CN204856238U - Flexible rope actuator system for spatial structure vibration control - Google Patents

Flexible rope actuator system for spatial structure vibration control Download PDF

Info

Publication number
CN204856238U
CN204856238U CN201420581172.8U CN201420581172U CN204856238U CN 204856238 U CN204856238 U CN 204856238U CN 201420581172 U CN201420581172 U CN 201420581172U CN 204856238 U CN204856238 U CN 204856238U
Authority
CN
China
Prior art keywords
rope
rope actuator
actuator
pull rod
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420581172.8U
Other languages
Chinese (zh)
Inventor
范继祥
尹燕宗
温亚芹
张子锐
周波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Normal University
Original Assignee
Harbin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Normal University filed Critical Harbin Normal University
Priority to CN201420581172.8U priority Critical patent/CN204856238U/en
Application granted granted Critical
Publication of CN204856238U publication Critical patent/CN204856238U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

The utility model relates to a flexible rope actuator system for spatial structure vibration control, by the rope actuator, the non -contact image sensor of testing vibration, direct current bridge, the signal conditioning ware, controller and driver are constituteed, the output signal of rope actuator passes through direct current bridge and gets into in the signal conditioning ware, the output that the sensor was tested vibration to signal conditioning ware and non -contact image inserts in the controller respectively, the motor of rope actuator is received in the output of controller through the driver, the rope actuator includes the universal joint, the tension measurement ware, rope and step motor. The utility model has the advantages of simple structure and reasonable design, simple to operate, small, the quality is light, can effectively reduce the cost of transportation.

Description

Flexible space structure vibration control rope actuator system
Technical field
The utility model relates to a kind of actuator system, and particularly a kind of rope actuator system for flexible space structure Vibration Active Control, belongs to the technical field of Spacecraft Vibration Active Control.
Background technology
The flexible space structure that people use is mainly beam type, board-like and disk structure, as the frame that spreads out, solar panels and antenna space etc., and along with the development of space technology, the size of these flexible space structure is increasing, under the effect of various perturbation, inevitably evoke the vibration of flexible space structure, thus affect the normal operation of spacecraft, even cause destructive disaster, therefore adopt suitable actuator effectively to suppress the vibration of these flexible space structure to have important theory value and engineering significance.
At present, the actuator controlled for flexibility structural vibration is mainly divided into two classes: 1. electromechanical, fluid pressure type actuator, and if publication number is the patent of CN202735857U, publication number is the patent of CN202124956U; 2., based on the actuator of the functional materials such as piezoelectric ceramics, magnetostriction materials, marmem, if publication number is the patent of CN100541820C, publication number is the patent of US6404108B1.From principle of work, the aspects such as structural design and own material attribute are considered, all can there is certain defect in the vibration control that these existing actuator are used for Large Flexible Space Structure: 1. for traditional electromechanical or fluid pressure type actuator, on the one hand due to the complicacy of this type of actuator its structural design manufacture, space is assembled and safeguards very difficult, and for hydraulic actuator, need Hydrauservo System, be difficult to ensure its long-term normal work at this extreme environment of space, the general weight of this type of actuator on the other hand, volume is larger, add space transoportation cost, thus limit its application in space structure vibration control field.2. for electricity, the functional material actuator of magnetic and light stimulus, on the one hand due to this type of actuator ubiquity structural behaviour problem, as deformation is little, by temperature, electromagnetic interference influence is large, poor work stability etc., make it can only suppress structural vibration more by a small margin, and significantly structural vibration can not be suppressed, on the other hand, along with continuing to bring out of new material, flexible space structure will be mainly main in the form of a film, this brings extreme difficulties to the installation of various functional material, and along with flexible space structure size is towards ultra-large future development, large area installation function material is also unrealistic.
Generally adopt rope unit to carry out the expansion of flexible structure in existing flexible space structure, therefore these rope unit are transformed, then Active Vibration Control System can be it can be used as to suppress the vibration launching flexible structure.A kind of design proposal of rope actuator is proposed although publication number is the patent of CN202735857U, but this scheme still adopts traditional rectilinear orbit kinematic system as topworks, and the length of rope is immutable, thus make its flexibility structural vibration amplitude that can control by the restriction of track length, significantly structural vibration control cannot be carried out, in addition, this actuator does not have power side steering, cannot change the direction of control.
Summary of the invention
The purpose of this utility model is to overcome the weak point existed in above-mentioned technology, there is provided a kind of structure simple, reasonable in design, volume is little, quality is light, easy for installation, not by the flexible space structure vibration control rope actuator system of flexible structure material and size constrained.
In order to achieve the above object, the technical solution adopted in the utility model is: by rope actuator, noncontact image vibration-measuring sensor, direct current bridge, signal conditioner, controller and driver composition, the output signal of rope actuator is by direct current bridge entering signal conditioner, the output of signal conditioner and noncontact image vibration-measuring sensor is linked in controller respectively, the motor of rope actuator is received in the output of controller by driver, described rope actuator comprises universal joint, tension measurement device, rope and stepper motor, described universal joint is spherical, be made up of bulb and ball bowl, bulb upper end is fixed on the bottom centre position of tension measurement device, ball bowl is fixed in flexible space structure by rigid metal bar, described tension measurement device comprises insulating cylinder, U-rail, metalfilmresistor, extension spring, center pull rod, abutment ring, positioning tube, preloading spring and Metal Ball, insulating cylinder is cylindrical, a pair U-rail is provided with in the inwall symmetric position of insulating cylinder, metalfilmresistor is provided with in the bottom of U-rail, extension spring one end is fixed on the bottom centre position of insulating cylinder, the other end is connected to the lower end of center pull rod, center pull rod is cylindrical insulating bar, abutment ring is provided with in the upper end of center pull rod, positioning tube is cylindrical, two positioning tube symmetries are fixed in center pull rod, preloading spring one end is fixed on the bottom centre position of positioning tube, the other end is connected in Metal Ball, two Metal Ball are placed in symmetrical U-rail respectively.
The utility model has the advantages that:
Adopt Mechatronic Systems as the excitation of rope actuator, do not adopt electromagnetic signal and light signal, external electromagnetic field and light source is avoided to the interference of system from driving source, the canoe that actuator adopts rope lengths variable drives, non-linear path type of drive, avoid the restriction to flexibility structural vibration span of control limit of control, actuator only needs simply to be connected with flexible space structure end points, bonding and the accurate installation without the need to large area, be not subject to the restriction of flexible structure material and size, actuator configurations is simple, reasonable in design, easy for installation, volume is little, quality is light, effectively can reduce transportation cost.
Accompanying drawing explanation
Fig. 1 is structural representation of the present utility model;
Fig. 2 is the top cross-sectional view of the utility model tension measurement device;
Fig. 3 is the schematic diagram of the another kind of form of the utility model rope actuator system.
Embodiment
Below in conjunction with accompanying drawing, embodiment of the present utility model is described in further detail.
From Fig. 1-Fig. 3, the utility model is by rope actuator 1, noncontact image vibration-measuring sensor 2, direct current bridge 3, signal conditioner 4, controller 5 and driver 6 form, the output signal of rope actuator 1 is by direct current bridge 3 entering signal conditioner 4, the output of signal conditioner 4 and noncontact image vibration-measuring sensor 2 is linked in controller 5 respectively, the motor 10 of rope actuator 1 is received in the output of controller 5 by driver 6, described rope actuator 1 comprises universal joint 7, tension measurement device 8, rope 9 and stepper motor 10, described universal joint 7 is spherical, be made up of bulb 11 and ball bowl 12, bulb 11 upper end is fixed on the bottom centre position of tension measurement device 8, ball bowl 12 is fixed in flexible space structure 14 by rigid metal bar 13, described tension measurement device 8 comprises insulating cylinder 15, U-rail 16, metalfilmresistor 17, extension spring 18, center pull rod 19, abutment ring 20, positioning tube 21, preloading spring 22 and Metal Ball 23, insulating cylinder 15 is cylindrical, a pair U-rail 16 is provided with in the inwall symmetric position of insulating cylinder 15, metalfilmresistor 17 is provided with in the bottom of U-rail 16, extension spring 18 one end is fixed on the bottom centre position of insulating cylinder 15, the other end is connected to the lower end of center pull rod 19, center pull rod 19 is cylindrical insulating bar, abutment ring 20 is provided with in the upper end of center pull rod 19, positioning tube 21 is cylindrical, two positioning tube 21 symmetries are fixed in center pull rod 19, preloading spring 22 one end is fixed on the bottom centre position of positioning tube 21, the other end is connected in Metal Ball 23, two Metal Ball 23 are placed in symmetrical U-rail 16 respectively.
Described rope 9 one end is connected with abutment ring 20, and the other end is wrapped in the rotating shaft of stepper motor 10.
Described stepper motor 10 comprises motor body 24 and guiding plate 25, and the rotating shaft of motor body 24 is provided with guiding plate 25, and guiding plate 25 is broadening formation.
The utility model is made up of rope actuator 1, noncontact image vibration-measuring sensor 2, direct current bridge 3, signal conditioner 4, controller 5 and driver 6, the output signal of rope actuator 1 is by direct current bridge 3 entering signal conditioner 4, the output of signal conditioner 4 and noncontact image vibration-measuring sensor 2 is linked in controller 5 respectively, and the motor 10 of rope actuator 1 is received in the output of controller 5 by driver 6.Rope actuator 1 is installed on the front end of beam type flexible space structure 14, noncontact image vibration-measuring sensor 2 gathers the vibration information of flexible space structure 14, signal conditioner 4 is used for carrying out pre-service to signal, as filtering and amplification, a brachium pontis of direct current bridge 3 is the slide rheostats be made up of metalfilmresistor 17 and Metal Ball 23, all the other brachium pontis are fixed value resistance, and the pulling force of restricting in the output signal of direct current bridge 3 and rope actuator 1 in present embodiment is linear.
Described rope actuator 1 comprises universal joint 7, tension measurement device 8, rope 9 and stepper motor 10, described universal joint 7 is spherical, be made up of bulb 11 and ball bowl 12, bulb 11 upper end is fixed on the bottom centre position of tension measurement device 8, ball bowl 12 is fixed in flexible space structure 14 by rigid metal bar 13, and bulb 11 changes the direction of control by the rolling in ball bowl 12.Described tension measurement device 8 comprises insulating cylinder 15, U-rail 16, metalfilmresistor 17, extension spring 18, center pull rod 19, abutment ring 20, positioning tube 21, preloading spring 22 and Metal Ball 23, insulating cylinder 15 is cylindrical, by lightweight, the carbon fibre material of insulation is made, a pair U-rail 16 is symmetrically arranged with at the inwall of insulating cylinder 15, rail base is by vacuum coating or the even adhesion metal film resistance 17 of sputtering technology, extension spring 18 one end is fixed on the bottom centre position of insulating cylinder 15, the other end is connected to the lower end of center pull rod 19, center pull rod 19 is cylindrical insulating bar, the upper end of center pull rod 19 is provided with abutment ring 20, positioning tube 21 is cylindrical, be made up of carbon fibre material, two positioning tube 21 symmetries are fixed in center pull rod 19, preloading spring 22 one end is fixed on the bottom centre position of positioning tube 21, the other end is connected in Metal Ball 23, two Metal Ball 23 are placed in symmetrical U-rail 16 respectively, Metal Ball 23 is copper, preloading spring 22 will remain compressive state, thus ensures that Metal Ball 23 keeps good point cantact with the metalfilmresistor 17 bottom U-rail 16.When under the pulling force effect of center pull rod 19 at rope 9 during axially-movable, drive two Metal Ball 23 respectively at respective gliding in tracks, thus form redundancy slide rheostat structure, two Metal Ball 23 are sliding end, when one group of slide rheostat lost efficacy, another group still can complete data-collection function.Described rope 9 one end is connected with abutment ring 20, and the other end is wrapped in stepper motor 10 rotating shaft; Described stepper motor 10 comprises motor body 24 and guiding plate 25, and guiding plate 25 is broadening formation, in the rotating shaft of being fixed on motor body 24 and with rotating shaft synchronous rotary, be used for guiding rope 9 to be wrapped in safely on machine shaft.
Principle of work of the present utility model is: gathered the real-time pulling force in rope 9 by direct current bridge 3, and send into controller 5 together with the vibration information of the flexible structure gathered with noncontact image vibration-measuring sensor 2 after signal conditioner 4 filtering, amplification, controller 5 exports corresponding control signal, this signal amplifies rear drive rope actuator 1 through driver 6 and produces and control pulling force accordingly, and the vibration end that this pulling force acts on flexible space structure 14 suppresses it to vibrate.
The utility model rope actuator 1 principle of work is: stepper motor 10 rotates under the effect of steering order, tighten up or discharge rope 9, thus driving center pull rod 19 axially-movable of tension measurement device 8, extension spring 18 produces tension force and acts in flexible space structure 14 by universal joint 7 under the effect of center pull rod 19; While center pull rod 19 axially-movable, driving Metal Ball 23 to slide in orbit, forming slide rheostat structure, for measuring real-time pulling force in rope.
Rope actuator system also has other version, as shown in Figure 3, rope actuator 1 in rope actuator system in figure, noncontact image vibration-measuring sensor 2, the quantity of direct current bridge 3 and signal conditioner 4 is four, controller 5 has eight input ends, driver 6 has four output terminals, four rope actuator 1 are installed on four end points of board-like flexible space structure 14 respectively, four noncontact image vibration-measuring sensors 2 measure the vibration information of four end points of board-like flexible space structure 14 respectively, the output of four noncontact image vibration-measuring sensors 2 and the output of four signal conditioners 4 are connected with eight input ends of controller 5 respectively, four output terminals of driver 6 are connected with the input end of four rope actuator 1 respectively, other composition is identical with the present invention with connected mode.
When flexible space structure 14 is disc type, rope actuator system also has another kind of form: rope actuator 1 in rope actuator system, noncontact image vibration-measuring sensor 2, the quantity of direct current bridge 3 and signal conditioner 4 is n, n be more than or equal to 2 natural number, controller 5 has 2n input end, driver 6 has n output terminal, n rope actuator 1 difference angular interval θ (θ=360/n) is installed on the circular boundary of disc type flexible space structure, n noncontact image vibration-measuring sensor 2 measures the vibration information at disc type flexible space structure 14 and rope actuator 1 tie point place respectively, the output of n noncontact image vibration-measuring sensor 2 and the output of n signal conditioner 4 are connected with 2n input end of controller 5 respectively, n output terminal of driver 6 is connected with the input end of n rope actuator 1 respectively, other composition is identical with the utility model with connected mode.

Claims (3)

1. a flexible space structure vibration control rope actuator system, by rope actuator (1), noncontact image vibration-measuring sensor (2), direct current bridge (3), signal conditioner (4), controller (5) and driver (6) composition, it is characterized in that: the output signal of rope actuator (1) is by direct current bridge (3) entering signal conditioner (4), the output of signal conditioner (4) and noncontact image vibration-measuring sensor (2) is linked in controller (5) respectively, the motor (10) of rope actuator (1) is received in the output of controller (5) by driver (6), described rope actuator 1 comprises universal joint (7), tension measurement device (8), rope (9) and stepper motor (10), described universal joint (7) is for spherical, be made up of bulb (11) and ball bowl (12), bulb (11) upper end is fixed on the bottom centre position of tension measurement device (8), ball bowl (12) is fixed in flexible space structure (14) by rigid metal bar (13), described tension measurement device (8) comprises insulating cylinder (15), U-rail (16), metalfilmresistor (17), extension spring (18), center pull rod (19), abutment ring (20), positioning tube (21), preloading spring (22) and Metal Ball (23), insulating cylinder (15) is for cylindrical, a pair U-rail (16) is provided with in the inwall symmetric position of insulating cylinder (15), metalfilmresistor (17) is provided with in the bottom of U-rail (16), extension spring (18) one end is fixed on the bottom centre position of insulating cylinder (15), the other end is connected to the lower end of center pull rod (19), center pull rod (19) is cylindrical insulating bar, abutment ring (20) is provided with in the upper end of center pull rod (19), positioning tube (21) is for cylindrical, two positioning tube (21) symmetries are fixed in center pull rod (19), preloading spring (22) one end is fixed on the bottom centre position of positioning tube (21), the other end is connected in Metal Ball (23), two Metal Ball (23) are placed in symmetrical U-rail (16) respectively.
2. flexible space structure vibration control rope actuator system according to claim 1, it is characterized in that: described rope (9) one end is connected with abutment ring (20), and the other end is wrapped in the rotating shaft of stepper motor (10).
3. flexible space structure vibration control rope actuator system according to claim 1, it is characterized in that: described stepper motor (10) comprises motor body (24) and guiding plate (25), the rotating shaft of motor body (24) is provided with guiding plate (25), and guiding plate (25) is broadening formation.
CN201420581172.8U 2014-10-10 2014-10-10 Flexible rope actuator system for spatial structure vibration control Expired - Fee Related CN204856238U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420581172.8U CN204856238U (en) 2014-10-10 2014-10-10 Flexible rope actuator system for spatial structure vibration control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420581172.8U CN204856238U (en) 2014-10-10 2014-10-10 Flexible rope actuator system for spatial structure vibration control

Publications (1)

Publication Number Publication Date
CN204856238U true CN204856238U (en) 2015-12-09

Family

ID=54746774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420581172.8U Expired - Fee Related CN204856238U (en) 2014-10-10 2014-10-10 Flexible rope actuator system for spatial structure vibration control

Country Status (1)

Country Link
CN (1) CN204856238U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460723A (en) * 2014-10-10 2015-03-25 哈尔滨师范大学 Rope actuator system for controlling flexile space structural vibration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460723A (en) * 2014-10-10 2015-03-25 哈尔滨师范大学 Rope actuator system for controlling flexile space structural vibration

Similar Documents

Publication Publication Date Title
CN103528752B (en) Wind tunnel lever and power and torque standard device
CN101196450B (en) Metal wire material stretching mechanical property testing device
CN103499413B (en) Power lever and lever power standard set-up
CN205317137U (en) Survey detection instrument of crooked volume of glass
CN106769013A (en) A kind of loading inertia test apparatus of motor-driven cylinder
CN203645576U (en) Non symmetric magnetic piezoelectric inertia rotary driver
CN103472395B (en) The travelling wave supersonic motor load characteristic proving installation that open precompression is controlled
CN105070179A (en) Electric linear load simulator
CN102721521A (en) Measuring device for wind tunnel large-amplitude roll oscillation experiment
CN204856238U (en) Flexible rope actuator system for spatial structure vibration control
CN108827571A (en) Two-freedom vibrating flexible beam detection control apparatus and method
CN104122093A (en) Electric actuator elastic torque loading device
CN205376486U (en) Realize high accuracy rotary motion's microbit and move amplification device
CN103342169A (en) Movable external heat flow simulation device under thermal vacuum environment
CN204148248U (en) A kind of roll on-line measurement instrument
CN104460723A (en) Rope actuator system for controlling flexile space structural vibration
CN205580644U (en) Direct current magnet thrust performance testboard for valve
CN103680641B (en) A kind of precisely locating platform based on compliant structure six degree of freedom
CN203657942U (en) Equipment for measuring torque of ball-head rod end joint bearing
CN203300420U (en) Differential transformer structure
CN204944375U (en) Train wheel axle suspension bearing box transverse momentum measurement mechanism
CN108593154B (en) A kind of three-dimensional precise piezoelectric sensing device
CN203245502U (en) Mechanical device for resistance spot welding
CN201993222U (en) Measuring device for wind tunnel large-amplitude roll oscillation experiment
CN203245501U (en) Mechanical device for resistance spot welding

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151209

Termination date: 20161010

CF01 Termination of patent right due to non-payment of annual fee