CN204667136U - Multirobot cooperative control system - Google Patents

Multirobot cooperative control system Download PDF

Info

Publication number
CN204667136U
CN204667136U CN201520369144.4U CN201520369144U CN204667136U CN 204667136 U CN204667136 U CN 204667136U CN 201520369144 U CN201520369144 U CN 201520369144U CN 204667136 U CN204667136 U CN 204667136U
Authority
CN
China
Prior art keywords
robot
fixed head
cooperative control
multirobot
xbee
Prior art date
Application number
CN201520369144.4U
Other languages
Chinese (zh)
Inventor
王国胜
吕强
任哲平
刘峰
郭峰
马建业
Original Assignee
中国人民解放军装甲兵工程学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军装甲兵工程学院 filed Critical 中国人民解放军装甲兵工程学院
Priority to CN201520369144.4U priority Critical patent/CN204667136U/en
Application granted granted Critical
Publication of CN204667136U publication Critical patent/CN204667136U/en

Links

Abstract

The utility model discloses a kind of multirobot cooperative control system, it comprises main frame, camera, XBee transceiver and multiple robot; Described camera signals is connected to described main frame, and for taking the image comprising all robots; Described XBee transceiver signal is connected to described main frame; Described XBee transceiver is also connected with the XBee transceiver module signal of described robot.Multirobot cooperative control system of the present utility model, owing to have employed four-wheel omni-directional mobile robots, it has locomitivity flexibly, overcomes the problem of the moving range deficiency of the wheeled mobile robot of Differential Driving, enhances the performance of multirobot platform; And this multirobot cooperative control system adopts image processing techniques to complete the location of robot, the image information that described camera obtains is enriched, and the sampling period is short and little by disturbing factor interference such as magnetic fields; Overcome the limitation of the location technologies such as odometer of the prior art, inertial navigation, GPS.

Description

Multirobot cooperative control system
Technical field
The utility model relates to a kind of robot control system, particularly relates to a kind of multirobot cooperative control system.
Background technology
Along with multi-robot system is in the application in the field such as industrial, military, medical, one of the focus be developed in order to multirobot research of robot platform.At present, both at home and abroad each research institution multimachine applicator platform of being all devoted to develop oneself with the checking application relevant to multirobot.
The performance of multirobot platform depends on its composition robot, at present the wheeled mobile robot of comparatively commonly Differential Driving with regard to land mobile robot.But in some narrow regions or the more activity space of obstacle, Differential Driving mode cannot movement arbitrarily, and the moving range of robot is greatly limited.
The positioning system of multirobot platform is the prerequisite that multirobot controls.At present, the location technology that multirobot experiment porch is conventional mainly contains odometer, inertial navigation, GPS etc.But said method has limitation, as odometer technology because its integral characteristic exists larger error accumulation; Growth in time can there is drift error increased in time in inertial navigation technique; GPS precision problem and unsuitable indoor use etc.
Utility model content
The utility model object is to provide a kind of multirobot cooperative control system, and the robot in described multi-robot system control system has the ability of Omni-mobile, namely has in plane along X, Y-axis translation and the three degree of freedom along Z axis rotation; And described control system uses image processing techniques to complete the location of robot.
The utility model technical solution problem adopts following technical scheme: a kind of multirobot cooperative control system, and it comprises main frame, camera, XBee transceiver and multiple robot;
Described camera signals is connected to described main frame, and for taking the image comprising all robots;
Described XBee transceiver signal is connected to described main frame;
Described XBee transceiver is also connected with the XBee transceiver module signal of described robot.
Optionally, the artificial four-wheel omni-directional mobile robots of described machine, described multiple robot is distributed in same plane.
Optionally, described four-wheel omni-directional mobile robots comprises fixed head, circuit board, motor and Switzerland's wheel;
Described fixed head is square, and described circuit board is fixed on the bottom of described fixed head; And be positioned at the center of described fixed head;
The quantity of described motor is four, and described four motors are all fixed on described fixed head, and the output shaft of described four motors is respectively perpendicular to the four edges of described square fixed head;
The output shaft of each motor described is all provided with Switzerland's wheel, described Switzerland wheel is positioned at outside described fixed head.
Optionally, the shape of described fixed head is square.
Optionally, described fixed head adopts organic glass to make.
Optionally, described fixed head is fixed with identity recognition device, described identity recognition device comprises two circular projections, and described two protruding radiuses are not identical.
Optionally, described circuit board is provided with the control system of described four-wheel omni-directional mobile robots, described control system controller, I/O interface, USB communication interface, coded signal input interface, A/D input interface, PWM output interface and XBee module; Described I/O interface, USB communication interface, coded signal input interface, A/D input interface and PWM output interface signal are connected to described controller, and described XBee module by signal is connected to described USB communication interface.
The utility model has following beneficial effect: multirobot cooperative control system of the present utility model, owing to have employed four-wheel omni-directional mobile robots, it can realize from current location to the motion any direction, and can turn to by no-radius, have in plane along X, Y-axis translation and the three degree of freedom along Z axis rotation.The kinetic characteristic of robot of four-wheel omnidirectional makes it have locomitivity flexibly, overcomes the problem of the moving range deficiency of the wheeled mobile robot of Differential Driving, enhances the performance of multirobot platform; And multirobot cooperative control system of the present utility model adopts image processing techniques to complete the location of robot, the image information that described camera obtains is enriched, and the sampling period is short and little by disturbing factor interference such as magnetic fields; Overcome the limitation of the location technologies such as odometer of the prior art, inertial navigation, GPS.
Accompanying drawing explanation
Fig. 1 is the structural representation of multirobot cooperative control system of the present utility model;
Fig. 2 is the structural representation of four-wheel omni-directional mobile robots of the present utility model;
Fig. 3 is the structural representation of control system of the present utility model;
In figure, mark is illustrated as: 1-main frame; 2-camera; 3-XBee transceiver; 4-robot; 5-fixed head; 6-circuit board; 7-motor; 8-Switzerland takes turns; 9-identity recognition device; 10-controller; 11-I/O interface; 12-USB communication interface; 13-coded signal input interface; 14-A/D input interface; 15-PWM output interface; 16-XBee module.
Embodiment
Below in conjunction with embodiment and accompanying drawing, the technical solution of the utility model is further elaborated.
Embodiment 1
Present embodiments provide a kind of multirobot cooperative control system, it comprises main frame 1, camera 2, XBee transceiver 3 and multiple robot 4.
Described main frame 1 is computing machine, can certainly be industrial computer.
Described robot 4 is four-wheel omni-directional mobile robots, and described multiple robot 4 is distributed in same working face.
Described camera 2 is connected with described main frame 1, and for the image transmitting captured by it to main frame, described main frame receives described image, and processes image, obtains the position of robot; In the present embodiment, described camera can be installed on the fixed object of the top of described multiple robot, to make to comprise all robots in the image captured by described camera; In the present embodiment, camera is the USB camera of resolution 640*480, and it is good that this camera has photographic effect, simple with main frame connected mode, be convenient to arrange and the advantage such as mobile, with low cost.Be placed on directly over system in multi-robot system.
Described XBee transceiver is connected with described host signal, and described XBee transceiver, under the control of described main frame, communicates with described multirobot, thus can control the motion of each robot by described main frame.
Multirobot cooperative control system of the present utility model, owing to have employed four-wheel omni-directional mobile robots, it can realize from current location to the motion any direction, and can turn to by no-radius, has in plane along X, Y-axis translation and the three degree of freedom along Z axis rotation.The kinetic characteristic of robot of four-wheel omnidirectional makes it have locomitivity flexibly, overcomes the problem of the moving range deficiency of the wheeled mobile robot of Differential Driving, enhances the performance of multirobot platform; And multirobot cooperative control system of the present utility model adopts image processing techniques to complete the location of robot, the image information that described camera obtains is enriched, and the sampling period is short and little by disturbing factor interference such as magnetic fields; Overcome the limitation of the location technologies such as odometer of the prior art, inertial navigation, GPS.
In the present embodiment, described four-wheel omni-directional mobile robots comprises fixed head 5, circuit board 6, motor 7 and Switzerland's wheel 8;
Described fixed head is square, and preferably, the shape of described fixed head can be square, and described circuit board is fixed on the bottom of described fixed head; And be positioned at the center of described fixed head; More preferably, described fixed head adopts organic glass to make.
The quantity of described motor is four, and described four motors are all fixed on described fixed head, and the output shaft of described four motors is respectively perpendicular to the four edges of described square fixed head.In the present embodiment, described motor is German Feng Habo 2342L012CR model direct current generator, this motor is made up of motor body and planetary reduction box, adopt reducing motor, larger moment of torsion can be exported, start, stop and rotating backward the carrying out of all energy continuous effective, and there is good response characteristic, characteristic when rotating and reverse is identical, and operation characteristic is stablized, and has good antijamming capability.In addition, this motor carries scrambler, and described scrambler is photoelectricity orthogonal encoder, is convenient to the control carrying out speed.
The output shaft of each motor described is all provided with Switzerland's wheel, more preferably, described Switzerland wheel is double Switzerland wheel, and described Switzerland takes turns and is positioned at outside described fixed head.
Described fixed head is fixed with identity recognition device 9, described identity recognition device comprises two circular projections, and described two protruding radiuses are not identical; More preferably, for strengthening the identity-independent identification to different robots, the color of the projection of described different robot is not identical; Described camera takes the image of described robot, size protruding described in described main frame identification and color, thus can determine position and the attitude of described robot.
In the present embodiment, described robot also comprises battery, and described battery is described circuit board and feeding electric motors.Preferably, described battery can adopt capacity to be 1800mAh voltage to be the lithium battery group of 7.4V.
Described circuit board is provided with the control system of described four-wheel omni-directional mobile robots, it comprises controller 10, I/O interface 11, USB communication interface 12, coded signal input interface 13, A/D input interface 14, PWM output interface 15 and XBee module 16; Described I/O interface 11, USB communication interface 12, coded signal input interface 13, A/D input interface 14 and PWM output interface 15 signal are connected to described controller, and described XBee module by signal is connected to described USB communication interface.
Described controller is TMS320F28069 chip, and it is high that described TMS320F28069 has precision, and cost is low, and power consumption is little, and peripheral hardware integrated level is high, data and program memory space large and the A/D conversion more accurately advantage such as quick.
Described coded signal input interface 13 is connected to described photoelectricity orthogonal encoder, thus the motor velocity signal that photoelectricity orthogonal encoder is changed is input to controller 10, the function of described PWM output interface is the running that output pwm signal controls motor, described A/D input interface function converts voltage signal to digital quantity, described USB communication interface is used for connecting XBee module, thus realizes the communication between described robot and main frame; Described I/O interface is divided into general purpose I/O and special I/O two class, is convenient to later Installation and Debugging.
In the present embodiment, the XBee module of described robot is as terminal, and the XBee transceiver of described main frame is telegon, by the debugging between the XBee module of robot described in X-CTU software simulating and the XBee transceiver of main frame.
The sequencing of above embodiment, only for ease of describing, does not represent the quality of embodiment.
Last it is noted that above embodiment is only in order to illustrate the technical solution of the utility model, be not intended to limit; Although be described in detail the utility model with reference to previous embodiment, those of ordinary skill in the art is to be understood that: it still can be modified to the technical scheme described in foregoing embodiments, or carries out equivalent replacement to wherein portion of techniques feature; And these amendments or replacement, do not make the essence of appropriate technical solution depart from the spirit and scope of each embodiment technical scheme of the utility model.

Claims (7)

1. a multirobot cooperative control system, is characterized in that, comprises main frame, camera, XBee transceiver and multiple robot;
Described camera signals is connected to described main frame, and for taking the image comprising all robots;
Described XBee transceiver signal is connected to described main frame;
Described XBee transceiver is also connected with the XBee transceiver module signal of described robot.
2. multirobot cooperative control system according to claim 1, is characterized in that, the artificial four-wheel omni-directional mobile robots of described machine, described multiple robot is distributed in same plane.
3. multirobot cooperative control system according to claim 2, is characterized in that, described four-wheel omni-directional mobile robots comprises fixed head, circuit board, motor and Switzerland's wheel;
Described fixed head is square, and described circuit board is fixed on the bottom of described fixed head; And be positioned at the center of described fixed head;
The quantity of described motor is four, and described four motors are all fixed on described fixed head, and the output shaft of described four motors is respectively perpendicular to the four edges of described square fixed head;
The output shaft of each motor described is all provided with Switzerland's wheel, described Switzerland wheel is positioned at outside described fixed head.
4. multirobot cooperative control system according to claim 3, is characterized in that, the shape of described fixed head is square.
5. multirobot cooperative control system according to claim 3, is characterized in that, described fixed head adopts organic glass to make.
6. the multirobot cooperative control system according to claim 4 or 5, is characterized in that, described fixed head is fixed with identity recognition device, and described identity recognition device comprises two circular projections, and described two protruding radiuses are not identical.
7. multirobot cooperative control system according to claim 6, it is characterized in that, described circuit board is provided with the control system of four-wheel omni-directional mobile robots, described control system comprises controller, I/O interface, USB communication interface, coded signal input interface, A/D input interface, PWM output interface and XBee module; Described I/O interface, USB communication interface, coded signal input interface, A/D input interface and PWM output interface signal are connected to described controller, and described XBee module by signal is connected to described USB communication interface.
CN201520369144.4U 2015-06-01 2015-06-01 Multirobot cooperative control system CN204667136U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520369144.4U CN204667136U (en) 2015-06-01 2015-06-01 Multirobot cooperative control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520369144.4U CN204667136U (en) 2015-06-01 2015-06-01 Multirobot cooperative control system

Publications (1)

Publication Number Publication Date
CN204667136U true CN204667136U (en) 2015-09-23

Family

ID=54137499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520369144.4U CN204667136U (en) 2015-06-01 2015-06-01 Multirobot cooperative control system

Country Status (1)

Country Link
CN (1) CN204667136U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898575A (en) * 2015-06-01 2015-09-09 中国人民解放军装甲兵工程学院 Multi-robot cooperation control system
TWI623829B (en) * 2015-12-11 2018-05-11 富奇想股份有限公司 Method for collaboration between functional modules, modular functional module, and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898575A (en) * 2015-06-01 2015-09-09 中国人民解放军装甲兵工程学院 Multi-robot cooperation control system
TWI623829B (en) * 2015-12-11 2018-05-11 富奇想股份有限公司 Method for collaboration between functional modules, modular functional module, and system

Similar Documents

Publication Publication Date Title
CN104407615B (en) AGV robot guide deviation correction method
CN103294059B (en) Based on mobile robot positioning system and the method thereof of hybrid navigation band
CN103353758B (en) A kind of Indoor Robot navigation method
CN202838024U (en) Novel automatic control system for quick sprint of a microcomputer mouse
CN102841618B (en) Novel quick-exploration automatic control system for microcomputer rat
CN102424112B (en) Three-layer airborne flight control device for micro four-rotor aerial vehicle
Rohmer et al. Quince: A collaborative mobile robotic platform for rescue robots research and development
CN204557106U (en) Unmanned plane farmland information collector
CN101817182B (en) Intelligent moving mechanical arm control system
CN103552617B (en) There is the omnidirectional rolling spherical robot that stable platform can bounce
CN202255404U (en) Binocular vision navigation system of indoor mobile robot
Conradt et al. An embedded AER dynamic vision sensor for low-latency pole balancing
CN105425791A (en) Swarm robot control system and method based on visual positioning
CN100361792C (en) Controlling system of movable manipulator
CN104199459A (en) Underwater robot control system based on mobile phone Bluetooth technology
CN103699126B (en) The guidance method of intelligent guide robot
CN102039589B (en) Modularized disaster rescue robot
CN204374771U (en) Realize device and the sweeping robot of the modeling of sweeping robot map boundary line
CN202229764U (en) Triaxial rotary table with dynamic stabilizing function
CN204237151U (en) A kind of leading screw lifting device and adopt the logistics carrier of this device
CN104943858A (en) Multifunctional coaxial double-rotor-wing four-shaft aircraft
CN102841620B (en) Novel micro-mouse quick sprint automatic control system
CN103823471A (en) Vector-propelled small four-axis underwater robot control system
CN104460669A (en) AGV robot path navigation system
CN105607653A (en) Holder control method and system

Legal Events

Date Code Title Description
GR01 Patent grant
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150923

Termination date: 20180601

CF01 Termination of patent right due to non-payment of annual fee