CN205004935U - 宏动及微动可控的组合式平板运动系统 - Google Patents

宏动及微动可控的组合式平板运动系统 Download PDF

Info

Publication number
CN205004935U
CN205004935U CN201520606565.4U CN201520606565U CN205004935U CN 205004935 U CN205004935 U CN 205004935U CN 201520606565 U CN201520606565 U CN 201520606565U CN 205004935 U CN205004935 U CN 205004935U
Authority
CN
China
Prior art keywords
rotation axis
rotation
driving body
magnetic
fine motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201520606565.4U
Other languages
English (en)
Inventor
杨斌堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201520606565.4U priority Critical patent/CN205004935U/zh
Application granted granted Critical
Publication of CN205004935U publication Critical patent/CN205004935U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

本实用新型提供了一种宏动及微动可控的组合式平板运动系统,包括平板框架、自转动轴,还包括设置于平板框架上的按照阵列排布的多块平板;每块平板均能够在一一对应的组合式直线驱动装置的驱动下进行平动和/或转动;所述自转动轴用于驱动平板框架进行平动、转动或者折叠;自转动轴采用精密可控自驱动转动轴。本实用新型能够实现“宏动”与整体中局部小区域的“微动”,并通过精密可控自驱动转动轴实现对“宏动”的精密控制,通过组合式直线驱动装置实现对“微动”的精密控制。

Description

宏动及微动可控的组合式平板运动系统
技术领域
本实用新型涉及驱动器技术、智能驱动控制技术、电磁永磁直接驱动以及转动位置精密控制技术领域,具体地,涉及宏动及微动可控的组合式平板运动系统。
背景技术
目前的平板运动系统功能较为单一,往往只能实现整体的平移、升降、平转等简单的动作。以活动床为例,活动床即是一种平板运动系统,为了帮助用户(比如病患和老人)由平躺位姿转换到倚靠位资,可以将位于背部的床板抬起至倾斜,位于腿部的床板仍然保持水平,但是,传统的活动床的功能也仅限于“宏动”,其实质是缺乏对床的整体中局部小区域的“微动”。
进一步地,在平板系统的转轴的自驱动方面,现有技术一般均采用旋转电机驱动,而对于“微动”更适合的是精密可转动驱动。精密可控转动驱动装置主要应用于机构空间位置的调整以及目标物体的跟踪,柔性结构的振动主动控制。通过控制子部件的转动,来实现机构空间位置的调整,进而实现对目标物体的跟踪以及柔性结构振动的主动控制。现有的转动驱动装置,主要是旋转电机,这种机构自身结构较为复杂,且常需要与其他传动部件组合来进行运动的控制,效率较低,响应速度较慢。特别的,在体积受限的情况下,往往无法提供较大的驱动扭矩,无法满足现代工业对于微型精密驱动控制及定位的需求。
目前没有发现同本实用新型类似技术的说明或报道,也尚未收集到国内外类似的资料。
实用新型内容
针对现有技术中的缺陷,本实用新型的目的是提供一种宏动及微动可控的组合式平板运动系统。
根据本实用新型提供的一种宏动及微动可控的组合式平板运动系统,包括平板框架、自转动轴,还包括设置于平板框架上的按照阵列排布的多块平板;
每块平板均能够在一一对应的组合式直线驱动装置的驱动下进行平动和/或转动;
所述自转动轴用于驱动平板框架进行平动、转动或者折叠。
优选地,平板框架在一个或多个自转动轴的驱动下进行平动或者转动;
其中,所述多个自转动轴依次连接,形成具有多个旋转方向自由度的组合式精密可控驱动装置。
优选地,平板框架包括多个按照阵列排布的单元模块,其中,每个单元模块均包括按照阵列排布的多块平板;
相邻的单元模块之间通过所述自转动轴铰接。
优选地,在平板框架的底部与固定端之间设置有组合式直线驱动装置。
优选地,所述自转动轴为精密可控自驱动转动轴,所述精密可控自驱动转动轴,包括:转动轴定子、转动轴动子、驱动体电磁线圈、转盘、永磁体;
驱动体电磁线圈的轴向平行于转盘的法向;
驱动体电磁线圈安装固定于转动轴定子与转动轴动子两者中的一者,转盘安装固定于转动轴定子与转动轴动子两者中的另一者;
转盘的部分区域由永磁体构成;
驱动体电磁线圈与永磁体相互作用形成磁路结构。
优选地,在盘形线圈腔体内,多个驱动体电磁线圈在同一周向或多个周向上均匀或非均匀分布;转盘上的多个永磁体沿周向均匀或非均匀布置,驱动体电磁线圈的数量为永磁体数量的N倍,其中,N为正整数。
优选地,包括若干个驱动体电磁线圈;所述若干个驱动体电磁线圈通电后驱使转盘相对转动至对应于所述磁路结构中磁通量最大值的角度。
优选地,套筒绕中心轴相对转动,并且:
-转动轴定子、转动轴动子分别为中心轴、套筒;或者
-转动轴定子、转动轴动子分别为套筒、中心轴。
优选地,所述精密可控自驱动转动轴还包括如下任一种或任多种装置:
-扭簧,所述扭簧的两端分别固定于转动轴定子、转动轴动子上,以在转动轴动子与转动轴定子之间提供阻尼;
-密封在套筒与中心轴之间空腔内的磁流变液体、导磁性粉末颗粒或者软磁颗粒,以在转动轴动子与转动轴定子之间提供可控和变化的阻尼特性;
-密封在套筒与中心轴之间空腔内的囊状阻尼体,所述囊状阻尼体为一空间囊状体结构,内部填充磁性介质,以在转动轴动子与转动轴定子之间提供可控和变化的阻尼特性;
优选地,所述精密可控自驱动转动轴还包括如下装置:
-阻尼控制驱动体,所述阻尼控制驱动体为电磁发生装置,安装在套筒和中心轴之间的腔体中,用于施加能量使磁流变液体、导磁性粉末颗粒、软磁颗粒或者囊状阻尼体内磁性介质汇聚在能量施加方向以产生阻碍转动轴动子与转动轴定子相对转动的剪切力。
优选地,所述精密可控自驱动转动轴还包括如下装置:
角度检测传感器:用于检测转动轴定子与转动轴动子之间的相对转动角度;
电磁线圈控制器:用于根据角度检测传感器检测得到的所述转动角度对驱动体电磁线圈的电流大小和/或电流方向进行控制,以增加或减弱驱动体电磁线圈与永磁体之间的磁力相互作用。
优选地,所述角度检测传感器为磁电式科里奥利力检测传感器;次优选地,所述角度检测传感器还可以是其它可以进行角度检测的传感器或MEMS类型角度传感器。
与现有技术相比,本实用新型具有如下有益效果:
1、本实用新型中的精密可控自驱动转动轴利用电磁线圈与永磁体直接相互作用进行转动驱动,效率更高,结构更加紧凑,不需要电动机等驱动部分;
2、精密可控自驱动转动轴通过改变转盘中扇形永磁体的个数和位置,本实用新型装置可以实现不同角度控制范围的应用场合;
3、精密可控自驱动转动轴的驱动体采用对称布置方式,有效的增大了驱动力;
4、本实用新型中精密可控自驱动转动轴的电磁线圈布置形式更加灵活,简单;
5、精密可控自驱动转动轴的各组电磁线圈之间可以串接或者并接,通过改变通电方式,既可以相互同向耦合产生增强励磁磁场力,也可以相互异向耦合产生削弱励磁磁场力;
6、本实用新型装置可以根据需要进行一维轴向,二维平面,三维空间的功能扩展;
7、本实用新型具有主动阻尼特性,通过对电磁变液或者导磁性粉末颗粒的控制,能产生可控变化的阻尼;
8、本实用新型结构简单、质量轻,满足现代工业对精密控制驱动装置的需求。
9、本实用新型可以用于实现特别是180度范围内的多维转动,可应用作为等速转动仪器、等扭矩转动装置以及机器人关节系统的基础部件。
10、本实用新型能够实现“宏动”与整体中局部小区域的“微动”,并通过精密可控自驱动转动轴实现对“宏动”的精密控制,通过组合式直线驱动装置实现对“微动”的精密控制。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本实用新型的其它特征、目的和优点将会变得更明显:
图1为本实用新型的驱动原理结构简图;
图2、图3分别为驱动体电磁线圈与扇形永磁体对齐与错位时的结构示意图;
图4、图5、图6、图7为本实用新型中不同数量的永磁体和不同数量的驱动体电磁线圈的阵列扩展形式示意图;
图8为本实用新型中采用扭簧产生阻尼的结构示意图;
图9、图10、图11为本实用新型中三种基础结构形式。其中,图9为套筒固定,中心轴转动,图10为中心轴固定,套筒转动,图11为内套筒固定,外套筒和中心轴同时转动;
图12、图13为本实用新型产生主动阻尼的原理演示图。其中,图12为阻尼控制驱动体未励磁的情况,图13为阻尼控制驱动体励磁工作的情况;
图14为本实用新型中通过三个自转动轴驱动平板框架的结构示意图;
图15为平板和单元模块的结构示意图;
图16为单元模块和平板框架的结构示意图;
图17为平板框架通过自转动轴一端翘起倾斜的结构示意图;
图18为平板框架通过自转动轴折叠的结构示意图;
图19为平板的驱动结构示意图;
图20为平板框架在自转动轴的驱动下摇动的结构示意图。
图中:
1为中心轴
2为驱动体电磁线圈
3为转盘
4为永磁体
5为扭簧。
6为套筒
7为线圈支撑框架
8为支撑轴承
9为内套筒。
10为磁性介质
11为阻尼控制驱动体
12为填充磁性介质的囊状体
13为单元模块
14为平板
15为平板框架
16为自转动轴
17为组合式直线驱动装置
18为中央驱动轴
19为中央驱动装置
20为摇臂
21为固定端
22为第一自转动轴
23为第二自转动轴
24为第三自转动轴
具体实施方式
下面结合具体实施例对本实用新型进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本实用新型,但不以任何形式限制本实用新型。应当指出的是,对本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变化和改进。这些都属于本实用新型的保护范围。
根据本实用新型提供的一种宏动及微动可控的组合式平板运动系统,包括平板框架、自转动轴,平板框架包括多个按照阵列排布的单元模块,自转动轴用于驱动平板框架进行平动、转动或者折叠。每个单元模块均包括按照阵列排布的多块平板,每块平板均能够在一一对应的组合式直线驱动装置的驱动下进行平动和/或转动。
如图15所示,示出了一个单元模块,在该单元模块中按照6×3阵列排布了18块平板。如图16所示,示出了一个平板框架,该平板框架包括5块依次连接的单元模块。相邻的单元模块之间通过所述自转动轴铰接,从而该平板框架可以折叠变形,例如由平板状变形为图17所示的帮助用户抬起上身的位姿形状,又例如由完全展开的平板状变形为图18示出的折叠状,以帮助用户蜷曲身体。在变化例中,平板框架也可以包括左、右两列单元模块,通过使一列单元模块转向另一列单元模块可以帮助用户侧身。进一步地,单元模块之间的相对运动是由自转动轴驱动的。
每块平板均配置有专属的独立组合式直线驱动装置,所述组合式直线驱动装置包括多个直线驱动装置,如图19所示,多个直线驱动装置之间按照一定间距排列;所述多个直线驱动装置的输出端位于同一个输出方向上,实现平动/或转动的驱动输出。所述直线驱动装置包括电磁箝位装置和中央驱动装置,所述电磁箝位装置通过中央驱动装置的驱动产生相对被驱动体的运动。所述电磁箝位装置主要由至少一个电磁箝位机构组成,所述电磁箝位机构,包括电磁体、永磁体及变形体,所述永磁体的磁极与电磁体的磁极直接接触或靠近,形成控制磁路,所述变形体与永磁体刚性连接;所述永磁体在控制磁路磁场的驱动下相对电磁体运动,并驱动变形体产生变形,进而实现箝位锁紧和释放。本领域技术人员具体可以参见中国专利文献“电磁箝位机构及其直线驱动装置、组合”(公开号CN104167957A,申请号201410387626.2)实现所述组合式直线驱动装置,在此不再赘述。
在图20示出的优选例中,平板框架在一个自转动轴的驱动下进行转动,其中,平板框架的底部铰接一摇臂的上端,摇臂的下端通过自转动轴连接固定端(例如地面),自转动轴通过摇臂驱动平板框架整体小幅度转动(近乎平移)。在平板框架底部的两端分别通过一高度可调节的组合式直线驱动装置支撑于地面。
在图14示出的优选例中,平板框架在多个自转动轴的驱动下进行平动或者转动,其中,所述多个自转动轴依次连接,形成具有多个旋转方向自由度的组合式精密可控驱动装置。在图14中示出的三个自转动轴分别记为:第一自转动轴、第二自转动轴、第三自转动轴。平板框架的底部安装固定于第一自转动轴的中心轴,第一自转动轴的套筒连接第二自转动轴的套筒,第二自转动轴的中心轴连接第三自转动轴的套筒。
在更多的优选例中,平板框架还可以整体被平面电机驱动以在水平面内平移,还可以通过视频定位监控,对采集的平板系统的图像进行识别后向平板系统发送控制指令,使平板系统改变位姿,以进行自平衡调节,保证不会倾覆。本实用新型通过对各个平板的单独驱动,可以形成波浪式的阵列面,实现摇床等功能。
在优选例中,自转动轴为精密可控自驱动转动轴,接下来对所述精密可控自驱动转动轴进行具体描述。
如图1所示,根据本实用新型提供的精密可控自驱动转动轴,包括:转动轴定子、转动轴动子、驱动体电磁线圈2、转盘3、永磁体4;
所述精密可控自驱动转动轴可以包括若干个(即一个或多个)驱动体电磁线圈2。所述若干个驱动体电磁线圈2和转盘3相对同一转轴线L设置。转盘3的转轴可以与该转轴线L重叠,也可以不与该转轴线L重叠。当驱动体电磁线圈2的数量为一个时,该驱动体电磁线圈2的转轴不与该转轴线L重叠。当驱动体电磁线圈2的数量为多个时,这些驱动体电磁线圈2构成电磁线圈组体;若电磁线圈组体中的各个驱动体电磁线圈2在周向上均布,则该电磁线圈组体的转轴优选地与转轴线L重叠,当然在非优选情况下也可以不重叠;若电磁线圈组体中的各个驱动体电磁线圈2集中布置在周向某一段内,则该电磁线圈组体的转轴优选地与转轴线L不重叠。
所述驱动体电磁线圈采用空心电磁线圈、电磁铁、带磁轭的线圈或者电磁线圈和工业纯铁、软磁材料组合。
驱动体电磁线圈2的轴向平行于转盘3的法向。驱动体电磁线圈2安装固定于转动轴定子与转动轴动子两者中的一者,转盘3安装固定于转动轴定子与转动轴动子两者中的另一者,也就是说,可以是驱动体电磁线圈2安装固定于转动轴定子,转盘3安装固定于转动轴动子,也可以是驱动体电磁线圈2安装固定于转动轴动子,转盘3安装固定于转动轴定子;
如图2所示,转盘3的部分区域由永磁体4构成,驱动体电磁线圈2与永磁体4相互作用形成磁路结构。其中,所述转盘3可以是由缺失扇形区域的非完整盘状结构与扇形永磁体4刚性连接组合形成完整的盘状结构,所述转盘3、永磁体4与中心轴1刚性连接。所述转盘3可以为导磁材料,也可以为非导磁材料。上述永磁体4的形状采用扇形是优选情况,永磁体4的形状还可以是圆形、矩形、三角形、梯形等规则形状,还是可以不规则形状,均落入本实用新型的保护范围之内。
多个驱动体电磁线圈2在同一周向或多个周向上均匀分布,如图4-7所示,驱动体电磁线圈2的数量可以为一个或者多个;如图4-6所示,多个驱动电磁线圈2之间在同一周向上均匀分布;如图7所示,多个驱动电磁线圈2之间在两个周向上分别均匀分布。转盘3上的多个永磁体4同样沿周向均匀布置,驱动体电磁线圈2的数量为永磁体4数量的N倍,其中,N为正整数,如图4-7所示。而在变化例中,驱动体电磁线圈2可以在周向上非均匀分布,转盘3的永磁体4同样可以在周向上非均匀分布。
所述精密可控自驱动转动轴所包含的若干个驱动体电磁线圈2,用于驱使转盘3相对转动至对应于所述磁路结构中磁通量最大值的角度。具体地,驱动体电磁线圈2与转盘3相对转动所产生的驱动体电磁线圈2与永磁体4之间相对面积的变化,引起所述磁路结构中磁通量的变化。当所述磁路结构中磁通量达到最大值时,认为单个的驱动体电磁线圈2或者由多个驱动体电磁线圈2构成的电磁线圈组体与转盘3上的永磁体处于对齐的角度位置关系。当所述磁路结构中磁通量未达到最大值时,认为单个的驱动体电磁线圈2或者由多个驱动体电磁线圈2构成的电磁线圈组体与转盘3上的永磁体处于错位的角度位置关系。驱动体电磁线圈2的作用即包括将处于错位位置的转盘3驱动至对齐位置。
进一步地,根据本实用新型提供的精密可控自驱动转动轴还包括角度检测传感器和电磁线圈控制器。角度检测传感器用于检测转动轴定子与转动轴动子之间的相对转动角度;电磁线圈控制器用于根据角度检测传感器检测得到的所述转动角度对驱动体电磁线圈2的电流大小和/或电流方向进行控制,以增加或减弱驱动体电磁线圈2与永磁体4之间的磁力相互作用(或者增加/减少磁力相互作用时间)。优选地,所述角度检测传感器为磁电式科里奥利力检测传感器,本领域技术人员可以参见申请号“201410095933.3”的中国专利文献(公开号103913158A,名称“磁电式科里奥利力检测传感器”)以及申请号“201420117614.3”的中国专利文献(公开号203798360U,名称“磁电式科里奥利力检测传感器”)得以实现,在此不再赘述。
在第一优选例中,如图9所式,转动轴动子为中心轴1,转动轴定子为套筒6。驱动体电磁线圈安装固定于套筒6的内壁,转盘3安装固定于中心轴1。
在第二优选例中,如图10所示,转动轴定子为中心轴1,转动轴动子为套筒6。驱动体电磁线圈安装固定于中心轴1上的线圈支撑框架,转盘3安装固定于套筒6的内壁,并通过支撑轴承8套于中心轴1上。
在第三优选例中,如图11所示,转动轴动子为中心轴1与套筒6,转动轴定子为位于中心轴1与套筒6之间的内套筒9。转盘3安装固定在中心轴1与套筒6之间,驱动体电磁线圈2安装于内套筒9内壁。
在第四优选例中,如图12所示,转动轴定子为中心轴1,转动轴动子为套筒6。驱动体电磁线圈安装固定于中心轴1上的线圈支撑框架,转盘3安装固定于套筒6的内壁,并通过支撑轴承8套于中心轴1上。转盘3上设置有阻尼控制驱动体11,在中心轴1与套筒6之间的空间内设置有磁性介质10和囊状阻尼体12。其中,密封在套筒6与中心轴1之间空腔内的磁性介质10可以是磁流变液体、导磁性粉末颗粒或者软磁颗粒,以在转动轴动子与转动轴定子之间提供可控和变化的阻尼特性;密封在套筒6与中心轴1之间空腔内的囊状阻尼体12,所述囊状阻尼体为一空间囊状体结构,内部填充磁性介质10,以在转动轴动子与转动轴定子之间提供可控和变化的阻尼特性;阻尼控制驱动体11,所述阻尼控制驱动体11安装在套筒6和中心轴1之间的腔体中,用于控制磁流变液体、导磁性粉末颗粒、软磁颗粒或者囊状阻尼体内磁性介质10的分散情况。进一步地,如图12所示,根据本实用新型提供的精密可控自驱动转动轴还包括扭簧5,所述扭簧5可以穿套在中心轴1上,也可以设置于其它位置。扭簧5的两端分别固定于转动轴动子、转动轴定子上,以在转动轴动子与转动轴定子之间提供阻尼,即,扭簧5用于提供运动阻尼,增加转动轴运动的稳定性与可控性,并且,在驱动体电磁线圈失电后,扭簧5可以起到复位的作用使转盘3回复原位。
本实用新型的原理如下。
本实用新型提供的精密可控自驱动转动轴,通过驱动体电磁线圈产生的励磁场对转盘以及与转盘刚性连接的定子或动子的相对转动进行控制,具体为,驱动体电磁线圈在通电后产生轴向上的磁力,当通电的驱动体电磁线圈与永磁体错位时,该磁力对永磁体的吸引力或者排斥力将生成剪切力,从而使得永磁体向磁通量最大的对齐角度位置转动,从而驱动了转盘的转动,进而使转动轴动子与转动轴定子之间生产转动角度。
进一步地,通过阻尼控制驱动体可以施加能量使磁流变液体、导磁性粉末颗粒、软磁颗粒或者囊状阻尼体内磁性介质10汇聚在能量施加方向以产生阻碍转动轴动子与转动轴定子相对转动的剪切力,从而控制转动轴定子与转动轴动子之间的阻尼特性,使得剪切力受阻减弱或者变大加强,以驱使或阻碍转动轴定子与转动轴动子之间的转动。其中,阻尼控制驱动体是可以产生需求强度的电磁发生装置,阻尼控制驱动体对磁流变液体、导磁性粉末颗粒、软磁颗粒等磁性介质施加电磁能量。当电磁发生装置未激励时,如图12所示,磁性介质均匀分布在中心轴与套筒的间隙内,此时磁性介质并未阻碍或明显阻碍中心轴与套筒之间的转动;当电磁发生装置激励时,如图13所示,均匀磁性介质被汇聚于中心轴与套筒之间的间隙的某一狭小空间内,此时磁性介质的密度变大,相应的剪切应力也变大,从而对中心轴与套筒之间的转动造成明显的阻碍,甚至可以锁死中心轴与套筒停止转动。
更为具体地,当驱动体电磁线圈较少(或线圈电流较小)时,适用于负载较小的转动驱动控制;当驱动体电磁线圈较多(或线圈电流较大)时,适用于负载较大的转动驱动控制。当永磁体为一个时,可实现小角度范围的转动控制,当永磁体为多个时,可实现较大角度范围的转动控制。通过对多个组合驱动体电磁线圈的通断电控制,可以实现对转子转动稳定性进行精密控制。另外,通过对阻尼控制驱动体的控制,可以实现装置的主动阻尼控制,进一步增加了对转动驱动控制的稳定性和有效性。
进一步地,角度检测传感器用于检测转动轴定子与转动轴动子之间的相对转动角度;电磁线圈控制器用于根据角度检测传感器检测得到的所述转动角度对驱动体电磁线圈2的电流大小和/或电流方向进行控制,以增加或减弱驱动体电磁线圈2与永磁体4之间的磁力相互作用。例如,假设转动轴需要转动一指定角度,当角度检测传感器检测到当前转动轴的转动角度与期望的转动角度之间还存在着差异,即当前转动角度尚未达到指定角度,则控制电磁线圈控制器向驱动体电磁线圈继续供电,直到转动轴的转动角度达到指定角度。
以上对本实用新型的具体实施例进行了描述。需要理解的是,本实用新型并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本实用新型的实质内容。在不冲突的情况下,本实用新型实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种宏动及微动可控的组合式平板运动系统,其特征在于,包括平板框架、自转动轴,还包括设置于平板框架上的按照阵列排布的多块平板;
每块平板均能够在一一对应的组合式直线驱动装置的驱动下进行平动和/或转动;
所述自转动轴用于驱动平板框架进行平动、转动或者折叠。
2.根据权利要求1所述的宏动及微动可控的组合式平板运动系统,其特征在于,平板框架在一个或多个自转动轴的驱动下进行平动或者转动;
其中,所述多个自转动轴依次连接,形成具有多个旋转方向自由度的组合式精密可控驱动装置。
3.根据权利要求1所述的宏动及微动可控的组合式平板运动系统,其特征在于,平板框架包括多个按照阵列排布的单元模块,其中,每个单元模块均包括按照阵列排布的多块平板;
相邻的单元模块之间通过所述自转动轴铰接。
4.根据权利要求1所述的宏动及微动可控的组合式平板运动系统,其特征在于,在平板框架的底部与固定端之间设置有组合式直线驱动装置。
5.根据权利要求1所述的宏动及微动可控的组合式平板运动系统,其特征在于,所述自转动轴为精密可控自驱动转动轴,所述精密可控自驱动转动轴包括:转动轴定子、转动轴动子、驱动体电磁线圈(2)、转盘(3)、永磁体(4);
驱动体电磁线圈(2)的轴向平行于转盘(3)的法向;
驱动体电磁线圈(2)安装固定于转动轴定子与转动轴动子两者中的一者,转盘(3)安装固定于转动轴定子与转动轴动子两者中的另一者;
转盘(3)的部分区域由永磁体(4)构成;
驱动体电磁线圈(2)与永磁体(4)相互作用形成磁路结构。
6.根据权利要求5所述的宏动及微动可控的组合式平板运动系统,其特征在于,多个驱动体电磁线圈(2)在同一周向或多个周向上均匀或非均匀分布;转盘(3)上的多个永磁体(4)沿周向均匀或非均匀布置,驱动体电磁线圈(2)的数量为永磁体(4)数量的N倍,其中,N为正整数。
7.根据权利要求5所述的宏动及微动可控的组合式平板运动系统,其特征在于,包括若干个驱动体电磁线圈(2);所述若干个驱动体电磁线圈(2)通电后驱使转盘(3)相对转动至对应于所述磁路结构中磁通量最大值的角度。
8.根据权利要求5所述的宏动及微动可控的组合式平板运动系统,其特征在于,套筒(6)绕中心轴(1)相对转动,并且:
-转动轴定子、转动轴动子分别为中心轴(1)、套筒(6);或者
-转动轴定子、转动轴动子分别为套筒(6)、中心轴(1)。
9.根据权利要求8所述的宏动及微动可控的组合式平板运动系统,其特征在于,所述精密可控自驱动转动轴还包括如下任一种或任多种装置:
-扭簧(5),所述扭簧(5)的两端分别固定于转动轴定子、转动轴动子上,以在转动轴动子与转动轴定子之间提供阻尼;
-密封在套筒(6)与中心轴(1)之间空腔内的磁流变液体、导磁性粉末颗粒或者软磁颗粒,以在转动轴动子与转动轴定子之间提供可控和变化的阻尼特性;
-密封在套筒(6)与中心轴(1)之间空腔内的囊状阻尼体,所述囊状阻尼体为一空间囊状体结构,内部填充磁性介质(10),以在转动轴动子与转动轴定子之间提供可控和变化的阻尼特性;
-阻尼控制驱动体(11),所述阻尼控制驱动体(11)为电磁发生装置,安装在套筒(6)和中心轴(1)之间的腔体中,用于施加能量使磁流变液体、导磁性粉末颗粒、软磁颗粒或者囊状阻尼体内磁性介质(10)汇聚在能量施加方向以产生阻碍转动轴动子与转动轴定子相对转动的剪切力。
10.根据权利要求5所述的宏动及微动可控的组合式平板运动系统,其特征在于,所述精密可控自驱动转动轴还包括如下装置:
角度检测传感器:用于检测转动轴定子与转动轴动子之间的相对转动角度;
电磁线圈控制器:用于根据角度检测传感器检测得到的所述转动角度对驱动体电磁线圈(2)的电流大小和/或电流方向进行控制,以增加或减弱驱动体电磁线圈(2)与永磁体(4)之间的磁力相互作用。
CN201520606565.4U 2015-08-12 2015-08-12 宏动及微动可控的组合式平板运动系统 Withdrawn - After Issue CN205004935U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520606565.4U CN205004935U (zh) 2015-08-12 2015-08-12 宏动及微动可控的组合式平板运动系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520606565.4U CN205004935U (zh) 2015-08-12 2015-08-12 宏动及微动可控的组合式平板运动系统

Publications (1)

Publication Number Publication Date
CN205004935U true CN205004935U (zh) 2016-01-27

Family

ID=55161805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520606565.4U Withdrawn - After Issue CN205004935U (zh) 2015-08-12 2015-08-12 宏动及微动可控的组合式平板运动系统

Country Status (1)

Country Link
CN (1) CN205004935U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119457A (zh) * 2015-08-12 2015-12-02 杨斌堂 阵列式平板运动系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119457A (zh) * 2015-08-12 2015-12-02 杨斌堂 阵列式平板运动系统
CN105119457B (zh) * 2015-08-12 2018-01-02 杨斌堂 阵列式平板运动系统

Similar Documents

Publication Publication Date Title
CN101282070A (zh) 一种三自由度Halbach阵列永磁球形同步电动机
CN100394145C (zh) 电动式角振动台
JP2005245079A (ja) 磁力回転式モータ発電機
JP2009509482A (ja) 磁気モーター
CN105284039B (zh) 用于旋转驱动器的致动器配置
CN101557982A (zh) 盘状浮动飞行器
CN101311571A (zh) 恒流源偏置磁悬浮轴承
US20220037976A1 (en) Electric stepper motor
CN102933843A (zh) 利用旋转运动向线性运动的转换的发电机
CN101267171B (zh) 电磁调压式多自由度球形超声波电机
CN205004935U (zh) 宏动及微动可控的组合式平板运动系统
KR101194909B1 (ko) 이중 코일 보빈 및 이를 포함하는 구형모터
CN105099061A (zh) 自驱动转动轴帆板驱动系统
CN105099062A (zh) 自驱动转动轴
CN204965198U (zh) 自转动驱动及隔振云台系统
JPS6281970A (ja) 球面モ−タ
CN204967514U (zh) 具有电磁永磁直接驱动的自转动轴的帆板系统
CN105119456A (zh) 自驱动转动轴多维转动驱动系统
CN205004936U (zh) 具有电磁永磁直接驱动的自转动轴的多维驱动系统
CN105119457A (zh) 阵列式平板运动系统
CN205283323U (zh) 电磁永磁直接驱动的自转动轴及自驱动转动系统
JP2008253081A (ja) 偏重心回転体及びその駆動装置
JP4923238B2 (ja) 磁気反発支持回転機
US20120025669A1 (en) Drive apparatus
KR100953385B1 (ko) 영구자석과 전자석의 복합 적용 방식을 이용한 강성 발생장치 및 이를 구비하는 로봇 머니퓰레이터의 조인트

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20160127

Effective date of abandoning: 20180102