CN205102952U - 一种水库坝前进水口水温变化三维观测系统 - Google Patents

一种水库坝前进水口水温变化三维观测系统 Download PDF

Info

Publication number
CN205102952U
CN205102952U CN201520811079.6U CN201520811079U CN205102952U CN 205102952 U CN205102952 U CN 205102952U CN 201520811079 U CN201520811079 U CN 201520811079U CN 205102952 U CN205102952 U CN 205102952U
Authority
CN
China
Prior art keywords
water
observation
water inlet
reservoir
dam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201520811079.6U
Other languages
English (en)
Inventor
常理
赵再兴
魏浪
陈国柱
王志光
张南波
杨桃萍
唐忠波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerChina Guiyang Engineering Corp Ltd
Huaneng Lancang River Hydropower Co Ltd
Original Assignee
PowerChina Guiyang Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerChina Guiyang Engineering Corp Ltd filed Critical PowerChina Guiyang Engineering Corp Ltd
Priority to CN201520811079.6U priority Critical patent/CN205102952U/zh
Application granted granted Critical
Publication of CN205102952U publication Critical patent/CN205102952U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本实用新型公开了一种水库坝前进水口水温变化三维观测系统,属于水电工程监测技术领域,包括坝体和进水口,所述坝体上游水体中布设有若干观测垂线,所述观测垂线分布于进水口中心线上及中心线两侧。本技术方案根据水电工程水库大坝进水口水体流态、观测人员及仪器安全保障、施测精确性等因素,提出了水库坝前进水口水温变化的观测布点结构,并形成横向、纵向、垂向的三维观测布局,对水库坝前进水口附近三维温度场分布规律的观测实现了有效覆盖,确保了水库垂向水温变化规律观测成果的系统性、代表性、可靠性。

Description

一种水库坝前进水口水温变化三维观测系统
技术领域
本实用新型属于水电工程监测技术领域,涉及一种水库水体水温的三维分布特点监控技术,尤其是涉及一种水库坝前进水口水温变化三维观测系统。
背景技术
修建水库一般使大坝上游流速减小、水深增加、水体增大,引起热量分布的改变,通常以温度来表示水库水体热量时空分布特征。水库水温的改变对水质以及库区和下游环境均会产生影响,因此对水库库区水体热量时空分布特征进行研究,有利于对库区生态环境进行有针对性的控制和改善。20世纪20年代,美国就开始了对水库水温进行系统的观测,40年代后,许多国家对水库水温的变化规律、水温对环境的影响、水温的控制和利用等方面都进行了深入的研究,而中国于60年代才开始开展这项研究工作。
因此,我国的河流水库水温变化规律分布情况观测研究工作开展相对滞后,尤其是针对水库坝前水体水温三维空间分布规律及相关效应的观测研究更少,水库坝前水体水温三维空间分布规律观测的技术方法与要求缺乏相关导则或规范的有效统一,水库坝前水体水温三维空间分布规律观测成果质量普遍存在系统性、代表性、可靠性不强等问题,对提高我国河流水温变化规律数学模型研究、经验公式改进及其计算软件开发等工作的参考意义不大。
实用新型内容
为了解决上述问题,本实用新型提供了一种水库坝前进水口水温变化三维观测系统,结合水库运行、水温分布、水体流态等因素对水库坝前进水口三维空间水温变化进行观测,以达到提高水库水温变化规律观测工作的技术水平及成果质量的效果。
本实用新型是通过如下技术方案予以实现的。
一种水库坝前进水口水温变化三维观测系统,包括坝体和进水口,所述坝体上游水体中布设有若干观测垂线,所述观测垂线分布于进水口中心线上及中心线两侧。
所述观测垂线包括浮球、观测仪器、观测仪器安装链和配重,观测仪器安装链上端和下端分别安装浮球和配重,观测仪器设置多个,固定在观测仪器安装链的不同位置。
所述观测垂线在与进水口平行的方向上不少于3条,在进水口中心线方向上不少于6条。
所述观测仪器包括水温传感器和水深传感器。
所述最接近水面的观测仪器位于水库运行水位水面以下0.5m,各相邻观测仪器之间的间距为0.5~5m。
本实用新型的有益效果是:
本实用新型所述的一种水库坝前进水口水温变化三维观测系统,根据水电工程水库大坝进水口水体流态、观测人员及仪器安全保障、施测精确性等因素,提出了水库坝前进水口水温变化的观测布点结构,并形成横向、纵向、垂向的三维观测布局,对水库坝前进水口附近三维温度场分布规律的观测实现了有效覆盖,确保了水库垂向水温变化规律观测成果的系统性、代表性、可靠性,对提高我国水库水温原型观测工作技术水平及成果质量,进一步提升我国水库水温变化数学模型研究、经验公式改进及其计算软件开发研究工作水平,推动行业技术进步具有重要意义。
附图说明
图1为本实用新型中水电站坝前进水口三维观测点布置图;
图2为本实用新型中观测垂线的结构示意图。
图中:1-坝体,2-进水口,3-观测垂线,31-浮球,32-观测仪器,33-观测仪器安装链,34-配重。
具体实施方式
下面结合附图进一步描述本实用新型的技术方案,但要求保护的范围并不局限于所述。
如图1、图2所示,本实用新型所述的一种水库坝前进水口水温变化三维观测系统,包括坝体1和进水口2,所述坝体1上游水体中布设有若干观测垂线3,所述观测垂线3分布于进水口2中心线上及中心线两侧。
所述观测垂线3包括浮球31、观测仪器32、观测仪器安装链33和配重34,观测仪器安装链33上端和下端分别安装浮球31和配重34,配重34为铅球或铁锤,观测仪器32设置多个,固定在观测仪器安装链33的不同位置。
根据不同的进水口前流场分布,分别在进水口2中心线外不同距离布设观测垂线3,所述观测垂线3在与进水口2平行的方向上不少于3条,在进水口2中心线方向上不少于6条,观测垂线3一般在进水口2中心线的垂直和平行方向上按照等距设置,观测垂线3间的实际间距根据进水口2前流场分布实际考虑,以确保对进水口2附近三维温度场分布规律观测的有效覆盖为宜。
所述观测仪器32包括能自动记录水深、水温等参数的水温传感器和水深传感器,并要求水温传感器的分辨率为0.01℃及以上,精度为±0.15℃及以上,量测范围-5~100℃;水深传感器精度为0.3米及以上,工作深度范围0~500米。
水库不同运行水位对进水口2流场会产生影响,对此,常对水库正常蓄水位、死水位正常运行水位区间予以分段划分,一般划分为高水位、低水位两个区间段,并按照分段分别布设观测垂线。
根据水库坝前水温垂向分布实际,分别在观测垂线3水深方向的表层、温变层、同温层予以布设测点,并根据相邻测点间温差情况予以增设测点,水库的表层、温变层、同温层的深度又根据季节的不同会有所不同。
最接近水面的观测仪器32设于水库运行水位表层水面以下0.5m,各相邻观测仪器32之间的间距为0.5~5m。水库温变层内的观测仪器32一般沿垂线水深方向每间隔2.0m布设一个测点,若两相邻测点之间温差超过0.3℃,则在两测点之间增加测点;水库同温层内的观测仪器32一般沿垂线水深方向每间隔5.0米布设1个测点,若两相邻测点之间温差超过0.2℃,则在区间增加测点。
所述水库坝前进水口水温变化三维观测系统采用人工操作方式,操作时,将观测仪器32置于进水口2前指定的待测点上,停留足够时间,一般至少15秒,待观测仪器32读数稳定且自动记录垂向测点水温与水深数据后,将观测仪器32移至下一测点,直至整条观测垂线3观测完成,现场备份观测仪器32相关数据。
在施测中,要确保并维持各条观测垂线3位置的精确性,观测垂线3偏移超过允许范围时调整观测垂线3位置,主要采取增加观测仪器配重34、保持观测垂线3线型、激光测距望远镜定位、机械动力式观测船调整等方式。
在施测中,应合理安排观测垂线3与进水口2的距离,并采取激光测距望远镜定位观测垂线3,观测垂线3偏移超过安全范围时调整观测垂线位置3,确保观测人员、仪器不受进水口附近流场影响而发生安全生产事故。
实施例
下面结合某水电站的水库坝前进水口水温变化三维观测系统施测情况对本技术方案作进一步详细说明,但本实用新型要求保护的范围并不局限于所述。
该水电站坝前水面宽度约1200m,发电机组进水口宽度约260m,进水口中心线外1100m为坝前深水区,最大深度可达165m。水库正常蓄水位375m、死水位330m,水库运行时水位变幅达45m。根据坝前进水口附近水体流场以及水库水位运行特性,坝前进水口三维水温观测垂线的整体布设按照水库运行水位330m~350m、350m~375m两个工况分别考虑。
(1)观测垂线布设
①水库水位330m~350m工况时:该工况下进水口前水体流速较小,为保证施测精确性以及观测人员、仪器安全,观测垂线布设情况如表1、图1所示:
表1水位330m~350m工况时坝前进水口观测垂线布设位置统计表
垂线编号 与进水口距离 观测垂线间距
A1、A2、A3、A4、A5 80m 80m
C1、C2、C3、C4、C5 160m 100m
E1、E2、E3、E4、E5 240m 120m
G1、G2、G3、G4、G5 320m 140m
I1、I2、I3 400m 320m
K1、K2、K3 480m 360m
M1、M2、M3 560m 400m
O1、O2、O3 640m 440m
Q1、Q2、Q3 720m 480m
S1、S2、S3 800m 520m
②水库水位350m~375m工况时:该工况下进水口前水体流速较大,为保证施测精确性以及观测人员、仪器安全,观测垂线布设情况如表2所示:
表2水位350m~375m工况时坝前进水口观测垂线布设位置统计表
垂线编号 与进水口距离 观测垂线间距
B1、B2、B3、B4、B5 120m 90m
D1、D2、D3、D4、D5 200m 110m
F1、F2、F3、F4、F5 280m 130m
H1、H2、H3、H4、H5 360m 150m
J1、J2、J3 440m 330m
L1、L2、L3 520m 370m
N1、N2、N3 600m 410m
P1、P2、P3 680m 450m
R1、R2、R3 760m 490m
T1、T2、T3 840m 530m
(2)观测垂线上布点
在正常蓄水位375m运行情况下,水库表层至水下90m的范围,即高程285m~375m范围,基本为垂向水温变化较大的温变层;水下90m至库底区间水体,即高程210m~285m范围,基本为垂向水温变化较小的同温层。在此基础上,观测垂线3上布点结构如图2所示。
库表水体:水面以下0.5m布设1个观测点。
温变层(高程285m~375m):沿三维水温效应观测垂线水深方向每间隔2.0m布设1个测点,若两相邻测点之间温差超过0.3℃,根据实际情况在区间增加测点。
同温层(高程210m~285m):沿三维水温效应观测垂线水深方向每间隔5.0m布设1个测点,若两相邻测点之间温差超过0.2℃,根据实际情况在区间增加测点。
考虑观测仪器安全及工作实际,观测仪器32采用多参数水质监测仪,该仪器能自动记录水库垂向水体的水深、水温等参数,其水温传感器的分辨率为0.01℃,精度为±0.15℃,范围-5~50℃,水深传感器的精度为0.3m,工作深度范围0~200m。水温传感器无需校准,水深传感器根据施测位置当地大气压予以现场校准。
水库坝前进水口水温变化三维观测系统采用人工操作,施测时,将多参数水质监测仪探头置于进水口2前指定观测垂线3的待测点上,停留约20秒,待仪器读数稳定且自动记录垂向测点水温与水深数据后,将探头移至下一测点,直至整条垂线观测完成,回收探头,将监测仪主机与便携式计算机连接,将各垂线水温观测结果现场备份。
为保证坝前进水口2前各条三维水温观测垂线维持在预设位置,保障观测人员、仪器的安全,在安装多参数水质监测仪的观测仪器安装链33下端捆绑设置10kg重的铁锤或铅球以作配重,观测船采取机械动力式,设安全员,安全员利用激光测距望远镜确定观测垂线3位置变化情况,位置偏移超过10m时由安全员提示观测船操作人员调整观测垂线3位置。观测时同步记录观测时刻、位置及相应气温。激光测距望远镜量测范围10~1100m,量测精度±0.5m。

Claims (5)

1.一种水库坝前进水口水温变化三维观测系统,包括坝体(1)和进水口(2),其特征在于:所述坝体(1)上游水体中布设有若干观测垂线(3),所述观测垂线(3)分布于进水口(2)中心线上及中心线两侧。
2.根据权利要求1所述的一种水库坝前进水口水温变化三维观测系统,其特征在于:所述观测垂线(3)包括浮球(31)、观测仪器(32)、观测仪器安装链(33)和配重(34),观测仪器安装链(33)上端和下端分别安装浮球(31)和配重(34),观测仪器(32)设置多个,固定在观测仪器安装链(33)的不同位置。
3.根据权利要求1所述的一种水库坝前进水口水温变化三维观测系统,其特征在于:所述观测垂线(3)在与进水口(2)平行的方向上不少于3条,在进水口(2)中心线方向上不少于6条。
4.根据权利要求2所述的一种水库坝前进水口水温变化三维观测系统,其特征在于:所述观测仪器(32)包括水温传感器和水深传感器。
5.根据权利要求2所述的一种水库坝前进水口水温变化三维观测系统,其特征在于:所述最接近水面的观测仪器(32)位于水库运行水位水面以下0.5m,各相邻观测仪器(32)之间的间距为0.5~5m。
CN201520811079.6U 2015-10-19 2015-10-19 一种水库坝前进水口水温变化三维观测系统 Active CN205102952U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520811079.6U CN205102952U (zh) 2015-10-19 2015-10-19 一种水库坝前进水口水温变化三维观测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520811079.6U CN205102952U (zh) 2015-10-19 2015-10-19 一种水库坝前进水口水温变化三维观测系统

Publications (1)

Publication Number Publication Date
CN205102952U true CN205102952U (zh) 2016-03-23

Family

ID=55518729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520811079.6U Active CN205102952U (zh) 2015-10-19 2015-10-19 一种水库坝前进水口水温变化三维观测系统

Country Status (1)

Country Link
CN (1) CN205102952U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300560A (zh) * 2015-10-19 2016-02-03 中国电建集团贵阳勘测设计研究院有限公司 一种水库大坝进水口水温观测系统
CN110715749A (zh) * 2019-09-30 2020-01-21 河海大学 适用于复杂水域的三维水温智能监测装置、系统和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300560A (zh) * 2015-10-19 2016-02-03 中国电建集团贵阳勘测设计研究院有限公司 一种水库大坝进水口水温观测系统
CN110715749A (zh) * 2019-09-30 2020-01-21 河海大学 适用于复杂水域的三维水温智能监测装置、系统和方法
CN110715749B (zh) * 2019-09-30 2021-03-16 河海大学 适用于复杂水域的三维水温智能监测装置、系统和方法

Similar Documents

Publication Publication Date Title
US20150168600A1 (en) Monitoring system for turbulence of atmospheric boundary layer under wind drift sand flow or sand dust storm environment
CN108254032A (zh) 河流超声波时差法流量计算方法
CN110390687A (zh) 一种基于三维激光扫描的河道冲淤测量方法
CN106337388B (zh) 一种梯级水库区间来沙量的确定及其沿程分配方法
CN105222922A (zh) 一种水库坝前水体水温时空分布规律观测方法
CN204188107U (zh) 一种采动地裂缝监测装置
CN205102952U (zh) 一种水库坝前进水口水温变化三维观测系统
CN103526783A (zh) 一种测量建筑基坑水平位移的方法
CN107633146A (zh) 一种不同尺度模型间地应力计算结果高精度转换的方法
CN104729445A (zh) 河口坝几何形态测量方法
CN102841390B (zh) 一种水电工程泄洪雾化降雨强度测量方法
CN105300560A (zh) 一种水库大坝进水口水温观测系统
CN106680454A (zh) 一种具拦沙坝已治理崩岗土壤侵蚀模数测算方法
CN105698969A (zh) 一种水库坝前垂向水温参混逆温效应观测方法及装置
CN104294792B (zh) 一种河流浅滩航道整治方法
CN103422463B (zh) 梯级通航枢纽物理模型数学模型一体化试验方法
CN103821187B (zh) 一种坝基变形深度监测方法
Bråtveit et al. An efficient method to describe the geometry and the roughness of an existing unlined hydro power tunnel
CN206756872U (zh) 水平式adcp测流平台
CN105698968A (zh) 一种水库浑水异重流入汇后水温分布变化观测方法及系统
CN105180895A (zh) 一种用于监测面板堆石坝最大沉降的装置及方法
CN206223027U (zh) 埋地管道开挖检验埋深测量尺
CN204924233U (zh) 一种用于监测面板堆石坝最大沉降的装置
CN111963152B (zh) 基于水平孔分层测温数据的地温梯度计算方法
CN105735212A (zh) 一种水库回水区垂向水温动态变化观测方法及系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220608

Address after: 550000 No. 16 Xingqian Road, Guanshan Lake District, Guiyang City, Guizhou Province

Patentee after: CHINA POWER CONSRTUCTION GROUP GUIYANG SURVEY AND DESIGN INSTITUTE Co.,Ltd.

Patentee after: Huaneng Lancang River Hydropower Co., Ltd

Address before: 550081 Guiyang City, Guizhou Province No. 16 Xingqian Road, guanshanhu District, Guiyang City, Guizhou Province

Patentee before: CHINA POWER CONSRTUCTION GROUP GUIYANG SURVEY AND DESIGN INSTITUTE Co.,Ltd.