储能电池组容量PE_AB=PE_CA时,则ΔPA/2=Pa1=Pam;如对应的两组储能电池组或超级电容组容量PE_AB<PE_AC,则PE_AB/PE_AC=ηa,Pa1=ΔPA*ηa,Pam=ΔPA-Pa1反之,PE_AB>PE_AC,则PE_AC/PE_AB=ηa,Pam=ΔPA*ηa,Pa1=ΔPA-Pam则A相:Va1=Pa1/Iacs、Va2=Pa2/Iacs……Vam=Pam/Iacs;B相:Vb1=Pb1/Iacs、Vb2=Pb2/Iacs、……、Vbm=Pbm/Iacs;C相:Vc1=Pc1/Iacs、Vc2=Pc2/Iacs、……、Vcm=Pcm/Iacs;
其中PE_AB、PE_CA、PE_BC分别为角型三相交流串联式光伏方阵中,第一储能电池组、第二储能电池组、第三储能电池组的容量,ηa为与A相交流串联式光伏方阵连接的第一储能电池组的容量PE_AB和第三储能电池组的容量PE_CA的比值。
当星角型并网平衡控制器检测到储能电池组容量不能支持角型三相相交流串联式光伏方阵输出平衡时,角型三相交流串联式光伏方阵PA相中的第二个串联式光伏方阵高压隔离交流功率调节装置输出功率Pa2下降,则PA<PB=PC,星角型并网平衡控制器依据功率优化原理,求出A相串联光伏方阵最大输出电流Iacs=PA/Vacs,并利用A相串联光伏方阵最大输出电流Iacs计算出A相串联光伏方阵中的每个串联式光伏方阵高压隔离交流功率调节装置的输出电压Va1=Pa1/Iacs、Va2=Pa2/Iacs……Vam=Pam/Iacs;为保障三相交流输出平衡,则利用角型三相能量互补交流串联式光伏方阵中发电功率最小的一相交流串联式光伏方阵与另两个相交流串联式光伏方阵进行比例系数计算,则有B相、C相串联光伏方阵PA/PB=xb、PA/PC=xc,由此计算出比例系数xb、xc,利用此比例系数分别计算出PB*xb=Pb1*xb+Pb2*xb……Pbm*xb;PC*xc=Pc1*xc+Pc2*xc……Pcm*xc,则分别计算出B相、C相串联光伏方阵中每个串联式光伏方阵高压隔离交流功率调节装置的输出电压值,B相:Vb1=Pb1*xb/Iacs、Vb2=Pb2*xb/Iacs、……、Vbm=Pbm*xb/Iacs;C相:Vc1=Pc1*xc/Iacs、Vc2=Pc2*xc/Iacs、……、Vcm=Pcm*xc/Iacs;由此B相、C相串联光伏方阵中的每个串联式光伏方阵高压隔离交流功率调节装置的输出功率Pbm*xb<Pbm、Pm*xc<Pcm;则有ΔPbm=Pbm-Pbm*xb、ΔPcm=Pcm-Pcm*xc。
由此角型三相交流互补串联式光伏方阵中的每个串联式光伏方阵高压隔离交流功率调节装置执行星角型并网平衡控制器发送的数据后,将分别按每相的每个串联式光伏方阵高压隔离交流功率调节装置的输出电压值Vam、Vbm、Vcm输出电压,而ΔPbm分别存储到B相交流串联式光伏方阵的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置对应连接的第一储能电池组和第二储能电池组;ΔPcm分别存储到C相交流串联式光伏方阵的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中对应连接的第二储能电池组和第三储能电池组中。
模式2),当某个串联式光伏方阵高压隔离交流功率调节装置输入光伏组串功率低于串联式光伏方阵高压隔离交流功率调节装置启动时的启动功率,或串联式光伏方阵高压隔离交流功率调节装置出现故障没有输出时,由于无供电,保护继电器开关接点闭合,变压器输入内阻r=0Ω,不影响角型三相交流串联式光伏方阵正常工作。此时星角型并网平衡控制器无法接收到该串联式光伏方阵高压隔离交流功率调节装置的数据。星角型并网平衡控制器将执行三相平衡控制策略的模式1)。
模式3),当角型三相交流串联式光伏方阵的其中一相低于角型三相交流串联式光伏方阵的下限功率时,并且储能电池组无法支持角型三相交流串联式光伏方阵平衡调节时,星角型并网平衡控制器中PLC控制器通过多机通讯模块下传数据,控制所有串联式光伏方阵高压隔离交流功率调节装置停止输出,同时PLC控制器控制并网交流接触器断开,使角型三相交流串联式光伏方阵与电网脱离。
3、功率优化控制策略
当串联式光伏方阵高压隔离交流功率调节装置进入正常工作模式时,由于云的无规律遮挡造成逆变器输出功率不同,使角型三相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置的输出功率也不同。为保证角型三相交流串联式光伏方阵输出功率最大,星角型并网平衡控制器分别将角型三相交流串联式光伏方阵中每相交流串联式光伏方阵的所有串联式光伏方阵高压隔离交流功率调节装置的输出功率求和,计算出每相交流串联式光伏方阵功率,并依据收到的储能电池组容量数据,计算出角型三相交流串联式光伏方阵平衡状态时输出电流,再将每相交流串联式光伏方阵中的每一个串联式光伏方阵高压隔离交流功率调节装置的输出功率除以该相交流串联式光伏方阵电流,计算出每一个串联式光伏方阵高压隔离装置的输出电压。该输出电压为该相交流串联式光伏方阵优化功率输出的一组电压。星角型并网平衡控制器将所述的优化电压对应传输到每相交流串联式光伏方阵的每个串联式光伏方阵高压隔离交流功率调节装置中,使所有串联式光伏方阵的高压隔离交流功率调节装置输出电压之和等于并网点交流电压。如在无云遮挡时,每相交流串联式光伏方阵中串联式光伏方阵高压隔离交流功率调节装置输出功率相同,同时星角型并网平衡控制器依据优化控制策略,分配到每相交流串联式光伏方阵中每个串联式光伏方阵高压隔离交流功率调节装置的输出电压也相等,输出的优化电压=并网点交流电压/串联式光伏方阵高压隔离交流功率调节装置串联个数。
当串联式光伏方阵高压隔离交流功率调节装置中的控制器模块接收到星角型并网平衡控制器下发数据后,控制器模块的CPU依据此数据通过光隔电路输出PWM信号,该PWM信号控制储能DC/AC转换模块中的H桥功率驱动电路的4个控制输入端,经H桥功率驱动电路输出,再经交流隔离输出模块的高压隔离变压器输入绕组耦合输出对应角型三相交流串联式光伏方阵的相位、频率及功率,再经交流隔离输出模块的两个隔离开关、短路开关输出交流功率。
角型连接的每相交流串联式光伏方阵中的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置在完成上述功能以外,控制器模块的CPU通过光隔电路控制储能控制电路对对应连接的三个储能电池组进行充放电控制。
将角型三相交流串联式光伏方阵的每相交流串联式光伏方阵中,m台串联式光伏方阵高压隔离交流功率调节装置的输出端串联,组成角型三相交流串联式光伏方阵,每相交流串联式光伏方阵的输出功率=m×串联式光伏方阵高压隔离交流功率调节装置输出功率,m为≥1的整数,角型三相交流串联式光伏方阵输出功率为三相交流串联式光伏方阵的输出功率之和。每相串联式光伏方阵高压隔离交流功率调节装置的输出都由一台星角型并网平衡控制器通过通讯链路协调控制。串联式光伏方阵高压隔离交流功率调节装置的功率大小及数量决定了角型三相交流串联式光伏方阵的发电容量。
4、意外故障控制策略
正常工作时,角型三相交流串联式光伏方阵中的每个串联式光伏方阵高压隔离交流功率调节装置实时监测星角型并网平衡控制器的同步脉冲信号和通讯数据,保持与电网相位、频率同步及串联式光伏方阵高压隔离交流功率调节装置的输出电流Iacs,同时向星角型并网平衡控制器回传串联式光伏方阵高压隔离交流功率调节装置数据及确认同步响应信息。当电网突发断电,或星角型并网平衡控制器意外停止工作,或通讯数据或同步脉冲中断时,或输出电流Iacs减小到角型三相交流串联式光伏方阵工作电流下限值时,串联式光伏方阵高压隔离交流功率调节装置快速响应,在短时间内,如<20ms,进入默认工作状态,并实时监测对应角型三相交流串联式光伏方阵的相位、频率、电压信息及同步脉冲。
当角型三相交流串联式光伏方阵中的某个串联式光伏方阵高压隔离交流功率调节装置出现故障时:
1)当串联式光伏方阵高压隔离交流功率调节装置储能DC/AC转换模块损坏,在<5ms的时间内没有功率输出,此时串联式光伏方阵高压隔离交流功率调节装置中控制器模块仍正常工作,控制器模块监测输出功率与星角型并网平衡控制器下发的功率数据不同时,控制器模块快速控制保护继电器开关接点闭合,变压器输入内阻r=0Ω,不影响角型三相能量互补交流串联式光伏方阵正常工作。同时控制器模块上传故障数据到星角型并网平衡控制器。
2)串联式光伏方阵高压隔离交流功率调节装置监测输入光伏组串的输入功率。当某路光伏组串出现短路、断路时,控制器模块控制该最大功率跟踪模块停止工作,并将故障信息上传到星角型并网平衡控制器。
4、串联式光伏方阵高压隔离交流功率调节装置故障恢复后启动策略
当角型三相交流串联式光伏方阵正常工作时,星角型并网平衡控制器获得某相交流串联式光伏方阵需启动故障恢复后的串联式光伏方阵高压隔离交流功率调节装置时,星角型并网平衡控制器依据启动故障恢复后的串联式光伏方阵高压隔离交流功率调节装置数据,结合三相平衡控制策略向角型三相交流串联式光伏方阵中所有串联式光伏方阵高压隔离交流功率调节装置下传对应的角型三相交流串联式光伏方阵的相位、频率和电压信息,串联式光伏方阵高压隔离交流功率调节装置中控制器模块依据收到的相位、频率、电压数据及同步脉冲,控制H电桥功率驱动电路经交流隔离输出模块输出交流功率。
本实用新型具有以下优点:
1、提高了角型三相交流串联式光伏方阵的输出电压,降低了输出电流;
2、高压交流输电电缆损耗减小,可实现远距离长线传输;
3、角型三相交流串联式光伏方阵由于电压等级提高,可实现该电压等级下的无变压器输出,减少损耗、降低成本;
4、相对并联式光伏方阵,通过串联式光伏方阵高压隔离交流功率调节装置,角型三相交流串联式光伏方阵可实现逆变器化整为零,就地安装摒弃逆变器控制室及相关设备;
5、角型三相交流串联式光伏方阵中,每个串联式光伏方阵高压隔离交流功率调节装置统一受星角型并网平衡控制器协调管理,具备三相平衡最佳功率调节、有功补偿、无功补偿输出的能力及能量调度管理,提高电网供电质量;
6、由于光伏组串发电易受到云的影响,输出功率波动较大,本实用新型在角型三相交流串联式光伏方阵中增加一定的储能设备,而且储能能量在三相交流串联式光伏方阵中共享,保证角型三相交流串联式光伏方阵输出功率相对平衡、稳定,同时可对电网短时支撑。
7、由于角型三相交流串联式光伏方阵输出电压提高,可在并网点并网输出,摒弃了汇流、集中逆变、变压器设备,大大降低了、功率损耗及成本;
8、由于串联式光伏方阵高压隔离交流功率调节装置采用模块化方式,自然风冷体积小,使工程安装方便、使用可靠;
9、通过储能容量的增加,大大改善光伏发电对电网波动影响,有利于高比例接入电网,大大减少弃光现象。10、由于大量减少直流汇流箱、直流柜及直流电流电缆,大大降低由于直流拉电弧的几率,避免由此引发的火灾发生。
附图说明
图1为角型三相交流串联式光伏方阵中单相交流串联式光伏方阵原理框图;
图2为角型三相交流串联式光伏方阵相邻两相第一个与第m个串联式光伏方阵高压隔离交流功率调节装置与储能原理图;
图3为角型三相交流串联式光伏方阵系统框图;
图4为H桥功率驱动电路原理图;
图5为现有技术的集中式光伏发电系统框图;
图6为现有技术的组串式光伏发电系统框图;
图7为串联式光伏直流方阵系统框图。
具体实施方式
以下结合附图和具体实施方式进一步说明本实用新型。
本实用新型角型三相交流串联式光伏方阵由A相、B相C相三个单相交流串联式光伏方阵、第一储能电池组E_AB、第二储能电池组E_BC、第三储能电池组E_CA,以及星角型并网平衡控制器组成。A相、B相C相三个单相交流串联式光伏方阵角型连接,组成角型三相交流串联式光伏方阵,并在角型三相交流串联式光伏方阵的三个连接处分别对应与第一储能电池组E_AB、第二储能电池组E_BC、第三储能电池组E_CA连接。角型三相交流串联式光伏方阵输出与星角型并网平衡控制器输入连接,星角型并网平衡控制器的输出端与并网点电网三相交流电源连接。在星角型并网平衡控制器控制下,协调角型A~C三相交流串联式光伏方阵平衡输出。
图1所示,所述的单相交流串联式光伏方阵由m台串联式光伏方阵高压隔离交流功率调节装置串联组成,m为≥1的整数。
所述的单相交流串联式光伏方阵中,第1台串联式光伏方阵高压隔离交流功率调节装置的输出尾端Ac1_2与第2台串联式光伏方阵高压隔离交流功率调节装置的输出首端Ac2_1连接,第2台串联式光伏方阵高压隔离交流功率调节装置输出尾端Ac2_2与第3台串联式光伏方阵高压隔离交流功率调节装置输出首端Ac3_1连接,依此类推,第m-1台串联式光伏方阵高压隔离交流功率调节装置输出尾端Acm-1_2与第m台串联式光伏方阵高压隔离交流功率调节装置输出首端Acm_1连接,组成单相交流串联式光伏方阵。第1台串联式光伏方阵高压隔离交流功率调节装置输出的首端Ac1_1为单相交流串联式光伏方阵的首输出Uabc端,第m台串联式光伏方阵高压隔离交流功率调节装置输出尾端Acm_2为单相交流串联式光伏方阵的尾输出Uo端。每台串联式光伏方阵高压隔离交流功率调节装置的输入端连接光伏组串的输出端。其中单相交流串联式光伏方阵的首Uabc和尾Uo输出端分别与对应两组储能电池组连接。
角型三相交流串联式光伏方阵中,A相交流串联光伏方阵的尾输出端Uo与B相交流串联式光伏方阵的首输出端Uabc连接,并与第一储能电池组E_AB连接,连接点为Uab;B相交流串联光伏方阵的尾输出端Uo与C相交流串联式光伏方阵的首输出端Uabc连接,并与第二储能电池组E_BC连接,连接点为Ubc;C相交流串联光伏方阵的尾输出端Uo与A相交流串联式光伏方阵的首输出端Uabc连接,并与第三储能电池组E_CA连接,连接点为Uca;每相交流串联式光伏方阵首输出端Uabc和尾输出端Uo分别连接两个储能电池组。星角型并网平衡控制器输入Uab、Ubc和Uca与角型三相交流串联式光伏方阵的三个连接点Uab、Ubc和Uca连接,Uab、Ubc和Uca也是角型三相交流串联式光伏方阵的三相交流输出,输出电压值分别为Vab、Vbc、Vca。
考虑光伏组串发电易受到云的影响,输出功率波动较大,本实用新型利用角型三相交流串联式光伏方阵的三相交流串联式光伏方阵之间的公共连接Uab、Ubc和Uca,电位相等的特点,在Uab、Ubc和Uca三个公共连接处分别对应连接第一储能电池组E_AB、第二储能电池组E_BC、第三储能电池组E_CA,通过每相交流串联式光伏方阵对储能电池组的充放电控制,保证角型三相交流串联式光伏方阵输出功率相对稳定。
如图3所示,星角型并网平衡控制器由并网交流接触器Jabc、断路器Kabc、电流/电压传感器Dabc及PLC控制器组成。角型三相交流串联式光伏方阵输出端Uab、Ubc、Uca通过断路器Kabc的输入端与并网点三相电源连接,断路器Kabc的输出端和电流传感器串联Dabc,并与电压传感器Dabc、并网交流接触器Jabc输入并联;并网交流接触器Jabc输出与角型三相交流串联式光伏方阵的Uab、Ubc、Uca输出并联。角型三相交流串联式光伏方阵的Uab、Ubc、Uca输出端通过并网交流接触器Jabc、电流传感器Dabc、断路器Kabc与并网点电网三相电源连接。
所述的PLC控制器包括逻辑分析控制模块、时序控制模块、模拟控制模块、多机通信模块、输入控制模块和输出控制模块。多机通信模块通讯TDA、TDB、TDC端口分别对应与角型三相交流串联式光伏方阵每相的串联式光伏方阵高压隔离交流功率调节装置连接,连接于控制器模块的通讯电路输入输出TD_A、TD_B、TD_C端口,多机通信模块与角型三相交流串联式光伏方阵每相的串联式光伏方阵高压隔离交流功率调节装置实时交互数据,PLC控制器依据控制策略计算分析,并提供相位、同步时间及输出功率数据;
时序控制模块同步输出TBA、TBB、TBC端口分别对应与角型A~C三相交流串联式光伏方阵每相的串联式光伏方阵高压隔离交流功率调节装置连接,连接于控制器模块的同步电路输入TB_A、TB_B、TB_C端子。PLC控制器通过时序控制模块同步输出TBA、TBB、TBC端口实时为角型A~C三相交流串联式光伏方阵每相中的串联式光伏方阵高压隔离交流功率调节装置提供同步过零点脉冲;
输入控制模块与电流、电压传感器Dabc数据输出端连接,实时监控电网电压、电流和频率变化,并将检测并网点三相电源的数据信息经逻辑分析控制模块进行分析计算,通过多机通信模块给出角型A~C每相交流串联式光伏方阵相位及数据信息,通过时序控制模块同步输出TBA、TBB、TBC端口输出角型A~C每相交流串联式光伏方阵的过零点同步信号。输出控制模块与并网交流接触器Jabc控制端连接,控制并网交流接触器Jabc的通断。
如图2所示,组成单相交流串联式光伏方阵的串联式光伏方阵高压隔离交流功率调节装置由n个最大功率跟踪模块、储能DC/AC转换模块U1、控制器模块U2、电源模块U6和交流隔离输出模块U7组成,n为≥1的整数。
所述的光伏组串的输出端与串联式光伏方阵高压隔离交流功率调节装置中最大功率跟踪模块的输入端Pv_in连接,经该最大功率跟踪模块对光伏组串MPPT最大功率跟踪输出功率;n个最大功率跟踪模块的输出端Pm_out并联,并联后的n个最大功率跟踪模块输出端Pm_out再分别与储能DC/AC转换模块U1、电源模块U6输入端Uin并联;n个最大功率跟踪模块提供储能DC/AC转换模块U1、电源模块U6电源。其中电源模块U6的输出Uout与控制器模块U2的电源输入端Vdc连接,提供控制器模块U2的工作电源;控制器模块U2的采样电路输入端和控制输出端分别与n个最大功率跟踪模块,以及储能DC/AC转换模块U1连接;储能DC/AC转换模块U1的输出端Po与交流隔离输出模块U7输入L2连接,交流隔离输出模块U7的输出m_1、m_2与相邻的串联式光伏方阵高压隔离交流功率调节装置输出m_1、m_2串联;储能DC/AC转换模块U1与公共储能电池组连接。
所述的最大功率跟踪模块由储能电感L1、储能电容C1、功率开关Q1、续流二极管D1、电流传感器A1和汇流母排H+、-组成;
每一串光伏组串的正负输出端与最大功率跟踪模块的正输入端Pv_in+、负输入端Pv_in-连接,最大功率跟踪模块的正输入端Pv_in+与储能电感L1的一端连接,储能电感L1的另一端分别与功率开关Q1的正端Q+和续流二极管D1正极连接,续流二极管D1的负极分别与储能电容C1正极、电流传感器A的正输入端连接;电流传感器A的负输入端与汇流母排正H+端连接,光伏组串的负输入端分别与功率开关Q1的负端Q-、储能电容C1负极、汇流母排H-负端连接,汇流母排的正端H+、负端H-也为最大功率跟踪模块的正输出端Pm_out+、负输出端Pm_out-;功率开关Q1的控制端g1与控制器U2中的光隔电路U5对应输出端连接;
所述的储能DC/AC转换模块U1由储能控制电路、H桥功率驱动电路、汇流母排电压传感器V3、相位监测电压传感器V1和保护继电器J1组成。H桥功率驱动电路的输入正负端UH+、UH-分别与储能控制电路、汇流母排电压传感器V3在汇流母排正负端H+、H-上并联;H桥功率驱动电路输出端Po1、Po2分别与保护继电器J1开关J1_1接点两端、相位监测电压传感器V1、交流隔离输出模块U7的输入端L2绕组并联。
在角型三相能量互补交流串联式光伏方阵正常工作时,当某串联式光伏方阵高压隔离交流功率调节装置没有功率输出或出现故障时,为保证角型三相交流串联式光伏方阵正常工作,H桥功率驱动电路输出端Po1、Po2经保护继电器J1常闭接点J1_1短路,使变压器输入内阻r=0Ω,依据变压器原理,输出阻抗R=B2r,其中B为变压器变比,r为变压器输入阻抗,由此输出阻抗R=0Ω,不会影响角型三相交流串联式光伏方阵正常工作。
所述的H桥率驱动电路由相位监测电压传感器V1、4只功率开关管Q2~Q5和4只续流二极管D2~D5组成;每只功率开关管有一个控制输入端、一个功率输入端和一个功率输出端。如图4所示每只功率开关管的输入端和输出端反向并联一只续流二极管;每2只功率开关管串联,即D2与D3、D4与D5串联,,组成2组H桥臂电路;每组H桥臂电路中,一只功率开关管功率输入端与另一只功率开关管的输出端串联,连接点为H桥臂电路的功率输出端Po1、Po2;2组H桥臂电路的两端分别为H桥臂电路的正输入端和负输入端;2组H桥臂电路并联组成H桥功率驱动电路,并联后的H桥臂电路的正端UH+和负端UH-也是H桥功率驱动电路的正端UH+和负端UH-,2组H桥臂电路的功率输出端Po1、Po2也为H桥率驱动电路的2个功率输出端Po1、Po2,4只功率开关管的控制输入端g2~g5也是H桥功率驱动电路的4个控制输入端g2~g5。
所述的储能控制电路由一只功率开关管Q7和充放电电流检测传感器A1组成。功率开关管Q7的一端通过串联的充放电电流检测传感器A1与H桥功率驱动电路的输入正端UH+及汇流母排正极H+连接,功率开关管Q7的另一端为储能控制电路的储能电池组充放电接入端HL+,并与储能电池组正极连接;储能电池组负极与汇流母排负极H-连接;功率开关管Q7控制端g7也是储能控制电路的控制端,并与控制器模块U2光隔驱动电路U5连接。
所述的控制器模块由CPU、A/D采样电路U4、光隔电路U5、同步电路U8和双向通讯电路U3组成。所述的A/D采样电路U4的输入端A_1~A_n和A1_1分别对应与n个最大功率跟踪模块的电流传感器A和储能DC/AC转换模块U1充放电电流检测电流传感器A1的输出端连接,A/D采样电路U4的输入端V_1~V_3分别与储能DC/AC转换模块U1的H桥功率驱动电路的相位监测电压传感器V1、储能电池组电压传感器检测端口V_2、汇流母排电压传感器V2连接。所述光隔电路U5的输入端与控制器模块中CPU的I/O端口连接,光隔电路U5的输出端g1_1~gn_1分别对应与n个最大功率跟踪模块的功率开关Q1控制输入端g1连接;光隔电路U5的输出端g2~g7分别对应与H桥功率驱动电路的4个控制输入端g2~g5和保护继电器电路的控制开关管Q6的控制输入端g6和储能电路控制端g7连接;双向通讯电路U3的一端与控制器模块中CPU的通讯端口连接,双向通讯电路U3的另一端TD_X也是串联式光伏方阵高压隔离交流功率调节装置的通讯端口TD_X,通过光纤或无线与星角型并网平衡控制器PLC中的多机通讯模块端口TD连接,实时交换数据。同步电路U8的一端与控制器模块中CPU的I/O端口连接,同步电路U8的另一端TB_X也是串联式光伏方阵高压隔离交流功率调节装置的同步输入端口TB_X,通过光纤或无线与星角型并网平衡控制器PLC中的时序控制模块输出端TB连接,实现每相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置输出与该相电网过零点同步。
当星角型并网平衡控制器判断允许m个串联式光伏方阵高压隔离交流功率调节装置接入电网时,星角型并网平衡控制器控制并网交流接触器工作,电网通过断路器、电流/电压传感器及并网交流接触器接点与角型三相交流串联式光伏方阵连接,角型三相交流串联式光伏方阵中每个单相交流串联式光伏方阵的m个串联式光伏方阵高压隔离交流功率调节装置输出端将电网电压分压,并通过交流隔离输出模块高压隔离变压器反向将对应的角型三相交流串联式光伏方阵每相交流串联式光伏方阵的相位、频率、电压耦合到交流隔离输出模块的输入绕组端,串联式光伏方阵高压隔离交流功率调节装置的控制器模块通过相位监测电压传感器读取相位、频率及电压信息及星角型并网平衡控制器提供的过零点同步信号,并将此信息数据通过双向通讯电路通讯端口回传到星角型并网平衡控制器多机通讯模块端口中。星角型并网平衡控制器依据此三相交流串联式光伏方阵的相位、频率、电压数据及同步信息,分别通过多机通讯模块的端口和时序控制模块的端口对应的向串联式光伏方阵高压隔离交流功率调节装置发送控制数据及同步脉冲信号,串联式光伏方阵高压隔离交流功率调节装置的控制器模块依据此数据及同步脉冲信号,控制H电桥功率驱动电路经交流隔离输出模块交流输出。
所述的电源模块U6由DC/DC电源、避雷器BL和保护继电器电路组成。DC/DC电源的输入端Uin与避雷器BL的两端并联,保护串联式光伏方阵高压隔离交流功率调节装置电器避免雷击。DC/DC电源的输出端Uout与保护继电器电路的输入端并联;所述的保护继电器电路由继电器J1和控制开关管Q6组成。控制开关管Q6的功率输入端也是保护继电器电路的负输入端,控制开关管Q6的功率输出端与继电器J1一端连接,继电器J1的另一端为保护继电器电路的正输入端,控制开关管Q6的控制输入端g6也是保护继电器电路的控制输入端g6。
在DC/DC电源没有启动时,保护继电器电路两端没有电压,保护继电器常闭J1_1接点闭合,串联式光伏方阵高压隔离交流功率调节装置输出阻抗R=0Ω。当DC/DC电源启动输出直流电压时,保护继电器J1在控制器的控制下,依据需求控制常闭J1_1接点开闭,对串联式光伏方阵高压隔离交流功率调节装置输出阻抗R=0Ω或R=B2rΩ控制,r为交流隔离输出模块U7的功率输入内阻。
所述的交流隔离输出模块U7由高压隔离变压器T、隔离开关K1、隔离开关K2和一个短路开关K3组成。所述的高压隔离变压器T有一个功率输入绕组L2和一个功率输出绕组L3,其中高压隔离变压器T的功率输入绕组L2也是交流隔离输出模块U7的输入端;功率输出绕组L3的两端分别与隔离开关K1、隔离开关K2的输入端连接,隔离开关K1、隔离开关K2的输出端分别与短路开关K3两端连接,短路开关K3两端是交流隔离输出模块U7的输出端Acm_1、Acm_2,也是串联式光伏方阵高压隔离交流功率调节装置输出端Acm_1、Acm_2,输出电压为Uac。并且高压隔离变压器隔离电压>Uacsmax。由于高压隔离变压器的加入,使串联式光伏方阵高压隔离交流功率调节装置的隔离电压>Uacsmax。所述的Uacsmax也称为系统最高交流电压。角型三相能量互补交流串联式光伏方阵分别输出最大A相电压:Uasmax=Ua1max+Ua2max+Ua3max,…,+Uammax;B相电压:Ubsmax=Ub1max+Ub2max+Ub3max,…,+Ubmmax;C相电压:Ucsmax=Uc1max+Uc2max+Uc3max,…,+Ucmmax;Uammax、Ubmmax,Ucmmax为第m个串联式光伏方阵高压隔离交流功率调节装置输出最大电压值。m为≥1的整数。所述高压隔离变压器T功率输入绕组L2的两端与储能DC/AC转换模块U1中H桥功率驱动电路功率输出端Po1、Po2连接,储能DC/AC转换模块U1将n个最大功率跟踪模块的输出功率经功率输入绕组L2耦合到功率输出绕组L3输出交流功率。
串联式光伏方阵高压隔离交流功率调节装置中的H桥功率驱动电路对应输出角型三相交流串联式光伏方阵的相位、频率、功率,经交流隔离输出模块U7的高压隔离变压器T耦合输出,并经隔离开关K1、隔离开关K2、短路开关K3输出交流功率。短路开关K3正常时处于开路状态,当某一串联式光伏方阵高压隔离交流功率调节装置维护或更换退出角型三相交流串联式光伏方阵时,为不影响角型三相交流串联式光伏方阵正常工作,将短路开关K3快速闭合。
如图2、3所示,所述的第一储能电池组E_AB、第二储能电池组E_BC、第三储能电池组E_CA分别与角型三相交流串联式光伏方阵连接时,其中一相交流串联式光伏方阵中的第m个串联式光伏方阵高压隔离交流功率调节装置输出尾端Acm_2和汇流母排负极H-分别与另一相交流串联式光伏方阵中的第1个串联式光伏方阵高压隔离交流功率调节装置输出首端Ac1_1和汇流母排负极H-连接,使相邻两相交流串联式光伏方阵中的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置所处电位相等。由此可将相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端HL+并联,并与一组储能电池组正端连接。相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中的储能DC/AC转换模块U1汇流母排负端H-并联,并与储能电池组负端连接。其中A相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端HL+和汇流母排负端H-与第三储能电池组E_CA正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端HL+和汇流母排负端H-与第一能电池组E_AB正负连接;其中B相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端HL+和汇流母排负端H-与第一储能电池组E_AB正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端HL+和汇流母排负端H-与第二储能电池组E_BC正负连接;其中C相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端HL+和汇流母排负端H-与第二储能电池组E_BC正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端HL+和汇流母排负端H-与第三储能电池组E_CA正负连接。
相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置的控制器U2中的A/D采样电路U4的储能电池组电压传感器检测端置V_2并联,并与储能电池组电压传感器V2数据输出连接。
图3所示的角型三相交流串联式光伏方阵系统与图5所示的集中型光伏发电系统、图6所示的组串型光伏发电系统和图7所示的串联式光伏直流方阵系统相比,本实用新型角型三相交流串联式光伏方阵的优点为:
1.图3所示的角型三相交流串联式光伏方阵中摒弃了图5所示的集中型光伏发电系统中汇流、集中安装逆变器、变压器设备。同样相对图6所示的组串型光伏发电系统摒弃了交流汇流、变压器设备。由于汇流设备依据电站容量配置的数量,而在光伏系统中汇流设备出现故障率高、损耗大。本实用新型角型三相交流串联式光伏方阵摒弃了大量汇流设备及变压器设备,减少了损耗、降低了成本、提高了可靠性;
2.图3所示的角型三相交流串联式光伏方阵中,光伏组串就近与串联式光伏方阵高压隔离交流功率调节装置连接,图3的串联式光伏方阵高压隔离交流功率调节装置之间都通过单根电缆串联连接,角型三相交流串联式光伏方阵最大输出电流是光伏电站系统容量除以并网点系统电压,以光伏电站容量10MW,系统电压35kV为例则最大输出电流=10MW/35kV=286A,平均分配到每相交流串联式光伏方阵中电流为286A/3=95.3A。而图5、图6所示的系统中,汇流设备安装位置必须兼顾多组光伏组串安放布局,造成n多对电缆到汇流设备安装位置在汇流设备内并联,(如16路汇流箱完成16路光伏组串并联,电缆数量为16×2,其汇流电流为16×10A=160A,n台组串式逆变器交流输出经n×4根交流电缆并联,汇流后电流增加n倍,而汇流设备再经2根直流或4根交流大电流电缆到上一级汇流设备或逆变器内并联。还以光伏电站容量10MW,系统电压500V为例则最大输出电流=10MW/500V=20000A相比图2、图3所示的角型三相平衡交流串联式光伏方阵,电流大电缆数量多,损耗、成本增加;
3.图3所示的角型三相交流串联式光伏方阵,光伏组串可通过串联式光伏方阵高压隔离交流功率调节装置之间的串联提高系统电压,如每个串联式光伏方阵高压隔离交流功率调节装置输出平均电压为500v,系统电压为35kV,则可通过每相交流串联式光伏方阵35KV/500V=70个串联式光伏方阵高压隔离交流功率调节装置串联数量实现35kV输出,可远高于图5、图6所示的逆变器输入电压<1000v,在同等功率条件下使串联结构电流减小,改变并联大电流传输电流方式,减少电缆及设备的功率损耗,并且提升角型三相交流串联式光伏方阵功率;
4.图3所示的角型三相交流串联式光伏方阵中,光伏组串通过串联式光伏方阵高压隔离交流功率调节装置之间的串联提高输入并网点电压,可实现无变压器并网输出,而图5、图6所示的光伏发电系统,由于逆变器输入直流电压<1000v的限制,只能满足逆变器交流输出电压≤400v系统无变压器并网,更高电压并网则须经高压变压器转化输出,电流大、损耗大、成本高;
5.图3所示的角型三相交流串联式光伏方阵中的每相交流串联式光伏方阵是由串联式光伏方阵高压隔离交流功率调节装置首、尾2线交流输出,其同等输出功率条件下与图5的集中式光伏发电系统采用多组两根直流电缆并联,图6所示的组串式光伏发电系统采用多组3相4线交流电缆输出并联相比,电缆大大减少,而且电流小,减少电缆损耗;
6.图3所示的角型三相交流串联式光伏方阵中,光伏组串通过串联式光伏方阵高压隔离交流功率调节装置输出电压灵活,可使光伏组串在更低电压条件下经串联式光伏方阵高压隔离交流功率调节装置之间的串联提高输出交流电压,满足并网点电压。而图5、图6所示的光伏发电系统,由于光伏组串的并联结构所限,使每串光伏组串并联输出电压依据并网电压而提高,才能满足逆变器的输入启动电压基本条件,如在380v交流电网系统中,光伏组串输出直流电压以上才能满足启动逆变器工作基本条件。
7.图3所示的角型三相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置,采用IP65等级密封、自然风冷模块设计体积小,可就地就近安装,安装简单。而图5所示的集中式光伏发电系统,则将逆变器集中在逆变器控制室并依据当地环境采用不同形式的密封及冷却方式,并消耗一定的功率。由此图3所示的角型三相交流串联式光伏方阵结构改变了图5所示的集中式光伏发电结构,大量减少直流汇流箱、直流柜及直流电流电缆,大大降低由于直流拉电弧的几率,避免由此引发的火灾发生。同时将电站化整为零同时摒弃了逆变器控制室,大大节约成本费用。
8.图3所示的角型三相交流串联式光伏方阵与图7所示的串联式光伏直流方阵系统比较:
1)角型三相交流串联式光伏方阵输出交流摒弃了串联式直流光伏方阵输出整流输出电路,减少整流电路的损耗。
2)由于角型三相交流串联式光伏方阵直接并网输出,摒弃了串联式直流光伏方阵输出再经逆变器转换输出交流并网,减低了成本。
3)由于角型三相交流串联式光伏方阵,由三组交流串联式光伏方阵组成,在同样功率、数量的光伏组串高压隔离装置组成的串联式光伏方阵,角型三相交流串联式光伏方阵输出功率是串联式直流光伏方阵输出功率的3倍。
4)交流通用电气材料选择多及成本更低。

Claims (10)

1.一种角型三相交流串联式光伏方阵,其特征在于,所述的角型三相交流串联式光伏方阵由三个单相交流串联式光伏方阵、储能电池组和星角型并网平衡控制器组成;所述的三个单相交流串联式光伏方阵通过角型连接组成角型三相交流串联式光伏方阵;角型三相交流串联式光伏方阵的三个输出端分别连接三组储能电池组;角型三相交流串联式光伏方阵的输出端与星角型并网平衡控制器的输入端连接;星角型并网平衡控制器的输出端与并网点电网三相交流电源连接;三相交流串联式光伏方阵在星角型并网平衡控制器控制下,协调三相交流串联式光伏方阵平衡输出。
2.按照权利要求1所述的角型三相交流串联式光伏方阵,其特征在于,所述的单相交流串联式光伏方阵的首输出端和尾输出端分别与两组储能电池组连接;所述的角型三相交流串联式光伏方阵中,A相交流串联光伏方阵的尾输出端与B相交流串联式光伏方阵的首输出端连接,并与第一储能电池组连接,连接点为Uab;B相交流串联光伏方阵的尾输出端与C相交流串联式光伏方阵的首输出端连接,并与第二储能电池组连接,连接点为Ubc;C相交流串联光伏方阵的尾输出端与A相交流串联式光伏方阵的首输出端连接,并与第三储能电池组连接,连接点为Uca。
3.按照权利要求1所述的角型三相交流串联式光伏方阵,其特征在于,所述的三组储能电池组分别与角型三相交流串联式光伏方阵连接时,其中一相交流串联式光伏方阵中的第m个串联式光伏方阵高压隔离交流功率调节装置输出尾端和汇流母排负极分别与另一相交流串联式光伏方阵中的第1个串联式光伏方阵高压隔离交流功率调节装置输出首端和汇流母排负极连接,使相邻两相交流串联式光伏方阵中的第1个和第m个串联式光伏方阵高压隔离交流功率调节装置所处电位相等;由此可将相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端并联,并与一组储能电池组正端连接;相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置中的储能DC/AC转换模块汇流母排负端并联,并与储能电池组负端连接;
A相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第三储能电池组正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第一储能电池组正负连接;其中B相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第一储能电池组正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第二储能电池组正负连接;其中C相交流串联式光伏方阵第1个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第二储能电池组正负连接,第m个串联式光伏方阵高压隔离交流功率调节装置中的储能电池组充放电接入端和汇流母排负端与第三储能电池组正负连接;
所述的相邻两相第1个和第m个串联式光伏方阵高压隔离交流功率调节装置的控制器中的A/D采样电路的储能电池组电压传感器检测端置并联,并与储能电池组电压传感器数据输出连接。
4.按照权利要求1所述的角型三相交流串联式光伏方阵,其特征在于,所述的单相交流串联式光伏方阵的串联式光伏方阵高压隔离交流功率调节装置由n个最大功率跟踪模块、储能DC/AC转换模块、控制器模块、电源模块和交流隔离输出模块组成,n为≥1的整数;
光伏组串的输出端与串联式光伏方阵高压隔离交流功率调节装置中最大功率跟踪模块的输入端连接,经该最大功率跟踪模块对光伏组串MPPT最大功率跟踪输出功率;n个最大功率跟踪模块的输出端并联,并联后的n个最大功率跟踪模块输出端再分别与储能DC/AC转换模块、电源模块输入端并联;n个最大功率跟踪模块提供储能DC/AC转换模块、电源模块电源;其中电源模块的输出与控制器模块的电源输入端连接,提供控制器模块的工作电源;控制器模块的采样输入端和控制输出端分别与n个最大功率跟踪模块,以及储能DC/AC转换模块连接;储能DC/AC转换模块的输出端与交流隔离输出模块输入连接,交流隔离输出模块的输出与相邻的串联式光伏方阵高压隔离交流功率调节装置输出串联;储能DC/AC转换模块与储能电池组连接。
5.按照权利要求4所述的角型三相交流串联式光伏方阵,其特征在于,所述的最大功率跟踪模块由储能电感、储能电容、功率开关、续流二极管、电流传感器和汇流母排组成;
每一串光伏组串的正输出端与最大功率跟踪模块的正负输入端连接,最大功率跟踪模块的正输入端与储能电感的一端连接,储能电感的另一端分别与功率开关的正端和续流二极管正极连接,续流二极管的负极分别与储能电容正极、电流传感器的正输入端连接;电流传感器的负输入端与汇流母排正端连接,光伏组串的负输入端分别与功率开关的负端、储能电容负极、汇流母排负端连接,汇流母排的正、负端也为最大功率跟踪模块的正、负输出端;功率开关的控制端与控制器模块中的光隔电路对应输出端连接。
6.按照权利要求4所述的角型三相交流串联式光伏方阵,其特征在于,所述的储能DC/AC转换模块由储能控制电路、H桥功率驱动电路、汇流母排电压传感器、相位监测电压传感器和保护继电器组成;H桥功率驱动电路的输入端分别与储能控制电路、汇流母排电压传感器在汇流母排上并联;H桥功率驱动电路输出端分别与保护继电器开关接点两端、相位监测电压传感器、交流隔离输出模块的输入端绕组并联;
H桥率驱动电路由相位监测电压传感器、4只功率开关管和4只续流二极管组成,每只功率开关管有一个控制输入端、一个功率输入端和一个功率输出端;每只功率开关管的输入端和输出端反向并联一只续流二极管;每2只功率开关管串联,组成2组H桥臂电路每组H桥臂电路中,一只功率开关管功率的输入端与另一只功率开关管的输出端串联,连接点为H桥臂电路的功率输出端;2组H桥臂电路的两端分别为H桥臂电路的正输入端和负输入端;2组H桥臂电路并联组成H桥功率驱动电路,并联后的H桥臂电路的正端和负端也是H桥功率驱动电路的正端和负端,2组H桥臂电路的功率输出端也为H桥率驱动电路的2个功率输出端,4只功率开关管的控制输入端也是H桥功率驱动电路的4个控制输入端。
7.按照权利要求4所述的角型三相交流串联式光伏方阵,其特征在于,所述的控制器模块由CPU、A/D采样电路、光隔电路、同步电路和双向通讯电路组成;
所述的A/D采样电路的输入端分别对应与每个最大功率跟踪模块的电流传感器、储能DC/AC转换模块充放电电流检测传感器的输出端连接,同时也分别与储能DC/AC转换模块的汇流母排、H桥功率驱动电路的相位监测电压传感器连接,其中A/D采样电路还有一个输入端口为储能电池组电压传感器检测端;
所述的光隔电路的输入端与控制器模块中CPU的I/O端口连接,光隔电路的输出端分别与每个最大功率跟踪模块的功率开关控制输入端、H桥功率驱动电路的4个控制输入端和保护继电器电路的控制开关管的控制输入端和储能电路控制端连接;
所述的双向通讯电路的一端与控制器模块中CPU的通讯端口连接,双向通讯电路的另一端也是串联式光伏方阵高压隔离交流功率调节装置的通讯端口,通过光纤或无线与星角型并网平衡控制器PLC中的多机通讯模块端口连接,实时交换数据;
所述的同步电路的一端与控制器模块中CPU的I/O端口连接,同步电路的另一端也是串联式光伏方阵高压隔离交流功率调节装置的同步输入端口,通过光纤或无线与星角型并网平衡控制器PLC中的时序控制模块输出端连接,实现每相交流串联式光伏方阵中的串联式光伏方阵高压隔离交流功率调节装置输出与该相电网过零点同步。
8.按照权利要求4所述的角型三相交流串联式光伏方阵,其特征在于,所述的电源模块由DC/DC电源、避雷器和保护继电器电路组成;DC/DC电源的输入端与避雷器的两端并联;DC/DC电源的输出端与保护继电器电路的输入端并联;所述的保护继电器电路由继电器和控制开关管组成;控制开关管的功率输入端也是保护继电器电路的负输入端,控制开关管的功率输出端与继电器一端连接,继电器的另一端为保护继电器电路的正输入端,控制开关管的控制输入端也是保护继电器电路的控制输入端。
9.按照权利要求4所述的角型三相交流串联式光伏方阵,其特征在于,所述的交流隔离输出模块由高压隔离变压器、两个隔离开关和一个短路开关组成;所述的高压隔离变压器的功率输入绕组也是交流隔离输出模块的输入端;功率输出绕组的两端分别与两个隔离开关的输入端连接,两个隔离开关的输出端分别与短路开关两端连接,短路开关两端是交流隔离输出模块的输出端,也是串联式光伏方阵高压隔离交流功率调节装置输出端,输出电压为Uac;
所述高压隔离变压器功率输入绕组的两端与储能DC/AC转换模块中H桥功率驱动电路功率输出端连接,储能DC/AC转换模块将n个最大功率跟踪模块的输出功率经功率输入绕组耦合到功率输出绕组输出交流功率。
10.按照权利要求1所述的角型三相交流串联式光伏方阵,其特征在于,所述的星角型并网平衡控制器由并网交流接触器、断路器、电流/电压传感器及PLC控制器组成;
所述的断路器的输出端也是星角型并网平衡控制器的输出端与并网点三相电源连接;断路器的输入端和电流传感器串联,并与电压传感器、并网交流接触器输入并联;并网交流接触器输入端也是星角型并网平衡控制器的输入端与角型三相交流串联式光伏方阵的输出并联;角型三相交流串联式光伏方阵的输出端通过并网交流接触器、电流传感器、断路器与并网点电网三相电源连接;
所述的PLC控制器包括逻辑分析控制模块,时序控制模块、模拟控制模块、多机通信模块、输入控制模块和输出控制模块;
所述的多机通信模块分别对应与角型三相交流串联式光伏方阵每相中的串联式光伏方阵高压隔离交流功率调节装置控制器模块中的通讯电路输入输出端口连接,实时交互数据;PLC控制器提供相位、同步时间及输出功率数据;
所述的时序控制模块分别对应与角型三相交流串联式光伏方阵每相中的串联式光伏方阵高压隔离交流功率调节装置控制器模块中的同步电路输入端子连接,PLC控制器通过时序控制模块实时为角型三相交流串联式光伏方阵每相中的串联式光伏方阵高压隔离交流功率调节装置提供同步过零点脉冲;
所述的输入控制模块与电流/电压传感器的数据输出端连接,实时监控电网电压、电流和频率变化,通过多机通信模块给出角型每相交流串联式光伏方阵的相位及数据信息,通过时序控制模块输出角型每相交流串联式光伏方阵的过零点同步信号;所述的PLC控制器中的输出控制模块与并网交流接触器控制端连接,控制并网交流接触器的通断。
CN201520732031.6U 2015-09-21 2015-09-21 角型三相交流串联式光伏方阵 Withdrawn - After Issue CN205178526U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520732031.6U CN205178526U (zh) 2015-09-21 2015-09-21 角型三相交流串联式光伏方阵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520732031.6U CN205178526U (zh) 2015-09-21 2015-09-21 角型三相交流串联式光伏方阵

Publications (1)

Publication Number Publication Date
CN205178526U true CN205178526U (zh) 2016-04-20

Family

ID=55742464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520732031.6U Withdrawn - After Issue CN205178526U (zh) 2015-09-21 2015-09-21 角型三相交流串联式光伏方阵

Country Status (1)

Country Link
CN (1) CN205178526U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207260A (zh) * 2015-09-21 2015-12-30 北京科诺伟业科技股份有限公司 角型三相交流串联式光伏方阵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207260A (zh) * 2015-09-21 2015-12-30 北京科诺伟业科技股份有限公司 角型三相交流串联式光伏方阵

Similar Documents

Publication Publication Date Title
WO2019192040A1 (zh) 风光柴储智能交流微电网系统
CN104281977B (zh) 一种混合型微电网应用平台及其控制方法
CN202651785U (zh) 一种交直流混合型微电网系统
CN107947221B (zh) 一种电力电子变压器直流故障穿越方法
CN112117767B (zh) 基于多站融合的供配电系统
CN205092592U (zh) 一种分布式光伏发电及控制系统
CN105375509A (zh) 星型三相交流串联式光伏方阵
CN102290851A (zh) 一种大规模储能装置及其主电路
CN207339264U (zh) 一种直流配电中心控制系统
CN103280705B (zh) 多功能一体化光伏发电装置
CN102412578B (zh) 一种实验室用的微电网系统
CN103607032A (zh) 可再生能源发电、输变电和电网接入一体化系统
CN104113280A (zh) 串联式光伏方阵
CN105429177B (zh) 一种模块化光伏储能系统
CN101958555A (zh) 光伏并网电站智能控制系统及方法
CN102427243A (zh) 一种将风电场和常规电厂联合并网的多端直流输电系统
CN104092234A (zh) 一种适用于双回线路的高可靠性统一潮流控制器
CN105762803A (zh) 一种含有重要负荷的新能源与电动汽车接入的城市直流配电系统
CN105207260A (zh) 角型三相交流串联式光伏方阵
CN204732888U (zh) 一种并网型海岛电网的微电网系统
CN108347067A (zh) 一种含有电池储能和发电机的微网架构和控制方法
CN205921397U (zh) 基于交流母线的微电网组网
CN115811128A (zh) 一种中低压柔性互联协调控制系统、方法、设备及介质
CN203589824U (zh) 可再生能源发电、输变电和电网接入一体化系统
CN205178526U (zh) 角型三相交流串联式光伏方阵

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20160420

Effective date of abandoning: 20180626

AV01 Patent right actively abandoned

Granted publication date: 20160420

Effective date of abandoning: 20180626

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned