CN204836170U - 一种智能变电站光功率测试用多路分光转接器 - Google Patents

一种智能变电站光功率测试用多路分光转接器 Download PDF

Info

Publication number
CN204836170U
CN204836170U CN201520474257.0U CN201520474257U CN204836170U CN 204836170 U CN204836170 U CN 204836170U CN 201520474257 U CN201520474257 U CN 201520474257U CN 204836170 U CN204836170 U CN 204836170U
Authority
CN
China
Prior art keywords
resistance
triode
input
electric capacity
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201520474257.0U
Other languages
English (en)
Inventor
李静
胡俊鹏
王延安
赵勇
邵传军
宋向前
戎晓雪
潘筱
韩志宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Jinan Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Jinan Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Jinan Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201520474257.0U priority Critical patent/CN204836170U/zh
Application granted granted Critical
Publication of CN204836170U publication Critical patent/CN204836170U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

本实用新型公开了一种智能变电站光功率测试用多路分光转接器,它包括壳体、分光转接电路板、输入接口、输出接口、输入光纤和输出光纤,所述分光转接电路板设置在壳体内,所述壳体上设置有若干进线孔,所述输入光纤的一端穿过进线孔与分光转接电路板电连接,输入光纤的另一端与输入接口电连接,所述输出光纤的一端穿过进线孔与分光转接电路板电连接,输出光纤的另一端与输出接口电连接;所述输入接口包括多个具有不同类型接口的输入接口,多个具有不同类型接口的输入接口分别通过输入光纤与分光转接电路板电连接。本实用新型不仅提高了光功率测试的工作效率,而且提高了同一个智能变电站的测试结果在对比分析方面的精确性。

Description

一种智能变电站光功率测试用多路分光转接器
技术领域
本实用新型涉及一种智能变电站光功率测试装置,具体地说是一种智能变电站光功率测试用多路分光转接器,属于光纤通讯技术领域。
背景技术
智能变电站与常规变电站相比在结构上有很大变化,智能变电站包括变电站层设备、间隔层设备、过程层设备、站控层网络和过程层网络。智能变电站过程层与间隔层之间由数字通信代替传统变电站二次回路电气连接线,过程层、间隔层和站控层之间通信及层间通信大都改为光纤通信,因此光纤通信接口众多,广泛分布于电子式互感器、智能终端、合并单元、光交换机和分布式保护等智能电子设备上。在传统变电站,二次回路的检测,一般用万用表测量二次电缆回路的电压电流;而在智能变电站,由于二次回路以光纤连线的方式实现,因此进行二次回路的检测是需要采用光功率计来测量二次光纤回路的光功率和光损耗。
在智能变电站验收和消缺中,需对大量的光纤接口进行光功率测试,由于被测试设备光纤接口存在多种连接形式,目前光功率计的光纤接口只有一种形式,而智能变电站的光纤接口多种多样,例如LC、ST、FC等,并且每种类型的接口又有多种形式,这就给光功率的测试带来很大不便。
常规测试方法是采用一台光功率计+多种不同接口类型的尾纤实现对具备不同光纤接口设备或光纤链路的光功率损耗特性进行测量。但是常规测试方法存在以下缺陷:
1、采用不同光纤接口形式的尾纤对各种智能设备进行光功率测试,由于不同尾纤的自身光功率损耗不同,将导致测试结果存在不同的误差,这样最终可能造成同一个智能变电站的测试结果在对比分析方面存在误差,甚至产生错误结果。
2、采用不同光纤接口形式的尾纤对各种智能设备进行光功率测试,导致工作中频繁更换光功率计与光纤接头间的连接尾纤,降低了工作效率。
3、采用更换连接尾纤进行光功率测试,测试工作人员需要随身携带至少3根光纤、3只光纤存放袋、7个光纤卫生护套、并且需要3人一组进行测试(一人测试、一人记录、一人携带尾纤等材料),增加了测试人员及其工作量,并且需要反复插拔光功率计端的光纤接口,严重影响光功率的使用寿命。
4、检修人员随身携带多根尾纤,导致尾纤存放散乱,普遍存在弯折现象,增加损耗,影响光功率测试的精度,降低测量结果的可比较性。
实用新型内容
针对上述不足,本实用新型提供了一种智能变电站光功率测试用多路分光转接器,其能够提高对智能变电站所有设备不同光纤接口的测试效率。
本实用新型解决其技术问题所采用的技术方案是:一种智能变电站光功率测试用多路分光转接器,其特征是,包括壳体、分光转接电路板、输入接口、输出接口、输入光纤和输出光纤,所述分光转接电路板设置在壳体内,所述壳体上设置有若干进线孔,所述输入光纤的一端穿过进线孔与分光转接电路板连接,输入光纤的另一端与输入接口连接,所述输出光纤的一端穿过进线孔与分光转接电路板连接,输出光纤的另一端与输出接口连接;所述输入接口包括多个具有不同类型接口的输入接口,多个具有不同类型接口的输入接口分别通过输入光纤与分光转接电路板连接。
优选地,所述壳体的进线孔设置有防水塞头。
优选地,所述分光转接电路板包括光电转换模块、电信号调理模块、电光转换模块和电源模块,所述光电转换模块的输入端与输入接口连接,光电转换模块的输出端与电信号调理模块的输入端连接,所述电信号调理模块的输出端与电光转换模块的输入端连接,所述电光转换模块的输出端与输出接口连接;所述光电转换模块接收光信号并将光信号转变为电信号发送给电信号调理模块,所述电信号调理模块将接收到光信号强度的电信号进行等电平输出给电光转换模块,所述电光转换模块根据经调理后的电信号等比例转换为光信号输出,形成单一输入光强度信号的等强度光信号输出;所述电源模块用以为光电转换模块、电信号调理模块和电光转换模块提供工作电压。
优选地,所述分光转接电路板还包括保护电路,所述电源模块通过保护电路与光电转换模块、电信号调理模块和电光转换模块连接。
优选地,所述保护电路由电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电容C1、电容C2、电容C3、电容C4、电容C5、稳压二极管DZ1、稳压二极管DZ2、稳压二极管DZ3、稳压二极管DZ4、稳压二极管DZ5、三极管Q1、三极管Q2、三极管Q3、三极管Q4、晶体管Q5和二极管D1组成;
其中,电阻R1、电阻R2、电阻R3、电阻R6、电阻R7和电阻R8的一端与电源电路的正极连接,所述电阻R1的另一端与电阻R4的一端、电阻R5的一端、稳压二极管DZ2的负极和电容C2的一端连接,所述稳压二极管DZ2的正极与电容C1的一端和三极管Q2的基极连接,所述电阻R2的另一端与电容C1的另一端、三极管Q2的集电极和稳压二极管DZ1的负极连接,所述电阻R3的另一端与电阻R4的另一端、三极管Q1的集电极和晶体管Q5的栅极连接,所述三极管Q1的基极与稳压二极管DZ1的正极连接,所述三极管Q1的发射极与电容C2的另一端、电阻R5的另一端、三极管Q2的发射极、晶体管Q5的源极和电容C5的一端和电源电路输入端负极连接并接地;所述电阻R6的另一端与电阻R9的一端、电阻R10的一端、稳压二极管DZ4的负极和电容C4的一端连接,所述稳压二极管DZ4的正极与电容C3的一端和三极管Q4的基极连接,所述电阻R7的另一端与电容C3的另一端、三极管Q4的集电极、稳压二极管DZ3的负极和晶体管Q5的栅极连接,所述电阻R8的另一端与电阻R9的另一端、三极管Q3的集电极和稳压二极管DZ5的负极连接,所述三极管Q3的基极与稳压二极管DZ3的正极连接,所述三极管Q3的发射极与电容C4的另一端、电阻R10的另一端、三极管Q4的发射极、稳压二极管DZ5的正极和电源电路输入端负极连接并接地,所述电容C5的另一端与电阻R11的一端和二极管D1的负极连接,所述晶体管Q5的漏极与电阻R11的另一端和二极管D1的正极和电源电路输出端负极连接。
优选地,所述的三极管Q1、三极管Q2、三极管Q3和三极管Q4均采用NPN型三极管。
优选地,所述晶体管Q5采用N型MOS晶体管。
优选地,所述输入接口至少包括LC型光纤接口、ST型光纤接口和FC型光纤接口。
优选地,所述输出接口为与光功率计相匹配的光纤接口。
优选地,所述壳体包括由注塑塑料制成的盒体和盒盖。
本实用新型具有以下突出的有益效果:
本实用新型利用分光转接电路板将不同类型的光纤接口转换为与光功率计相匹配的光纤接口,在进行光功率测试时,首先将该多路分光转接器的输出接口与光功率计连接,然后根据智能设备的光纤接口形式选择该多路分光转接器对应类型光纤接口的输入接口与智能设备光纤接口连接,最后对智能设备进行光功率测试;当测试完毕后对其它类型光纤接口进行光功率测试,只需跟换对应类型的输入接口即可,避免了常规测试方法中来回更换尾纤才能进行测试的麻烦,不仅提高了光功率测试的工作效率,而且还避免了由于不同尾纤的自身光功率损耗不同导致测试结果存在不同的误差现象的出现,提高了同一个智能变电站的测试结果在对比分析方面的精确性。
利用该多路分光转接器进行光功率测试,只需携带一个光转接器和一个光功率计,便于检修人员携带;避免了频繁更换尾纤导致尾纤接头或光功率计光纤接口的连接不良的现象发生,保证了光功率测试的准确性和结果的可比较性;减少了光功率计光纤接口的连接次数,提高了光功率计的使用寿命。
分光转接电路板利用电信号调理模块将接收到光信号强度等电平输出,与传统利用焊接连接方式,减少了光功率损耗,使测量结果更加准确。分光转接电路板中设置的保护电路采用了无源器件,无需外部电源供电,从电源电路的输入端汲取极微小的电流即可为自身电路进行供电,将该保护电路设置在电源模块之后用以保护包括光电转换模块、电信号调理模块和电光转换模块的后级电路,不仅能够对供电电源进行过压和欠压保护,而且消耗功耗低、反应速度快。
在壳体的进线孔中设置有防水塞头,不仅能够防止雨水和尘埃进入壳体内导致分光转接电路板损坏,起到保护分光转接电路板的作用,而且能够有效固定输入光纤和输出光纤,避免输入光纤和输出光纤活动时与壳体刮擦而导致损坏,起到保护光纤的作用。
附图说明
下面结合附图对本实用新型作进一步说明:
图1是本实用新型具有三个输入接口的结构示意图;
图2是本实用新型具有四个输入接口的结构示意图;
图3是本实用新型所述电路板的原理图;
图4是本实用新型所述保护电路的原理图;
图中,1壳体、2输入接口、21LC型光纤接口、22ST型光纤接口、23FC型光纤接口、24备用光纤接口、3输出接口、4输入光纤、5输出光纤、6防水塞头。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,并结合其附图,对本实用新型进行详细阐述。下文的公开提供了许多不同的实施例或例子用来实现本实用新型的不同结构。为了简化本实用新型的公开,下文中对特定例子的部件和设置进行描述。此外,本实用新型可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。应当注意,在附图中所图示的部件不一定按比例绘制。本实用新型省略了对公知组件和处理技术及工艺的描述以避免不必要地限制本实用新型。
如图1所示,本实用新型的一种智能变电站光功率测试用多路分光转接器,它包括壳体1、分光转接电路板、输入接口2、输出接口3、输入光纤4和输出光纤5。所述壳体1包括由注塑塑料制成的盒体和盒盖,所述分光转接电路板设置在壳体1内,所述壳体1上设置有若干进线孔,所述壳体的进线孔设置有防水塞头6,不仅能够防止雨水和尘埃进入壳体内导致分光转接电路板损坏,起到保护分光转接电路板的作用,而且能够有效固定输入光纤4和输出光纤5,避免输入光纤4和输出光纤5活动时与壳体刮擦而导致损坏,起到保护光纤的作用。所述输入光纤4的一端穿过进线孔与分光转接电路板连接,输入光纤4的另一端与输入接口2连接,所述输出光纤5的一端穿过进线孔与分光转接电路板连接,输出光纤5的另一端与输出接口3连接。如图1所示,所述输入接口2包括LC型光纤接口21、ST型光纤接口22和FC型光纤接口23,所述的LC型光纤接口21、ST型光纤接口22和FC型光纤接口23分别通过输入光纤4与分光转接电路板连接。所述输出接口3为与光功率计相匹配的光纤接口,例如ST型光纤接口或者FC型光纤接口。
为了满足更多类型光纤接口需要,如图2所示,所述输入接口2包括LC型光纤接口21、ST型光纤接口22、FC型光纤接口23和备用光纤接口24,所述的LC型光纤接口21、ST型光纤接口22、FC型光纤接口23和备用光纤接口24分别通过输入光纤4与分光转接电路板连接,所述备用光纤接口24可根据选择SC型光纤接口或其它类型光纤接口。
如图3所示,本实用新型所述的分光转接电路板包括光电转换模块、电信号调理模块、电光转换模块、电源模块和保护电路,所述光电转换模块的输入端与输入接口连接,光电转换模块的输出端与电信号调理模块的输入端连接,所述电信号调理模块的输出端与电光转换模块的输入端连接,所述电光转换模块的输出端与输出接口连接;所述光电转换模块接收光信号并将光信号转变为电信号发送给电信号调理模块,所述电信号调理模块将接收到光信号强度的电信号进行等电平输出给电光转换模块,所述电光转换模块根据经调理后的电信号等比例转换为光信号输出,形成单一输入光强度信号的等强度光信号输出;所述电源模块通过保护电路与光电转换模块、电信号调理模块和电光转换模块连接,用以为光电转换模块、电信号调理模块和电光转换模块提供工作电压。本实用新型所述的光电转换模块可采用HFBR-57E5APZ模块,该模块已经被广泛应用智能变电站智能装置中,稳定可靠;电信号调理模块可采用施密特触发器,利用施密特触发器抗干扰能力强的特点来对测量得到的不规则信号进行整形。
如图4所示,本实用新型所述的保护电路由电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电容C1、电容C2、电容C3、电容C4、电容C5、稳压二极管DZ1、稳压二极管DZ2、稳压二极管DZ3、稳压二极管DZ4、稳压二极管DZ5、三极管Q1、三极管Q2、三极管Q3、三极管Q4、晶体管Q5和二极管D1组成;所述的三极管Q1、三极管Q2、三极管Q3和三极管Q4均采用NPN型三极管,所述晶体管Q5采用N型MOS晶体管。
其中,电阻R1、电阻R2、电阻R3、电阻R6、电阻R7和电阻R8的一端与电源电路的正极连接,所述电阻R1的另一端与电阻R4的一端、电阻R5的一端、稳压二极管DZ2的负极和电容C2的一端连接,所述稳压二极管DZ2的正极与电容C1的一端和三极管Q2的基极连接,所述电阻R2的另一端与电容C1的另一端、三极管Q2的集电极和稳压二极管DZ1的负极连接,所述电阻R3的另一端与电阻R4的另一端、三极管Q1的集电极和晶体管Q5的栅极连接,所述三极管Q1的基极与稳压二极管DZ1的正极连接,所述三极管Q1的发射极与电容C2的另一端、电阻R5的另一端、三极管Q2的发射极、晶体管Q5的源极和电容C5的一端和电源电路输入端负极连接并接地;所述电阻R6的另一端与电阻R9的一端、电阻R10的一端、稳压二极管DZ4的负极和电容C4的一端连接,所述稳压二极管DZ4的正极与电容C3的一端和三极管Q4的基极连接,所述电阻R7的另一端与电容C3的另一端、三极管Q4的集电极、稳压二极管DZ3的负极和晶体管Q5的栅极连接,所述电阻R8的另一端与电阻R9的另一端、三极管Q3的集电极和稳压二极管DZ5的负极连接,所述三极管Q3的基极与稳压二极管DZ3的正极连接,所述三极管Q3的发射极与电容C4的另一端、电阻R10的另一端、三极管Q4的发射极、稳压二极管DZ5的正极和电源电路输入端负极连接并接地,所述电容C5的另一端与电阻R11的一端和二极管D1的负极连接,所述晶体管Q5的漏极与电阻R11的另一端和二极管D1的正极和电源电路输出端负极连接。
在保护电路中,所述的电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电容C1、电容C2、稳压二极管DZ1、稳压二极管DZ2、三极管Q1和三极管Q2组成欠压保护电路,所述的电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电容C3、电容C4、稳压二极管DZ3、稳压二极管DZ4、稳压二极管DZ5、三极管Q3和三极管Q4组成过压保护电路,所述的电阻R11、电容C5、晶体管Q5和二极管D1组成输出控制电路。欠压保护机制是,经整流器输出的电压若低于设定值时,NPN型三极管Q2的集电极电位上升,升到使NPN型三极管Q1导通的时侯,电路状态翻转,NPN型三极管Q1饱和,将N型MOS晶体管Q5的栅极电位拉到很低,N型MOS晶体管Q5断开,后级电路得不到供电。这个电路类似于施密特电路,有一定的回差,因此NPN型三极管Q1只会工作在两种状态,一是饱和状态,二是完全关断状态,这样就避免了N型MOS晶体管Q5工作在非开关状态造成的损耗。类似的,本实用新型的过压保护电路的机制是,当经整流器输出的电压高于设定值时,电路的状态发生翻转,NPN型三极管Q4的集电极电位被拉低,从而关断N型MOS晶体管Q5,达到保护的目的。
本实用新型所述的保护电路采用了无源器件,无需外部电源供电,从电源电路的输入端汲取极微小的电流即可为自身电路进行供电,将该保护电路设置在电源模块之后用以保护包括光电转换模块、电信号调理模块和电光转换模块的后级电路,不仅能够对供电电源进行过压和欠压保护,而且消耗功耗低、反应速度快。
本实用新型的多路分光转接器具有以下特点:
1、适应性:多路分光转接器能实现光功率计光纤接头的多路扩展,并带有不同类型的光纤接头,使用一根接头尾纤即能够进行目前智能变电站所有智能设备的不同光纤接口的光功率测试。
2、便携性:使用多路分光转接器,只需携带一个光转接器,便于检修人员携带。
3、准确性:常规测试方式频繁更换尾纤会增加接头插拔次数,造成接头连接不良,且换下来的尾纤随意放置会造成弯折或破损,造成接头尾纤中的光功率损耗增加,影响光功率测试的准确性和结果的可比较性;而利用本实用新型的多路分光转接器进行光功率测试,保证了光功率测试的准确性和结果的可比较性。
4、一致性:常规测试方式使用不同的尾纤对不同的接口进行光功率测量,由于不同尾纤自身的光功率损耗不同,导致测量结果不准确,且使用不同连接尾纤导致测量结果无法直接进行比较,使得光功率测试的一致性(结果可比较性)较差,而利用本实用新型的多路分光转接器进行光功率测试,提高了光功率测试的一致性。
将本实用新型的多路分光转接器在220kV智能变电站验收和110kV智能变电站消缺过程中进行了试用,与采用更换不同光纤接头尾纤方式进行了对比,测试结果分别提高效率200%和12.5%。由于节省了验收时间,使变电站提前送电带负荷,间接效益显著。
以上所述只是本实用新型的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也被视为本实用新型的保护范围。

Claims (10)

1.一种智能变电站光功率测试用多路分光转接器,其特征是,包括壳体、分光转接电路板、输入接口、输出接口、输入光纤和输出光纤,所述分光转接电路板设置在壳体内,所述壳体上设置有若干进线孔,所述输入光纤的一端穿过进线孔与分光转接电路板连接,输入光纤的另一端与输入接口连接,所述输出光纤的一端穿过进线孔与分光转接电路板连接,输出光纤的另一端与输出接口连接;所述输入接口包括多个具有不同类型接口的输入接口,多个具有不同类型接口的输入接口分别通过输入光纤与分光转接电路板连接。
2.根据权利要求1所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述壳体的进线孔设置有防水塞头。
3.根据权利要求1所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述分光转接电路板包括光电转换模块、电信号调理模块、电光转换模块和电源模块,所述光电转换模块的输入端与输入接口连接,光电转换模块的输出端与电信号调理模块的输入端连接,所述电信号调理模块的输出端与电光转换模块的输入端连接,所述电光转换模块的输出端与输出接口连接;所述光电转换模块接收光信号并将光信号转变为电信号发送给电信号调理模块,所述电信号调理模块将接收到光信号强度的电信号进行等电平输出给电光转换模块,所述电光转换模块根据经调理后的电信号等比例转换为光信号输出,形成单一输入光强度信号的等强度光信号输出;所述电源模块用以为光电转换模块、电信号调理模块和电光转换模块提供工作电压。
4.根据权利要求3所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述分光转接电路板还包括保护电路,所述电源模块通过保护电路与光电转换模块、电信号调理模块和电光转换模块连接。
5.根据权利要求4所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述保护电路由电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、电阻R10、电阻R11、电容C1、电容C2、电容C3、电容C4、电容C5、稳压二极管DZ1、稳压二极管DZ2、稳压二极管DZ3、稳压二极管DZ4、稳压二极管DZ5、三极管Q1、三极管Q2、三极管Q3、三极管Q4、晶体管Q5和二极管D1组成;
其中,电阻R1、电阻R2、电阻R3、电阻R6、电阻R7和电阻R8的一端与电源电路的正极连接,所述电阻R1的另一端与电阻R4的一端、电阻R5的一端、稳压二极管DZ2的负极和电容C2的一端连接,所述稳压二极管DZ2的正极与电容C1的一端和三极管Q2的基极连接,所述电阻R2的另一端与电容C1的另一端、三极管Q2的集电极和稳压二极管DZ1的负极连接,所述电阻R3的另一端与电阻R4的另一端、三极管Q1的集电极和晶体管Q5的栅极连接,所述三极管Q1的基极与稳压二极管DZ1的正极连接,所述三极管Q1的发射极与电容C2的另一端、电阻R5的另一端、三极管Q2的发射极、晶体管Q5的源极和电容C5的一端和电源电路输入端负极连接并接地;所述电阻R6的另一端与电阻R9的一端、电阻R10的一端、稳压二极管DZ4的负极和电容C4的一端连接,所述稳压二极管DZ4的正极与电容C3的一端和三极管Q4的基极连接,所述电阻R7的另一端与电容C3的另一端、三极管Q4的集电极、稳压二极管DZ3的负极和晶体管Q5的栅极连接,所述电阻R8的另一端与电阻R9的另一端、三极管Q3的集电极和稳压二极管DZ5的负极连接,所述三极管Q3的基极与稳压二极管DZ3的正极连接,所述三极管Q3的发射极与电容C4的另一端、电阻R10的另一端、三极管Q4的发射极、稳压二极管DZ5的正极和电源电路输入端负极连接并接地,所述电容C5的另一端与电阻R11的一端和二极管D1的负极连接,所述晶体管Q5的漏极与电阻R11的另一端和二极管D1的正极和电源电路输出端负极连接。
6.根据权利要求5所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述的三极管Q1、三极管Q2、三极管Q3和三极管Q4均采用NPN型三极管。
7.根据权利要求5所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述晶体管Q5采用N型MOS晶体管。
8.根据权利要求1至7任一项所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述输入接口至少包括LC型光纤接口、ST型光纤接口和FC型光纤接口。
9.根据权利要求1至7任一项所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述输出接口为与光功率计相匹配的光纤接口。
10.根据权利要求1至7任一项所述的一种智能变电站光功率测试用多路分光转接器,其特征是,所述壳体包括由注塑塑料制成的盒体和盒盖。
CN201520474257.0U 2015-06-30 2015-06-30 一种智能变电站光功率测试用多路分光转接器 Withdrawn - After Issue CN204836170U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520474257.0U CN204836170U (zh) 2015-06-30 2015-06-30 一种智能变电站光功率测试用多路分光转接器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520474257.0U CN204836170U (zh) 2015-06-30 2015-06-30 一种智能变电站光功率测试用多路分光转接器

Publications (1)

Publication Number Publication Date
CN204836170U true CN204836170U (zh) 2015-12-02

Family

ID=54693720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520474257.0U Withdrawn - After Issue CN204836170U (zh) 2015-06-30 2015-06-30 一种智能变电站光功率测试用多路分光转接器

Country Status (1)

Country Link
CN (1) CN204836170U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967478A (zh) * 2015-06-30 2015-10-07 国网山东省电力公司济南供电公司 一种智能变电站光功率测试用多路分光转接器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967478A (zh) * 2015-06-30 2015-10-07 国网山东省电力公司济南供电公司 一种智能变电站光功率测试用多路分光转接器
CN104967478B (zh) * 2015-06-30 2018-06-12 国网山东省电力公司济南供电公司 一种智能变电站光功率测试用多路分光转接器

Similar Documents

Publication Publication Date Title
CN102305922B (zh) 智能变电站光纤式电能表带负荷检测方法及装置
CN201654106U (zh) 具有全时及多工分时测量的多组电力测量传输装置
CN104967478A (zh) 一种智能变电站光功率测试用多路分光转接器
CN108333464A (zh) 电缆线芯快速校对装置
CN103986416A (zh) 一种便携式光伏组件监测端
CN203595773U (zh) 一种测试7芯电话线通断的快速检测装置
CN103499750A (zh) 一种便携式多功能岸电系统测试仪
CN204945296U (zh) 一种手机数据线测试器
CN204836170U (zh) 一种智能变电站光功率测试用多路分光转接器
CN110221140A (zh) 配电自动化终端智能检测仪
CN203133266U (zh) 用于光纤式电流互感器的数字化测试评估平台
CN202258757U (zh) 一种多样取能方式的电子式电流互感器
CN108663604A (zh) 一种逆变器测试平台
CN203838331U (zh) 一种电能表接线端子盒及连接器
CN208026822U (zh) 电缆线芯快速校对装置
CN205317876U (zh) 一种电缆线芯核对装置
CN104076259A (zh) 一种实时检测传输线上绝缘子污闪的设备
CN202616769U (zh) 一种通信基站用智能交流配电防雷装置
CN208125825U (zh) 无线遥测核相装置
CN208109990U (zh) 抗干扰绝缘电阻测试仪
CN207263872U (zh) 一种变电站二次电缆对线器
CN209148798U (zh) 一种三相互感器电能表的对线装置
CN203455424U (zh) 一种便携式多功能岸电系统测试仪
CN207199074U (zh) 用于调试电力计量终端的便携终端及电力计量终端系统
CN201335856Y (zh) 电压-电流变换电路

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20151202

Effective date of abandoning: 20180612

AV01 Patent right actively abandoned