CN204669305U - A kind of photovoltaic cells of Multi-Switch circuit being controllable - Google Patents

A kind of photovoltaic cells of Multi-Switch circuit being controllable Download PDF

Info

Publication number
CN204669305U
CN204669305U CN201520310796.0U CN201520310796U CN204669305U CN 204669305 U CN204669305 U CN 204669305U CN 201520310796 U CN201520310796 U CN 201520310796U CN 204669305 U CN204669305 U CN 204669305U
Authority
CN
China
Prior art keywords
photovoltaic module
relay
photovoltaic
controlled normally
photovoltaic assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520310796.0U
Other languages
Chinese (zh)
Inventor
海涛
闻科伟
张朝
林波
胡翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201520310796.0U priority Critical patent/CN204669305U/en
Application granted granted Critical
Publication of CN204669305U publication Critical patent/CN204669305U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The utility model discloses a kind of photovoltaic cells of Multi-Switch circuit being controllable, it comprises the first photovoltaic module (1), second photovoltaic module (2), 3rd photovoltaic module (3), the controlled normally-closed contact of relay (4-7), the controlled normally opened contact of relay (8-9), inverter (13), also comprise the power monitoring telemetering device (10-12) of real-time monitor optical photovoltaic assembly (1-3) generating state of energy, the first photovoltaic module (1) is monitored respectively by power monitoring telemetering device (10-12), second photovoltaic module (2), the real-time generating state of the 3rd photovoltaic module (3), after by data remote to computer or the enterprising row relax of single-chip microcomputer and analysis, again by artificial or radio operation to the controlled normally-closed contact of relay (4-7), the controlled normally opened contact of relay (8-9), carry out the adjustment of different states to reach series connection, in parallel, inverter input port is finally connected to after the different connected modes that series connection and parallel connection combine, it is simple that the utility model has structure, design ingenious, the advantage of the energy output of the raising solar photovoltaic generation system of energy flexibility.

Description

A kind of photovoltaic cells of Multi-Switch circuit being controllable
Technical field
The utility model relates to a kind of photovoltaic unit, particularly a kind of photovoltaic cells of Multi-Switch circuit being controllable.
Background technology
Conventional solar energy power generating unit, reaches specified output voltage by the series connection of polylith photovoltaic module, then expands capacity by the parallel connection of many group tandem photovoltaic assemblies, is connected to inverter, forms solar power system.The circuit structure of the photovoltaic cell of system is normally fixing, once the intensity of sunlight declines, the output voltage of photovoltaic cells will correspondingly decline.When the minimum input voltage of output voltage lower than inverter, inverter just cannot external mains supply.
Through retrieval, in existing solar photovoltaic generation system, also there is no the utility model of the photovoltaic cells of Multi-Switch circuit being controllable.
Utility model content
The purpose of this utility model is to provide a kind of photovoltaic cells of Multi-Switch circuit being controllable, have structure simple, design ingenious, can the energy output of raising solar photovoltaic generation system of flexibility.
To achieve these goals, the utility model is achieved through the following technical solutions:
A kind of photovoltaic cells of Multi-Switch circuit being controllable, it comprises the first photovoltaic module, second photovoltaic module, 3rd photovoltaic module, the controlled normally-closed contact of relay, the controlled normally opened contact of relay, inverter, also comprise the power monitoring telemetering device of the real-time monitor optical photovoltaic assembly generating state of energy, described first power monitoring telemetering device connects the first photovoltaic module, second power monitoring telemetering device connects the second photovoltaic module, 3rd power monitoring telemetering device connects the 3rd photovoltaic module, the positive pole of described first photovoltaic module is connected to the positive pole of the second photovoltaic module by a controlled normally-closed contact of relay, the positive pole of the first photovoltaic module is also connected to the negative pole of the second photovoltaic module by a controlled normally opened contact of relay simultaneously, the negative pole of the first photovoltaic module is connected to the negative pole of the second photovoltaic module by a controlled normally-closed contact of relay, the negative pole of the first photovoltaic module is also connected to the negative pole of inverter input port simultaneously, the positive pole of the second photovoltaic module is connected to the positive pole of the 3rd photovoltaic module by a controlled normally-closed contact of relay, the positive pole of the second photovoltaic module is also connected to the negative pole of the 3rd photovoltaic module by a controlled normally opened contact of relay simultaneously, the negative pole of the second photovoltaic module is connected to the negative pole of the 3rd photovoltaic module by a controlled normally-closed contact of relay, the positive pole of the 3rd photovoltaic module is also connected to the positive pole of inverter input port.
Principle of the present utility model is:
Monitored by the real-time generating state of power monitoring telemetering device monitor optical photovoltaic assembly respectively, then by data remote on computer or single-chip microcomputer, after computer or the status data of single-chip microcomputer to photovoltaic module energy output process and analyze, by artificial or radio operation to the controlled normally-closed contact of relay, the controlled normally opened contact of relay, carry out the adjustment of different states to reach series connection, in parallel, inverter input port is finally connected to after the different connected modes that series connection and parallel connection combine, adopt connected mode in this, compared with prior art, have and make the electric current after connecting have different multiples, can adjust more, controlled advantage.
In the utility model, as further illustrating, the first described photovoltaic module, the second photovoltaic module, the 3rd photovoltaic module all part are all made up of single photovoltaic module, or the component string be in series by multiple photovoltaic modulies that quantity is identical is formed.Adopt this mode, compared with prior art, can under different power consumption demands, by increasing or reduce photovoltaic module quantity to regulate and control.
In the utility model, as further illustrating, the controlled normally-closed contact of described relay or replace with controlled normally opened contact, the controlled normally opened contact of relay then replaces with controlled normally-closed contact simultaneously.Adopting this mode, compared with prior art, by controlled for relay normally-closed contact and controlled normally opened contact being replaced flexibly, making the utility model have the advantage of flexible mobility.
The beneficial effects of the utility model:
1, the utility model structure simple, design ingenious, there is great promotional value in this area.
2, use the utility model compared with the photovoltaic unit of permanent circuit structure, the connection in series-parallel number of its photovoltaic cells can adjust according to the intensity of sunlight, can improve the energy output of solar photovoltaic generation system
Accompanying drawing explanation
Fig. 1 is anatomical connectivity schematic diagram of the present utility model;
Annex marks: the first photovoltaic module 1, second photovoltaic assembly 2, the 3rd photovoltaic assembly 3, the controlled normally-closed contact 4,5,6,7 of relay, relay controlled normally opened contact 8,9, first power monitoring telemetering device 10, second power monitoring telemetering device 11, the 3rd power monitoring telemetering device 12, inverter 13.
Embodiment
Below in conjunction with embodiment, the utility model is described in further detail, but execution mode of the present utility model is not limited to the scope that embodiment represents.
Embodiment 1:
As shown in Figure 1, a kind of photovoltaic cells of Multi-Switch circuit being controllable, it comprises the first photovoltaic module 1, second photovoltaic module 2, 3rd photovoltaic module 3, the controlled normally-closed contact 4 of relay, 5, 6, 7, the controlled normally opened contact 8 of relay, 9, inverter 13, also comprise the first power monitoring telemetering device 10 of the real-time monitor optical photovoltaic assembly 1-3 generating state of energy, second power monitoring telemetering device 11, 3rd power monitoring telemetering device 12, first photovoltaic module 1, second photovoltaic module 2, 3rd photovoltaic module 3 is made up of single photovoltaic module, or the component string to be in series by multiple photovoltaic modulies that quantity is identical is formed, the controlled normally-closed contact of relay 4,5,6,7 or replace with controlled normally opened contact, the controlled normally opened contact of relay 8,9 replaces with controlled normally-closed contact simultaneously, first power monitoring telemetering device 10 connects the first photovoltaic assembly 1, second power monitoring telemetering device 11 connects the second photovoltaic assembly 2,3rd power monitoring telemetering device 12 connects the 3rd photovoltaic assembly 3, the positive pole of the first photovoltaic assembly 1 is connected to the positive pole of the second photovoltaic assembly 2 by a controlled normally-closed contact 4 of relay, the positive pole of the first photovoltaic assembly 1 is also connected to the negative pole of the second photovoltaic assembly 2 by a controlled normally opened contact 8 of relay simultaneously, the negative pole of the first photovoltaic assembly 1 is connected to the negative pole of the second photovoltaic assembly 2 by a controlled normally-closed contact 6 of relay, the negative pole of the first photovoltaic assembly 1 is also connected to the negative pole of inverter 13 input port simultaneously, the positive pole of the second photovoltaic assembly 2 is connected to the positive pole of the 3rd photovoltaic assembly 3 by a controlled normally-closed contact 5 of relay, the positive pole of the second photovoltaic assembly 2 is also connected to the negative pole of the 3rd photovoltaic assembly 3 by a controlled normally opened contact 9 of relay simultaneously, the negative pole of the second photovoltaic assembly 2 is connected to the negative pole of the 3rd photovoltaic assembly 3 by a controlled normally-closed contact 7 of relay, the positive pole of the 3rd photovoltaic assembly 3 is also connected to the positive pole of inverter 13 input port.
Principle of the present utility model is: by the first power monitoring telemetering device 10, second power monitoring telemetering device 11, 3rd power monitoring telemetering device 12 monitors the first photovoltaic assembly 1 respectively, second photovoltaic assembly 2, the real-time generating state of the 3rd photovoltaic assembly 3 is monitored, then by data remote on computer or single-chip microcomputer, after computer or the status data of single-chip microcomputer to photovoltaic module energy output process and analyze, by artificial or radio operation to the controlled normally-closed contact 4 of relay, 5, 6, 7, the controlled normally opened contact 8 of relay, 9, the adjustment carrying out different states is finally connected to inverter input port after the different connected modes reaching serial or parallel connection.
First power monitoring telemetering device 10, second power monitoring telemetering device 11, 3rd power monitoring telemetering device 12 monitors the first photovoltaic assembly 1 respectively, second photovoltaic assembly 2, the real-time generating state of the 3rd photovoltaic assembly 3, when the first photovoltaic assembly 1, second photovoltaic assembly 2, 3rd photovoltaic assembly 3 reach separately rated generation amount 75% and above time, pass through computer control, the controlled normally-closed contact 4 of relay, 5, 6, 7 close, the controlled normally opened contact 8 of relay, 9 disconnect, first photovoltaic assembly 1, the positive pole of the second photovoltaic assembly 2 is linked together by the controlled normally-closed contact 4 of relay, the positive pole of the second photovoltaic assembly 2 and the 3rd photovoltaic assembly 3 is linked together by the controlled normally-closed contact 5 of relay, the negative pole of the first photovoltaic assembly 1 and the second photovoltaic assembly 2 is linked together by the controlled normally-closed contact 6 of relay, the negative pole of the second photovoltaic assembly 2 and the 3rd photovoltaic assembly 3 is linked together by the controlled normally-closed contact 7 of relay, the circuit structure of inverter input port is connected to after forming three modules in parallel, when the first photovoltaic assembly 1, second photovoltaic assembly 2, when 3rd photovoltaic assembly 3 reaches separately the 50%-75% of rated generation amount, pass through computer control, the controlled normally-closed contact 4 of relay, 6 close, the controlled normally-closed contact 5 of relay, 7 disconnect, the controlled normally opened contact 8 of relay disconnects 9 and closes, first photovoltaic assembly 1, the positive pole of the second photovoltaic assembly 2 is linked together by the controlled normally-closed contact 4 of relay, the positive pole of the second photovoltaic assembly 2 and the negative pole of the 3rd photovoltaic assembly 3 are linked together by the controlled normally opened contact 9 of relay, the negative pole of the first photovoltaic assembly 1 and the second photovoltaic assembly 2 is linked together by the controlled normally-closed contact 6 of relay, first photovoltaic assembly 1, the negative pole of the positive pole that the second photovoltaic assembly 2 is common and the 3rd photovoltaic assembly 3 links together, the positive pole of the 3rd photovoltaic assembly 3 is connected to the positive pole of inverter 13 input port, the negative pole of the first photovoltaic assembly 1 is connected to the negative pole of inverter 13 input port, first photovoltaic assembly 1, the negative pole of the positive pole that the second photovoltaic assembly 2 is common and the 3rd photovoltaic assembly 3 links together, the positive pole of the 3rd photovoltaic assembly 3 is connected to the positive pole of inverter 13 input port, first photovoltaic assembly 1, the common negative pole of second photovoltaic assembly 2 is connected to the negative pole of inverter 13 input port, in addition also can the controlled normally-closed contact 5 of relay, 7 close, the controlled normally-closed contact 4 of relay, 6 disconnect, the controlled normally opened contact 9 of relay disconnects 8 and closes, second photovoltaic assembly 2, the positive pole of the 3rd photovoltaic assembly 3 is linked together by the controlled normally-closed contact 5 of relay, the negative pole of the second photovoltaic assembly 2 and the 3rd photovoltaic assembly 3 is linked together by the controlled normally-closed contact 7 of relay, the positive pole of the first photovoltaic assembly 1 and the negative pole of the second photovoltaic assembly 2 are linked together by the controlled normally opened contact 8 of relay, second photovoltaic assembly 2, the positive pole of the negative pole that the 3rd photovoltaic assembly 3 is common and the first photovoltaic assembly 1 links together, second photovoltaic assembly 2, the common positive pole of 3rd photovoltaic assembly 3 is connected to the positive pole of inverter 13 input port, the negative pole of the first photovoltaic assembly 1 is connected to the negative pole of inverter 13 input port.The circuit structure of inverter input port is connected in series to other 1 photovoltaic module again after forming 2 photovoltaic module parallel connections thus; When the first photovoltaic assembly 1, second photovoltaic assembly 2, the 3rd photovoltaic assembly 3 reach separately the 33%-50% of rated generation amount, pass through computer control, the controlled normally-closed contact 4,5,6,7 of relay disconnects, the controlled normally opened contact 8,9 of relay closes, the positive pole of the first photovoltaic assembly 1 and the negative pole of the second photovoltaic assembly 2 link together, the positive pole of the second photovoltaic assembly 2 and the negative pole of the 3rd photovoltaic assembly 3 link together, the positive pole of the 3rd photovoltaic assembly 3 is connected to the positive pole of inverter 13 input port, and the negative pole of the first photovoltaic assembly 1 is connected to the negative pole of inverter 13 input port.The circuit structure of inverter input port is connected to after forming 3 photovoltaic module series connection thus; When the first photovoltaic assembly 1, second photovoltaic assembly 2, the 3rd photovoltaic assembly 3 reach separately less than 33% of rated generation amount, system cannot be run.
Embodiment 2:
As different from Example 1: the component string that the first photovoltaic assembly 1, second photovoltaic assembly 2, the 3rd photovoltaic assembly 3 are in series by multiple photovoltaic modulies that quantity is identical is formed; First power monitoring telemetering device 10, second power monitoring telemetering device 11, the 3rd power monitoring telemetering device 12 monitor the real-time generating state of the first photovoltaic assembly 1, second photovoltaic assembly 2, the 3rd photovoltaic assembly 3 respectively, pass through Single-chip Controlling, the controlled normally-closed contact 4,5,6,7 of regulation and control relay, the connection status of the controlled normally opened contact 8,9 of relay.
Last it is noted that obviously, above-described embodiment is only used to the utility model example is clearly described, and not to the restriction implemented.For the those of ordinary skill in described field, can also make other changes in different forms on the basis of the above description, the module of such as monitor optical photovoltaic assembly passes the mode etc. of connection status of type, the controlled normally-closed contact of regulation and control relay, the controlled normally opened contact of relay.Here without the need to also cannot to all execution modes with exhaustive.And thus the apparent change of amplifying out or variation be still among protection range of the present utility model.

Claims (3)

1. the photovoltaic cells of a Multi-Switch circuit being controllable, it comprises the first photovoltaic module (1), second photovoltaic module (2), 3rd photovoltaic module (3), the controlled normally-closed contact of relay (4-7), the controlled normally opened contact of relay (8-9), inverter (13), it is characterized in that, also comprise and can monitor the first photovoltaic module (1) in real time, second photovoltaic module (2), the power monitoring telemetering device (10-12) of the 3rd photovoltaic module (3) generating state, described first power monitoring telemetering device (10) connects the first photovoltaic module (1), second power monitoring telemetering device (11) connects the second photovoltaic module (2), 3rd power monitoring telemetering device (12) connects the 3rd photovoltaic module (3), the positive pole of described first photovoltaic module (1) is connected to the positive pole of the second photovoltaic module (2) by a controlled normally-closed contact (4) of relay, the positive pole of the first photovoltaic module (1) is also connected to the negative pole of the second photovoltaic module (2) by a controlled normally opened contact (8) of relay simultaneously, the negative pole of the first photovoltaic module (1) is connected to the negative pole of the second photovoltaic module (2) by a controlled normally-closed contact (6) of relay, the negative pole of the first photovoltaic module (1) is also connected to the negative pole of inverter (13) input port simultaneously, the positive pole of the second photovoltaic module (2) is connected to the positive pole of the 3rd photovoltaic module (3) by a controlled normally-closed contact (5) of relay, the positive pole of the second photovoltaic module (2) is also connected to the negative pole of the 3rd photovoltaic module (3) by a controlled normally opened contact (9) of relay simultaneously, the negative pole of the second photovoltaic module (2) is connected to the negative pole of the 3rd photovoltaic module (3) by a controlled normally-closed contact (7) of relay, the positive pole of the 3rd photovoltaic module (3) is also connected to the positive pole of inverter (13) input port.
2. the photovoltaic cells of Multi-Switch circuit being controllable according to claim 1, it is characterized in that, described the first photovoltaic module (1), the second photovoltaic module (2), the 3rd photovoltaic module (3) are all made up of single photovoltaic module, or the component string be in series by multiple photovoltaic modulies that quantity is identical is formed.
3. the photovoltaic cells of Multi-Switch circuit being controllable according to claim 1, is characterized in that, the controlled normally-closed contact of described relay (4-7) or replace with controlled normally opened contact, and the controlled normally opened contact of relay (8,9) replaces with controlled normally-closed contact simultaneously.
CN201520310796.0U 2015-05-14 2015-05-14 A kind of photovoltaic cells of Multi-Switch circuit being controllable Expired - Fee Related CN204669305U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520310796.0U CN204669305U (en) 2015-05-14 2015-05-14 A kind of photovoltaic cells of Multi-Switch circuit being controllable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520310796.0U CN204669305U (en) 2015-05-14 2015-05-14 A kind of photovoltaic cells of Multi-Switch circuit being controllable

Publications (1)

Publication Number Publication Date
CN204669305U true CN204669305U (en) 2015-09-23

Family

ID=54139645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520310796.0U Expired - Fee Related CN204669305U (en) 2015-05-14 2015-05-14 A kind of photovoltaic cells of Multi-Switch circuit being controllable

Country Status (1)

Country Link
CN (1) CN204669305U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883125A (en) * 2015-05-14 2015-09-02 广西大学 Multiple-switching-circuit controllable photovoltaic cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883125A (en) * 2015-05-14 2015-09-02 广西大学 Multiple-switching-circuit controllable photovoltaic cell

Similar Documents

Publication Publication Date Title
CN204349909U (en) A kind of high efficiency photovoltaic module power optimizer and use the photovoltaic array of this optimizer
CN206775459U (en) The cutoff device and photovoltaic module turning off system of a kind of photovoltaic module
CN207150526U (en) Multicompartment level Quick shut-off device and photovoltaic system
CN109546656A (en) A kind of energy consumption branch and control method
CN206195361U (en) Novel photovoltaic power plant concentrates and network system
CN104660038A (en) Intelligent solar photovoltaic module circuit and control/protection method thereof
CN203840274U (en) Solar photovoltaic power generation system of variable topological structure
CN104935248A (en) Novel photovoltaic module monitoring unit
CN204669305U (en) A kind of photovoltaic cells of Multi-Switch circuit being controllable
CN103281013A (en) Photovoltaic power supply system
CN108667113A (en) A kind of intelligent power management system
CN102593217B (en) Intelligent photovoltaic assembly capable of preventing hot spot
CN205089541U (en) Photovoltaic water pump system
CN204836080U (en) Intelligence photovoltaic array collection flow box
CN205791567U (en) A kind of grid-connected power distribution equipment of distributed photovoltaic
CN104883125A (en) Multiple-switching-circuit controllable photovoltaic cell
CN207320851U (en) A kind of smart micro-grid system
CN103684243A (en) Solar photovoltaic power generation system of variable topological structure
CN105048505A (en) Wind-light complementary micro-grid system used for intelligent cell
CN204334379U (en) The V/f-with hysteretic characteristic falls down vertical microgrid inverter power supply
CN204928736U (en) Photovoltaic power optimizer with bypass function
CN103684248B (en) A kind of solar photovoltaic assembly integrated unit of primary topology
CN208738854U (en) The solar panel MPPT control system of Adaptive Genetic optimization
CN206041639U (en) But centralized control's intelligent power distribution system
CN102969754B (en) Storage battery pack connection circuit and intelligent storage battery pack

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150923

Termination date: 20160514