CN204704931U - 一种直膨热回收节能装置 - Google Patents

一种直膨热回收节能装置 Download PDF

Info

Publication number
CN204704931U
CN204704931U CN201520318210.5U CN201520318210U CN204704931U CN 204704931 U CN204704931 U CN 204704931U CN 201520318210 U CN201520318210 U CN 201520318210U CN 204704931 U CN204704931 U CN 204704931U
Authority
CN
China
Prior art keywords
condenser
evaporimeter
heat
compressor
saving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520318210.5U
Other languages
English (en)
Inventor
蒋伟义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201520318210.5U priority Critical patent/CN204704931U/zh
Application granted granted Critical
Publication of CN204704931U publication Critical patent/CN204704931U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

本实用新型属于空调技术领域,特别涉及一种直膨热回收节能装置。主要由压缩机(COM),冷凝器(CON),膨胀阀(EXP)及蒸发器(EVP)所连接构成完整冷冻循环,所述冷凝器(CON)由第1冷凝器(CON1)及第2冷凝器(CON2)串联构成,控制第2冷凝器(CON2)所需的散热量为比例式控制第1冷凝器(CON1)的散热量,以精确控制第2冷凝器(CON2)所需的散热量;所述蒸发器(EVP)有第1蒸发器(EVP1)及第2蒸发器(EVP2)串联构成,第2蒸发器(EVP2)所需的吸热量为比例式控制第1蒸发器(EVP1)的吸热量,以精确控制第2蒸发器(EVP2)所需的吸热量;本实用新型仅需启动压缩机(COM),通过热回收,即可同时具有冷却、除湿、再热与加湿功能。

Description

一种直膨热回收节能装置
技术领域
本实用新型属于空调技术领域,特别涉及一种直膨热回收节能装置。
背景技术
台湾地区是海岛型气候的地方,一年四季中,大部份日子为湿度较大的天气,各种产业为了达到产品质量的提升或开发高科技的技术的目的,已认识到控温控湿的重要性。伴随着时代的进步,各种产业为了达到产品质量的提升或开发高科技的技术的目的,其工作环境均要求恒温恒湿的状态,又如设置在数据中心的诸多电子设备都有电路板及电子组件,如果数据中心的周围环境过于干燥,电路板及电子组件之间容易产生静电从而造成损坏,或者周围环境过于潮湿,电路板及电子组件长期处于该环境下容易发生锈蚀问题,因此诸如数据中心或其他工作环境均须要设置高效率的恒温恒湿空调设备。
一般恒温恒湿空调设备处理空气的方式是:将室内空气通过冷却除湿盘管,使空气同时作冷却除湿两种处理,直到达到低于室内空气温湿度要求的露点温度后,再送风至室内,使室内空气温湿度同时降低。但在运转过程中,室内空气温度比湿度容易先达到设定点。为了维持温度恒定,而冷却除湿盘管可继续除湿,因此在空气通过冷却除湿盘管后,设置加热器加热空气,使室内空气温度维持恒定,直到室内空气湿度达到设定点后,才控制降低冷却除湿盘管的能量。利用电 热作为再热装置,其造价虽低,然而运转电费却很浪费。所以传统直膨恒温恒湿系统的压缩机只有冷却与除湿功能,再热与加湿功能都须采用电热加热器与电热加湿器,增加了能源消耗和浪费,这一问题亟待解决。
再者,传统的热交换器热量散热(或吸热)均以控制该热交换器的冷媒或空气(或水)的流量,来达到所需的热传导或温、湿度条件,例如,控制热交换器一次侧流体(冷媒)的流量与温差,以达到所需的热交换量(高温或低温),或者是控制热交换器二次侧流体(水或空气)的流量与温差,以达到所需的热交换量(高温或低温)。但因压缩机冷媒吐出高压侧属高压气体,一是流量较不易控制,二是控制冷媒流量、压力变化时,会间接影响到压缩机的运转。
目前常用的热交换器散热(或吸热)均以控制该热交换器的一次侧流体(卤水、冰水或热水等二次冷媒)的流量温差,来达到所需的热传导或温、湿度条件。因冷媒的系统不易控制,故有二次冷媒的系统,例如,冷冻的卤水系统、空调的冰水系统或热水系统,以二次冷媒作为冷却、除湿、加热的用途,但系统会更复杂而庞大。
发明内容
本实用新型的目的是提供一种直膨热回收节能装置,主要由压缩机、冷凝器、膨胀阀及蒸发器所连结构成完整冷冻循环,仅需启动压缩机,通过热回收,即可同时具有冷却、除湿、再热与加湿功能,该装置结构简单,节能环保。
为了实现上述目的,本实用新型提供了如下技术方案:
本实用新型提供一种直膨热回收节能装置,主要由压缩机COM、冷凝器CON、膨胀阀EXP及蒸发器EVP所连结构成完整冷冻循环,冷凝器CON由第1冷凝器CON1及第2冷凝器CON2串联构成,控制 第2冷凝器CON2所需的散热量为比例式控制第1冷凝器CON1的散热量,以达到精确地控制第2冷凝器CON2所需的散热量,第2冷凝器CON2做为热回收的加热器,且不会影响压缩机COM的正常运转。
优选地,蒸发器EVP由第1蒸发器EVP1及第2蒸发器EVP2串联构成,第2蒸发器EVP2所需的吸热量为比例式控制第1蒸发器EVP1的吸热量,以精确控制第2蒸发器EVP2所需的吸热量,第2蒸发器EVP2用做冷却及除湿,当其容量低于热回收的加热器时,即有高温的加热效果,且不会影响压缩机COM的正常运转。
优选地,直膨热回收节能装置还包括串联的第3冷凝器CON3及第4冷凝器CON4,该串联的第3冷凝器CON3与第4冷凝器CON4再与串联的第1冷凝器CON1与第2冷凝器CON2两个串联回路再并联,并设有电磁阀S以控制启动热回收加热或热回收加湿功。
优选地,第4冷凝器CON4为加湿器HR。
优选地,加湿器HR包括有外部水源控制装置HRA来控制加湿水位,高温冷媒管路HRB连结热回收的高温冷媒,加热加湿水,产生湿气,压缩空气管路HRC连结空压机,利用压缩空气产生气泡,以增加空气与水的接触面积,增加加湿量。
优选地,直膨热回收节能装置还包括有第2压缩机COM2,第2压缩机COM2与压缩机COM并联,再连结回原冷冻循环回路。
与现有技术相比,本实用新型的有益效果在于:
本实用新型特别适于应用在要求温度、湿度控制的场所,在加温或加湿的过程中不会影响压缩机的正常运转,且仅需启动压缩机,通过热回收,即可同时具有冷却、除湿、再热与加湿功能,结构简单,节能环保。
附图说明
图1传统基本的冷冻循环压焓图
图2本实用新型冷冻循环压焓图
图3本实用新型实施例1装置示意图
图4本实用新型实施例2装置示意图
图5本实用新型实施例3装置示意图
图6本实用新型加湿器示意图
图7本实用新型实施例4装置示意图
图8本实用新型实施例5装置示意图
图9本实用新型实施例5运用于产业空间示意图
其中的附图标记为:
1机体                2机柜外恒温恒湿空间  10设备空间
11机柜内恒温恒湿空间 COM压缩机            COM2第2压缩机
CON冷凝器            CON1第1冷凝器        CON2第2冷凝器
CON3第3冷凝器        CON4第4冷凝器        EXP膨胀阀
EVP蒸发器            EVP1第1蒸发器        EVP2第2蒸发器
HC再热盘管           CC冷却盘管           S电磁阀
HR加湿器             HRA外部水源控制装置  HRB高温冷媒管路
HRC压缩空气管路      HRD空压机            SF送风风机
SA送风口             RA回风口
具体实施方式
下面结合附图和实施例对本实用新型进行进一步说明。
本实用新型提供一种直膨热回收节能装置,仅需启动压缩机,通过热回收,即可同时具有冷却、除湿、再热与加湿功能。
如图1所示传统基本的冷冻循环压焓图,由图可知其包括有:
1.压缩过程a-b(压缩机)
Wc=G×(hb-ha
2.冷凝过程b-c(冷凝器)
Qc=G×(hb-hc
3.节流过程c-d(膨胀阀)
hd=hc
4.蒸发过程 d-a(蒸发器)
Qe=G×(ha-hd
压缩机的运转平衡
Qc=Qe+Wc
Qc与Qe若不平衡时,压缩机会因高、低压异常而跳机。
公式符号说明:
Wc=压缩机的功率  KJ/S(KW)
G=冷媒质量流率  KG/S
h=冷媒焓值  KJ/KG
Qc=冷凝器单位时间的散热量  KJ/S(KW)
Qe=蒸发器单位时间的吸热量  KJ/S(KW)
如图2所示本实用新型冷冻循环压焓图,由图可知其包括有:
1.压缩过程a-b(压缩机)
Wc=G×(hb-ha
2.冷凝过程b-c(冷凝器)
Qc=Qc1+Qc2
Qc1=G(hb-hX)=Gf1×Cf1×ΔT1
Qc2=Qc-Qc1=Qc-Gf1×Cf1×ΔT1
注:在固定条件下Qc=常数,所以精确控制Qc1的值即可精确控制Qc2的值。
3.节流过程c-d(膨胀阀)
hd=hc
4.蒸发过程d-a(蒸发器)
Qe=Qe1+Qe2
Qe1=G(hY-hd)=Gf2×Cf2×ΔT2
Qe2=Qe-Qe1=Qe-Gf2×Cf2×ΔT2
在固定条件下Qe=常数,所以精确控制Qe1的值即可精确控制Qe2的值。
压缩机的运转平衡
Qc=Qe+Wc
(Qc1+Qc2)=(Qe1+Qe2)+Wc
Qc1与Qc2,Qe1与Qe2自己形成互补的关系,所以合成总量Qc、Qe与Wc平衡容易,不易造成压缩机高、低压异常而跳机。
公式符号说明:
Wc=压缩机的功率  KJ/S(KW)
G=冷媒质量流率  KG/S
h=冷媒焓值  KJ/KG
Qc=冷凝器单位时间的总散热量  KJ/S(KW)
Qc1=冷凝器1单位时间的散热量  KJ/S(KW)
Qc2=冷凝器2单位时间的散热量  KJ/S(KW)
Gf1=冷凝器1二次侧流体(水或空气)质量流率  KG/S
Cf1=冷凝器1二次侧流体(水或空气)比热  KJ/KG℃
ΔT1=冷凝器1二次侧流体(水或空气)的温度差  ℃
Qe=蒸发器单位时间的总吸热量  KJ/S(KW)
Qe1=蒸发器1单位时间的总吸热量  KJ/S(KW)
Qe2=蒸发器2单位时间的总吸热量  KJ/S(KW)
Gf2=蒸发器1二次侧流体(水或空气)质量流率  KG/S
Cf2=蒸发器1二次侧流体(水或空气)比热  KJ/KG℃
ΔT2=蒸发器1二次侧流体(水或空气)温度差  ℃
本实用新型散热过程以至少2个冷凝器CON1~2串联,控制第2冷凝器CON2所需的散热量Qc2,不是控制第2冷凝器CON2的一次侧流体(冷媒)的流量温差,而是比例式控制第1冷凝器CON1的散热量Qc1,也就是在图2上的散热过程在线形成X点,让X点可以左右移动,进而达到精确地控制第2冷凝器CON2所需的散热量Qc2,也就是说冷冻循环冷凝过程的散热总量是有限的(在固定条件下),散热总量-散热量=所需的散热量即Qc-Qc1=Qc2
本实用新型吸热过程以至少2个蒸发器EVP1~2串联,第2蒸发器EVP2所需的吸热量Qe2,不是控制第2蒸发器EVP2的一次侧流体(冷媒)的流量温差,而是比例式控制第1蒸发器EVP1的吸热量Qe1,也就是在第2图上的吸热过程在线形成Y点,让Y点可以左右移动,进而达到精确地控制第2蒸发器EVP2所需的吸热量Qe2,也就是说冷冻循环蒸发过程吸热总量是有限的(在固定条件下),吸热总量-吸热量=所需的吸热量即Qe-Qe1=Qe2
本实用新型为一种直膨热回收节能装置,改良了传统直膨恒温恒湿系统的缺点,传统直膨恒温恒湿系统的压缩机只有冷却与除湿功能,再热与加湿功能都须采用电热加热器与电热加湿器。本实用新型仅需启动压缩机,通过热回收,即可同时具有冷却、除湿、再热与加湿功能。
本实用新型说明书中所提的热交换器,主要指压缩机COM(COMPRESSOR)冷冻循环冷媒的热交换器,在基本冷冻循环中, 仅有蒸发器EVP(EVAPERATOR)、冷凝器CON(CONDENSER)的名称,但本实用新型将蒸发器、冷凝器放在不同的位置,有不同的名称,但其主要功能(热交换)还是不变。例如,冷却盘管CC(COOLING COIL)为蒸发器(EVP)、再热盘管HC(HEATING COIL)为冷凝器CON,加湿器HR(HUMIDIFIER)为冷凝器CON。
本实用新型说明书中所叙述的热交换器以气冷式说明,即冷媒与空气进行热交换。但若局部或全部换成水冷式,即冷媒与水进行热交换,所有的功能与原理也适用。
本实用新型说明书中所叙述的气冷式风机大部分是以轴流式风机说明。但若局部或全部换成离心式风机,所有的功能与原理也适用。
实施例1
如图3所示,可知本实施例主要是由压缩机COM、冷凝器CON、膨胀阀EXP(膨胀阀EXPANSION VALVE)及蒸发器EVP所连结构成完整冷冻循环,其特征在于:该冷凝器CON是由第1冷凝器CON1及第2冷凝器CON2串联构成。控制第2冷凝器CON2所需的散热量是比例式控制第1冷凝器CON1的散热量,以达到精确地控制第2冷凝器CON2所需的散热量,第2冷凝器CON2做为热回收的加热器,且不会影响压缩机COM的正常运转。也就是说仅需启动压缩机,通过热回收,即可同时具有冷却、除湿、加热功能。适用于食品低温干燥制程、仓库等需要低湿恒温(较低温)的产业。本实施例上述第2冷凝器CON2可为再热盘管HC,蒸发器EVP可为冷却盘管CC。
实施例2
如图4所示,本实施例蒸发器EVP是由第1蒸发器EVP1及第2蒸发器EVP2串联构成。本实施例控制第2冷凝器CON2所需的散热 量是比例式控制第1冷凝器CON1的散热量,以达到精确地控制第2冷凝器CON2所需的散热量,第2冷凝器CON2做为热回收的加热器,且不会影响压缩机的正常运转,第2蒸发器EVP2所需的吸热量是比例式控制第1蒸发器EVP1的吸热量,以精确控制第2蒸发器EVP2所需的吸热量,第2蒸发器EVP2用作冷却及除湿,当其容量低于热回收的加热器时,系统即有高温的加热效果,且不会影响压缩机的正常运转。也就是说仅需启动压缩机,藉由热回收,即可同时具有冷却、除湿、加热功能。适用于食品低温干燥制程等需要低湿恒温(较高温)的产业。本实施例第2蒸发器EVP2为冷却盘管CC。
实施例3
如图5所示,本实用新型的另一个实施例包括串联的第3冷凝器CON3及第4冷凝器CON4,该串联的第3冷凝器CON3与第4冷凝器CON4再与串联的第1冷凝器CON2与第2冷凝器CON2两个串联回路再并联,并设有电磁阀S(电磁阀SOLENOID VALVE)用来控制启动热回收加热或热回收加湿功能。也就是说仅需启动压缩机,通过热回收,即可同时具有冷却、除湿、加热、加湿功能。适用于计算机室、电子业恒温恒湿机、脱腊铸造壳模干燥工艺等需要恒温恒湿的产业。
本实施例上述第4冷凝器CON4为加湿器HR,如图6所示,该加湿器HR包括有外部水源控制装置HRA来控制加湿水位,高温冷媒管路HRB连结热回收的高温冷媒,加热加湿水,产生湿气,压缩空气管路HRC连结空压机HRD,利用压缩空气产生气泡,以增加空气与水的接触面积,增加加湿量。
本实施例上述热回收加湿器加湿量的计算:在一个开放式水箱,水从水表面的蒸发,依赖于水温对应的饱和湿度比、空气中的湿度比,空气与水的接触面积(含水平面及水面下),以及表面上的空气的速度。 蒸发的水的量可以表示为:
Gh=(θA1+C3A2)(Xs-X) 
公式说明:
Gh=每小时蒸发的水的量(公斤/小时)
θ=(C1+C2V)=蒸发系数(kg/m2h)
C1=常数(无单位)在固定条件之下
C2=常数(无单位)在固定条件之下
C3=常数(kg/m2h)在固定条件之下
V=空气的速度在水面上方(m/s)
A1=水平面上空气与水的接触面积(m2)
A2=水平面下微气泡空气与水的接触面积(m2)
Xs=在该水温的饱和空气水的湿度比(kg/kg)
X=空气中的湿度比(kg/kg)
注意!该单位θ(kg/m2h)、V(m/s)不匹配,因为这是一个经验公式-实验的结果。
实施例4
如图7所示,本实用新型另一个实施例包括第2压缩机COM2,该第2压缩机COM2系与压缩机COM并联,再连结回原冷冻循环回路。本实施例为水冷式双压缩机热回收装置,仅需启动压缩机,通过热回收,即可同时具有冷却、除湿、加热、加湿功能。适用于计算机室、电子业恒温恒湿机、脱腊铸造壳模干燥工艺等需要恒温恒湿的产业。
实施例5
如图8所示,本实用新型另一个实施例包括串联的第3冷凝器 CON3及第4冷凝器CON4,该串联的第3冷凝器CON3与第4冷凝器CON4再与串联的第1冷凝器CON2与第2冷凝器CON2两个串联回路再并联,并设有电磁阀S用来控制启动热回收加热或热回收加湿功能。仅需启动压缩机,通过热回收,即可同时具有冷却、除湿、加热、加湿功能。适用于计算机室、电子业恒温恒湿机、三温暖烤箱空间、脱腊铸造壳模干燥工艺等需要恒温恒湿的产业。
本实用新型实际运用于产业空间,以图9为例,本实用新型还包括机体1,机体1区隔有设备空间10及机柜内恒温恒湿空间11,以设置本实用新型上述各组件,还包括机柜外恒温恒湿空间2,机柜内恒温恒湿空间11设有送风风机SF连结机柜外恒温恒湿空间2之送风口SA,机柜外恒温恒湿空间2另具回风口RA连结机柜内恒温恒湿空间11,以运用于各产业。
本实用新型是直接将冷媒的高温精确地回收成系统所需的温、湿度条件,完全取代目前市场上所采用的电能加热器或电能加湿器。市场上或许有其他不同的热回收方式(例如蓄热型的热泵热回收),但是本实用新型系统简单,控制稳定且简易,对于直膨的恒温或恒湿系统可以说是最佳选择。
本实用新型上述实施例仅为了方便理解,上述仅叙述单段压缩单段膨胀的最基本循环系统,如果应用到多台压缩机并联系统、多段压缩机系统、冷媒回路并联系统、多段膨胀系统或多次元冷媒系统,上述工作原理也是适用的,在此不重复赘述。
上述实施例,仅为本实用新型优选的可行实施例而已,并非用以拘限本实用新型的保护范围,本领域技术人员,运用本实用新型说明书及权利要求书所作的等效结构变化,理应包括在本实用新型的专利保护范围内。

Claims (7)

1.一种直膨热回收节能装置,主要由压缩机(COM)、冷凝器(CON)、膨胀阀(EXP)及蒸发器(EVP)所连接构成完整冷冻循环,其特征在于:所述冷凝器(CON)由第1冷凝器(CON1)及第2冷凝器(CON2)串联构成,控制第2冷凝器(CON2)所需的散热量为比例式控制第1冷凝器(CON1)的散热量,以达到精确地控制第2冷凝器(CON2)所需的散热量,第2冷凝器(CON2)做为热回收的加热器,且不会影响压缩机(COM)的正常运转。
2.如权利要求1所述的直膨热回收节能装置,其特征在于:所述蒸发器(EVP)由第1蒸发器(EVP1)及第2蒸发器(EVP2)串联构成,第2蒸发器(EVP2)所需的吸热量为比例式控制第1蒸发器(EVP1)的吸热量,以精确控制第2蒸发器(EVP2)所需的吸热量,第2蒸发器(EVP2)用做冷却及除湿,当其容量低于热回收的加热器时,即有高温的加热效果,且不会影响压缩机(COM)的正常运转。
3.如权利要求1所述的直膨热回收节能装置,其特征在于:所述直膨热回收节能装置还包括串联的第3冷凝器(CON3)及第4冷凝器(CON4),该串联的第3冷凝器(CON3)与第4冷凝器(CON4)再与串联的第1冷凝器(CON1)与第2冷凝器(CON2)2个串联回路再并联,并设有电磁阀(S)以控制启动热回收加热或热回收加湿功能。
4.如权利要求3所述的直膨热回收节能装置,其特征在于:所述第4冷凝器(CON4)为加湿器(HR)。
5.如权利要求4所述的直膨热回收节能装置,其特征在于:所述加湿器(HR)包括有外部水源控制装置(HRA)来控制加湿水位,高温冷媒管路(HRB)连结热回收的高温冷媒,加热加湿水,产生湿气,压缩空气管路(HRC)连结空压机,利用压缩空气产生气泡,以增加空气与水的接触面积,增加加湿量。
6.如权利要求3所述的直膨热回收节能装置,其特征在于:所述直膨热回收节能装置还包括有第2压缩机(COM2),第2压缩机(COM2)与压缩机(COM)并联,再连结回原冷冻循环回路。
7.如权利要求2所述的直膨热回收节能装置,其特征在于:所述直膨热回收节能装置还包括串联的第3冷凝器(CON3)及第4冷凝器(CON4),该串联的第3冷凝器(CON3)与第4冷凝器(CON4)再与串联的第1冷凝器(CON1)与第2冷凝器(CON2)2个串联回路再并联,并设有电磁阀(S)以控制启动热回收加热或热回收加湿功能。
CN201520318210.5U 2015-05-18 2015-05-18 一种直膨热回收节能装置 Expired - Fee Related CN204704931U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520318210.5U CN204704931U (zh) 2015-05-18 2015-05-18 一种直膨热回收节能装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520318210.5U CN204704931U (zh) 2015-05-18 2015-05-18 一种直膨热回收节能装置

Publications (1)

Publication Number Publication Date
CN204704931U true CN204704931U (zh) 2015-10-14

Family

ID=54284543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520318210.5U Expired - Fee Related CN204704931U (zh) 2015-05-18 2015-05-18 一种直膨热回收节能装置

Country Status (1)

Country Link
CN (1) CN204704931U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848421A (zh) * 2015-05-18 2015-08-19 蒋伟义 一种直膨热回收节能方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848421A (zh) * 2015-05-18 2015-08-19 蒋伟义 一种直膨热回收节能方法及装置

Similar Documents

Publication Publication Date Title
CN205048940U (zh) 烘干除湿机组
Su et al. Performance analysis of a novel frost-free air-source heat pump with integrated membrane-based liquid desiccant dehumidification and humidification
Zhang et al. Optimization analysis of a hybrid fresh air handling system based on evaporative cooling and condensation dehumidification
CN207527749U (zh) 带热回收的全新风恒温恒湿空调系统
JPH05133244A (ja) 空気予備冷却方法及び空気予備冷却装置
CN102777990B (zh) 一种地下水电站洞室的水库水源热泵空调机系统
CN201368542Y (zh) 热管式新风除湿机
CN101122406B (zh) 热湿分别处理的小型中央空调机组
CN202303831U (zh) 烟草库房无调温盲区的风冷调温除湿机组
CN206320872U (zh) 空气处理系统
Peng et al. Influence of heat recovery on the performance of a liquid desiccant and heat pump hybrid system
Zhang et al. Modeling and experimental investigation of an advanced direct-expansion outdoor air dehumidification system
Shi et al. Simulation model for complex refrigeration systems based on two-phase fluid network–Part II: Model application
CN101363683A (zh) 一种太阳能热泵干燥系统
CN206113181U (zh) 一种恒温恒湿机
CN107992662B (zh) 重力热管空调系统优化设计及变工况参数的反向计算方法
TWI564525B (zh) Energy saving method and device for direct heat recovery
CN204704931U (zh) 一种直膨热回收节能装置
CN104848421A (zh) 一种直膨热回收节能方法及装置
CN101398253B (zh) 一种低温干燥装置
CN203719237U (zh) 一种双温热源热泵系统
CN102620490B (zh) 一种新风除湿加干盘管制冷的空调机组
CN207163198U (zh) 空气源热泵烘干箱
CN203083832U (zh) 一种能量回收型全新风空气处理机组性能测试装置
TWM507506U (zh) 直膨熱回收節能裝置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151014

Termination date: 20190518