CN204546289U - A kind of numerically control grinder amount instrument system reliability test - Google Patents

A kind of numerically control grinder amount instrument system reliability test Download PDF

Info

Publication number
CN204546289U
CN204546289U CN201520208739.1U CN201520208739U CN204546289U CN 204546289 U CN204546289 U CN 204546289U CN 201520208739 U CN201520208739 U CN 201520208739U CN 204546289 U CN204546289 U CN 204546289U
Authority
CN
China
Prior art keywords
slide block
travel switch
servomotor
leading screw
guide post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201520208739.1U
Other languages
Chinese (zh)
Inventor
范晋伟
伊晓龙
陈东菊
刘勇军
刘益嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201520208739.1U priority Critical patent/CN204546289U/en
Application granted granted Critical
Publication of CN204546289U publication Critical patent/CN204546289U/en
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

A kind of numerically control grinder amount instrument system reliability test, belongs to Precision Manufacturing Technology and field of industrial automation control.This device comprises mechanical control system, electric control system; Mechanical control system comprises axial measuring system, radial measurement system, workpiece add clamping system; Described experimental rig, according to the reliability test of the workpiece of the numerically control grinder amount of carrying out instrument under different rotating speeds, by Controlled by Programmable Controller frequency converter, thus controls the rotating speed of servomotor; By Controlled by Programmable Controller servo-driver, control the rotating speed of servomotor thus the measuring position of controlled quentity controlled variable instrument.The various different operating mode of this experimental rig simulation numerically control grinder, the amount measuring frequency of instrument, the rotating speed of workpiece change as required, the data of the measurement in Controlled by Programmable Controller touch-screen reserve capacity instrument running and fault data, calculate, evaluate the reliability level of numerically control grinder amount instrument by these data.

Description

A kind of numerically control grinder amount instrument system reliability test
Technical field
The utility model relates to a kind of experimental rig being used for evaluating numerically control grinder amount instrument system reliability, belongs to Precision Manufacturing Technology and field of industrial automation control.
Background technology
Numerically control grinder is widely used in machining manufacturing industry, utilizes numerical control program to control driven by servomotor wheel grinding axle class, plane etc.Numerically control grinder is generally last procedure of precision component processing, so the efficiency of the quality of numerically control grinder performance and the height of the reliability precision of processing part and processing has important impact.
For numerically control grinder, the Main Function of amount instrument system is the processing dimension of measuring workpieces thus the precision of control workpiece, and therefore measuring instrument system is the key component ensureing Workpiece Machining Accuracy.The precision of height to processing parts of amount instrument system reliability has a direct impact.Mainly there is the problems such as measuring jaw damages, the damage of amount instrument arm, sensor degradation, limitation travel switch damages, hydraulic cylinder does not work at numerically control grinder running passage instrument, these problems are once occur, the part of processing is likely waste product, has a strong impact on production efficiency.
In order to improve the reliability of numerically control grinder, usually needing the fault data gathering numerically control grinder, then calculating the MTBF of numerically control grinder.When designing numerically control grinder, in order to improve the reliability of numerically control grinder complete machine, need the parts selecting reliability high, and want the reliability level understanding parts, must reliability test be carried out.
The amount instrument system of numerically control grinder is one of key system components of numerically control grinder, the reliability of lifting capacity instrument, must carry out reliability test to amount instrument.Workpiece rotational frequency in actual measurement process is different, measuring frequency is different, the reliability of the equal factor in measuring position equal possibility influence amount instrument, experimental rig must can simulate different operating modes, the operating fault of adherence controlled grinder amount instrument, for the reliability of assessment numerically control grinder amount instrument provides data.
Current numerically control grinder when designing to the test of test mainly under no-load condition of amount instrument system, and seldom carry out reliability test, cause the reliability basic data of numerically control grinder amount instrument system little, designer cannot hold the reliability level of numerically control grinder amount instrument system.
Summary of the invention
The purpose of this utility model is to provide a kind of numerically control grinder amount instrument system reliability test, and this device comprises mechanical control system, electric control system; Mechanical control system comprises axial measuring system, radial measurement system, workpiece add clamping system, and test method comprises data acquisition and processing (DAP) method.This experimental rig can simulate the various different operating mode of numerically control grinder, the amount measuring frequency of instrument, the rotating speed of workpiece can change as required, the data of the measurement in Controlled by Programmable Controller touch-screen reserve capacity instrument running and fault data, calculate, evaluate the reliability level of numerically control grinder amount instrument by these data.
For achieving the above object, the technical solution adopted in the utility model is a kind of numerically control grinder amount instrument system reliability test, and this device comprises mechanical control system, electric control system;
Mechanical control system comprises axial measuring system, radial measurement system, workpiece add clamping system;
In axial measuring system, axial measuring system locates by end face that measuring jaw (25) realizes, end face location measuring jaw (25) throughput instrument arm a (24) is connected with hydraulic cylinder a (23), controlled quentity controlled variable instrument arm (24) is driven by hydraulic cylinder a (23), hydraulic cylinder a (23) is arranged on slide block a (11), slide block a has screw thread in (11), slide block a (11) and leading screw a (21), guide post a (10) coordinates, slide block a (11) and leading screw a (21) are threaded engagement, leading screw a (21) is parallel with guide post a (10), ensure that slide block a (11) does rectilinear motion along guide post a (10), leading screw a (21) is connected with servomotor a (16) by shaft coupling a (17), leading screw a (21) and guide post a (10) is fixed by gripper shoe a (13) and gripper shoe b (14), and servomotor a (16) is controlled by servo-driver a (54), servomotor a (16) is fixed on base a (9) by motor support plate a (15), gripper shoe a (13), gripper shoe b (14) are fixed on base a (9), describedly be respectively equipped with limitation travel switch a (19), initial point travel switch a (20), limitation travel switch b (8) along guide post a (10) and leading screw a (21) direction, initial point travel switch a (20) is the initial motion position of slide block a (11), limitation travel switch b (8) is the movement position farthest of slide block a (11), limitation travel switch a (19), limitation travel switch b (8) are arranged on along guide post b (10), leading screw b (30) two ends, direction, axial vector instrument (67), displacement transducer a (12) are connected on the input of the Programmable Logic Controller (47) of electric control system.
In radial measurement system, radial measurement is surveyed son (34) by diamond and is directly contacted surface of the work measurement realization, diamond is surveyed son (34) and is connected with amount instrument arm b (32) by measuring jaw (33), and amount instrument arm b (32) is driven by hydraulic cylinder b (31); Hydraulic cylinder b (31) is arranged on slide block b (40), slide block b has screw thread in (40), slide block b (40) coordinates with leading screw b (30), guide post b (39), slide block b (40) and leading screw b (30) are threaded engagement, guide post b (39) is parallel with leading screw b (30), ensures that slide block b (40) does the rectilinear motion along guide post b (39) direction; Leading screw b (30) is connected with servomotor b (26) by shaft coupling b (27), leading screw b (30) and guide post b (39) is fixed by gripper shoe c (42) and gripper shoe d (43), and servomotor b (26) is controlled by servo-driver b (56); Servomotor b (26) is fixed on base b (38) by motor support plate b (44); Gripper shoe c (42), gripper shoe d (43) are fixed on base b (38); Describedly be respectively equipped with limitation travel switch c (28), initial point travel switch b (29), limitation travel switch d (35) along guide post b (39) and leading screw b (30) direction, initial point travel switch b (29) is the initial motion position of slide block b (40); Limitation travel switch d (35) is the movement position farthest of slide block b (40); Limitation travel switch c (28), limitation travel switch d (35) are arranged on along guide post b (39), leading screw b (30) two ends, direction; Radial meter (66), displacement transducer b (41) are connected on the input of the Programmable Logic Controller (47) of electric control system.
Workpiece adds in clamping system, workpiece (22) one end clamping is in scroll chuck (7), scroll chuck (7) is connected with main shaft (2) by chuck seat (6), main shaft (2) is supported by bearing a (4) and bearing b (5), main shaft (2) is provided with synchronous pulley a (3), the output of servomotor c (36) is provided with synchronous pulley b (37), Timing Belt (1) is arranged on synchronous pulley a (3) and synchronous pulley b (37); The other end of workpiece (22) is fixed by top (18).The rotation of workpiece (22) is driven by Timing Belt (1) transmission by servomotor c (36), and servomotor c (36) sends pulse signal by Programmable Logic Controller (47) to frequency converter (46) and controls.
The beneficial effect that the utility model has is:
1, experimental rig described in the utility model can simulate the condition of work of numerically control grinder amount instrument system, the fault data of record numerically control grinder amount instrument, thus calculates and evaluate the reliability level of numerically control grinder amount instrument.
2, experimental rig described in the utility model according to the reliability test of the workpiece of the numerically control grinder amount of carrying out instrument under different rotating speeds, by Controlled by Programmable Controller frequency converter, thus can control the rotating speed of servomotor; By Controlled by Programmable Controller servo-driver, control the rotating speed of servomotor thus the measuring position of controlled quentity controlled variable instrument.Touch-screen records measurement data automatically, and when breaking down automatic record trouble type and fault time.
3, the utility model is applicable to the reliability test of numerically control grinder amount instrument, when the reliability design of numerically control grinder, is used for the reliability level of evaluation amount instrument, has good application prospect.
Accompanying drawing explanation
Fig. 1 is the structure chart of numerically control grinder amount instrument system reliability test;
Fig. 2 is the radial meter structure chart of numerically control grinder amount instrument system reliability test;
Fig. 3 is the electric control theory figure of numerically control grinder amount instrument system reliability test;
Fig. 4 is the workpiece rotational frequency curve map of numerically control grinder amount instrument system reliability test;
Fig. 5 is the radial meter measuring frequency curve map of numerically control grinder amount instrument system reliability test;
Fig. 6 is the axial vector instrument measuring frequency curve map of numerically control grinder amount instrument system reliability test;
Fig. 7 is the radial meter measuring position curve map of numerically control grinder amount instrument system reliability test;
Fig. 8 is the axial vector instrument measuring position curve map of numerically control grinder amount instrument system reliability test;
In figure: 1, Timing Belt, 2, main shaft, 3, synchronous pulley a, 4, bearing a, 5, bearing b, 6, chuck seat, 7, scroll chuck, 8, limitation travel switch a, 9, base a, 10, guide post a, 11, slide block a, 12, displacement transducer a, 13, gripper shoe a, 14, gripper shoe b, 15, motor support plate a, 16, servomotor a, 17, shaft coupling a, 18, top, 19, limitation travel switch b, 20, initial point travel switch a, 21, leading screw a, 22, workpiece, 23, hydraulic cylinder a, 24, amount instrument arm a, 25, end face location measuring jaw, 26, servomotor b, 27, shaft coupling b, 28, limitation travel switch c, 29, initial point travel switch b, 30, leading screw b, 31, hydraulic cylinder b, 32, amount instrument arm b, 33, measuring jaw, 34, diamond surveys son, and 35, limitation travel switch d, 36, servomotor c, 37, synchronous pulley b, 38, base b, 39, guide post b, 40, slide block b, 41, displacement transducer c, 42, gripper shoe c, 43, gripper shoe d, 44, motor support plate b, 45, ac contactor contact a, 46, frequency converter, 47, Programmable Logic Controller, 48, ac contactor contact b, 49, ac contactor contact c, 50, ac contactor contact d, 51, green light, 52, red light, 53, touch-screen, 54, servo-driver a, 55, ac contactor contact e, 56, servo-driver b, 57, ac contactor contact f, 58, emergency stop push button, 59, SR, 60, stop button, 61, start button, 62, radial meter switch, 63, axial vector instrument switch, 64, radial meter magnetic valve, 65, axial vector instrument magnetic valve, 66, radial meter, 67, axial vector instrument.
Detailed description of the invention
Below in conjunction with accompanying drawing, the utility model is further described.
As Figure 1-3, electric control system comprises limitation travel switch a (8), displacement transducer a (12), limitation travel switch b (19), initial point travel switch a (20), limitation travel switch c (28), initial point travel switch b (29), limitation travel switch d (35), displacement transducer b (41), ac contactor contact a (45), frequency converter (46), Programmable Logic Controller (47), ac contactor contact b (48), ac contactor contact c (49), ac contactor contact d (50), green light (51), red light (52), touch-screen (53), servo-driver a (54), ac contactor contact e (55), servo-driver b (56), ac contactor contact f (57), emergency stop push button (58), SR (59), stop button (60), start button (61), radial meter switch (62), axial vector instrument switch (63), radial meter magnetic valve (64), axial vector instrument magnetic valve (65), radial meter (66), axial vector instrument (67).
Displacement transducer a (12) on slide block a (11) in order to detection axis vector instrument survey the particular location of size; Displacement transducer b (41) on slide block b (40) in order to detect radial meter survey the particular location of size; Meanwhile, displacement transducer a (12) is connected with Programmable Logic Controller (47) with displacement transducer b (41).Experimental rig is provided with start button (61), stop button (60), SR (59), emergency stop push button (58), green indicating lamp (51), red led (52).Ac contactor contact b (48) is connected on the output of Programmable Logic Controller (47), in order to control frequency converter (46) electric and dead electricity.
Whole experimental rig is controlled by Programmable Logic Controller (47), Programmable Logic Controller (47) sends signal to frequency converter (46) and controls servomotor c (36) with different rotation speed operation, thus controls workpiece (22) with different rotational speed; Programmable Logic Controller (47) sends signal to servo-driver b (56) and drives servomotor b (26) to rotate, thus controls the position of radial measurement point; Programmable Logic Controller (47) sends signal to servo-driver a (54) and drives servomotor a (16) to rotate, thus controls the position of axial measurement point.Normal work stage, Programmable Logic Controller (47) controls the data of touch-screen (53) real time record axial vector instrument and radial meter measurement, the data of displacement transducer, and is preserved, green indicating lamp Chang Liang simultaneously.Once amount instrument system breaks down, Programmable Logic Controller (47) controls servomotor a (16), servomotor b (26) immediately, servomotor c (36) shuts down, and red light (52) glimmers.Programmable Logic Controller (47) sends fault-signal to touch-screen (53), and touch-screen (53) is preserved and shown fault type, time of failure.After off-test, the fault message in statistics touch-screen (53), in order to calculate, to assess the reliability level of numerically control grinder amount instrument.
Fig. 4 is the speed curves figure of Digit Control Machine Tool amount instrument system reliability test workpiece, in figure, the minimum speed of workpiece is divided into 5 grades to the interval of maximum speed, use respectively n1, n2 ..., n5 represents, in test, main shaft respectively according to n1, n2 ..., n5 rotating speed cover a circulation.Fig. 5 is the measuring frequency curve map of Digit Control Machine Tool amount instrument system reliability test radial measurement, in figure, the low-limit frequency of radial measurement device is divided into 5 grades to the interval of highest frequency, represent with N11, N12, N13, N14, N15 respectively, in test, radial measurement device covers a circulation according to the frequency of N11, N12, N13, N14, N15 respectively.Fig. 6 is the measuring frequency curve map of Digit Control Machine Tool amount instrument system reliability test radial measurement, in figure, the low-limit frequency of radial measurement device is divided into 3 grades to the interval of highest frequency, represent with N21, N22, N23 respectively, in test, radial measurement device covers a circulation according to the frequency of N21, N22, N23 respectively.Fig. 7 is the position measurement curve map of Digit Control Machine Tool amount instrument system reliability test radial measurement, in figure, the measuring position of radial measurement device is divided into 6 grades between two limit switches, represent with s11, s12, s13, s14, s15, s16 respectively, in test, radial measurement device covers a circulation according to the measuring position of s11, s12, s13, s14, s15, s16 respectively.Fig. 8 is the measuring position curve map that Digit Control Machine Tool amount instrument system reliability test is axially measured, in figure, the measuring position of axial measurement mechanism is divided into 4 grades between two limit switches, represent with s21, s22, s23, s24 respectively, in test, axial measurement mechanism covers a circulation according to the measuring position of s21, s22, s23, s24 respectively.
After system passes into power supply, if slide block a (11) not at initial point travel switch a (20) place or slide block b (40) not at initial point travel switch b (29) place, press SR (59), Programmable Logic Controller (47) controls ac contactor contact c (49) and ac contactor contact d (50) obtains electric, ac contactor contact contact e (55), ac contactor contact contact f (57) are connected, servo-driver a (54) and servo-driver b (56) energising.Programmable Logic Controller (47) sends reverse signal to servo-driver (54), servo-driver a (54) controls servomotor a (16) reversion, slide block a (11) moves right, and stops when meeting initial point travel switch a (20); Programmable Logic Controller (47) sends reverse signal to servo-driver b (56), servo-driver b (56) controls servomotor b (26) reversion, slide block b (40) moves right, and stops when meeting initial point travel switch b (29).
Press start button (61), Programmable Logic Controller (47) controls A.C. contactor (48) and obtains electric, and ac contactor contact (45) is connected, and frequency converter (46) is energized.Programmable Logic Controller (47) sends turn signal to frequency converter (46), and frequency converter (46) controls servomotor (36) with the rotation speed operation of n1 in Fig. 3.Programmable Logic Controller (47) controls A.C. contactor (49) and obtains electric, and ac contactor contact (55) is connected, and servo-driver (54) is energized.Programmable Logic Controller (47) sends signal to servo-driver (54), servo-driver (54) controls servomotor (16) and rotates, thus band movable slider (40) arrives the displacement s11 shown in Fig. 6, Programmable Logic Controller (47) sends signal to hydraulic cylinder (31), and hydraulic cylinder (31) throughput instrument arm (32), measuring jaw (33) drive diamond to survey son (34) and measure according to the frequency n11 in Fig. 4, n12, n13, n14, n15 respectively.Programmable Logic Controller (47) controls A.C. contactor (50) and obtains electric, and ac contactor contact (57) is connected, and servo-driver (56) is energized.Programmable Logic Controller (47) sends signal to servo-driver (56), servo-driver (56) controls servomotor (26) and rotates, thus band movable slider (11) arrives the displacement s21 shown in Fig. 7, Programmable Logic Controller (47) sends signal to hydraulic cylinder (23), and hydraulic cylinder (23) throughput instrument arm (24), drive end face location are surveyed chi (25) and measured according to the frequency n21 in Fig. 5, n22, n23.After measurement terminates, slide block (40) arrives displacement s12, s13, s14, s15, the s16 shown in Fig. 6 respectively, and slide block (11) arrives displacement s22, s23, the s24 shown in Fig. 7, then completes aforesaid operations instruction.
After aforesaid operations completes, Programmable Logic Controller (47) controls frequency converter (46), servo-driver a (54) and servo-driver b (56) to be stopped, and main shaft (2) shuts down.Programmable Logic Controller (57) controls servomotor a (16) and servomotor b (26) reversion, stops when slide block b (40) and slide block a (11) moves to origin position.A circulation terminates.
After stopping a period of time, according to same rule, Programmable Logic Controller (47) controls spindle motor c (36) respectively with the rotation speed operation of n2, n3, n4, n5 in Fig. 3, completes aforesaid operations instruction.So just, obtain the combination of more rotating speed, measuring position and measuring frequency, the situation during work of closing to reality topotype analog quantity instrument system more.
There is the faults such as measuring jaw damages, the damage of amount instrument arm, sensor degradation, limitation travel switch damages, hydraulic cylinder does not work in the amount instrument system once numerically control grinder in running, Programmable Logic Controller (47) controls servomotor c (36), servomotor a (16) immediately, servomotor b (26) shuts down, Programmable Logic Controller (47) sends signal to touch-screen (53) simultaneously, the time of touch-screen (53) record trouble and type.Then Programmable Logic Controller (47) controls servomotor a (16), servomotor b (26) drives slide block a (11) respectively, slide block b (40) gets back to initial point, waits the cyclic test next time after end to be repaired.After off-test, the data in statistics touch-screen (53), thus the reliability of calculating and evaluation quantity instrument system.
Stop button (60) is pressed in running, Programmable Logic Controller (47) controls servomotor c (36), servomotor a (16) and servomotor b (26) deceleration and shuts down, and then Programmable Logic Controller (47) controls servomotor a (16), servomotor b (26) drives slide block a (11) respectively, slide block b (40) gets back to initial point.
In running, press emergency stop push button (58), Programmable Logic Controller (47) controls servomotor c (36), servomotor a (16) and servomotor b (26) shuts down immediately.After emergency is removed, can by SR (59), servomotor a (16), servomotor b (26) drive slide block a (11) respectively, slide block b (40) stops after getting back to initial point.
The above detailed description of the invention is used for explaining and the utility model is described, instead of limits the utility model.In the protection domain of design philosophy of the present utility model and claim, any amendment or change are made to the utility model, protection domain of the present utility model all should be considered as.

Claims (1)

1. a numerically control grinder amount instrument system reliability test, is characterized in that: this device comprises mechanical control system, electric control system;
Mechanical control system comprises axial measuring system, radial measurement system, workpiece add clamping system;
In axial measuring system, axial measuring system locates by end face that measuring jaw (25) realizes, end face location measuring jaw (25) throughput instrument arm a (24) is connected with hydraulic cylinder a (23), controlled quentity controlled variable instrument arm (24) is driven by hydraulic cylinder a (23), hydraulic cylinder a (23) is arranged on slide block a (11), slide block a has screw thread in (11), slide block a (11) and leading screw a (21), guide post a (10) coordinates, slide block a (11) and leading screw a (21) are threaded engagement, leading screw a (21) is parallel with guide post a (10), ensure that slide block a (11) does rectilinear motion along guide post a (10), leading screw a (21) is connected with servomotor a (16) by shaft coupling a (17), leading screw a (21) and guide post a (10) is fixed by gripper shoe a (13) and gripper shoe b (14), and servomotor a (16) is controlled by servo-driver a (54), servomotor a (16) is fixed on base a (9) by motor support plate a (15), gripper shoe a (13), gripper shoe b (14) are fixed on base a (9), describedly be respectively equipped with limitation travel switch a (19), initial point travel switch a (20), limitation travel switch b (8) along guide post a (10) and leading screw a (21) direction, initial point travel switch a (20) is the initial motion position of slide block a (11), limitation travel switch b (8) is the movement position farthest of slide block a (11), limitation travel switch a (19), limitation travel switch b (8) are arranged on along guide post b (10), leading screw b (30) two ends, direction, axial vector instrument (67), displacement transducer a (12) are connected on the input of the Programmable Logic Controller (47) of electric control system,
In radial measurement system, radial measurement is surveyed son (34) by diamond and is directly contacted surface of the work measurement realization, diamond is surveyed son (34) and is connected with amount instrument arm b (32) by measuring jaw (33), and amount instrument arm b (32) is driven by hydraulic cylinder b (31); Hydraulic cylinder b (31) is arranged on slide block b (40), slide block b has screw thread in (40), slide block b (40) coordinates with leading screw b (30), guide post b (39), slide block b (40) and leading screw b (30) are threaded engagement, guide post b (39) is parallel with leading screw b (30), ensures that slide block b (40) does the rectilinear motion along guide post b (39) direction; Leading screw b (30) is connected with servomotor b (26) by shaft coupling b (27), leading screw b (30) and guide post b (39) is fixed by gripper shoe c (42) and gripper shoe d (43), and servomotor b (26) is controlled by servo-driver b (56); Servomotor b (26) is fixed on base b (38) by motor support plate b (44); Gripper shoe c (42), gripper shoe d (43) are fixed on base b (38); Describedly be respectively equipped with limitation travel switch c (28), initial point travel switch b (29), limitation travel switch d (35) along guide post b (39) and leading screw b (30) direction, initial point travel switch b (29) is the initial motion position of slide block b (40); Limitation travel switch d (35) is the movement position farthest of slide block b (40); Limitation travel switch c (28), limitation travel switch d (35) are arranged on along guide post b (39), leading screw b (30) two ends, direction; Radial meter (66), displacement transducer b (41) are connected on the input of the Programmable Logic Controller (47) of electric control system;
Workpiece adds in clamping system, workpiece (22) one end clamping is in scroll chuck (7), scroll chuck (7) is connected with main shaft (2) by chuck seat (6), main shaft (2) is supported by bearing a (4) and bearing b (5), main shaft (2) is provided with synchronous pulley a (3), the output of servomotor c (36) is provided with synchronous pulley b (37), Timing Belt (1) is arranged on synchronous pulley a (3) and synchronous pulley b (37); The other end of workpiece (22) is fixed by top (18); The rotation of workpiece (22) is driven by Timing Belt (1) transmission by servomotor c (36), and servomotor c (36) sends pulse signal by Programmable Logic Controller (47) to frequency converter (46) and controls.
CN201520208739.1U 2015-04-08 2015-04-08 A kind of numerically control grinder amount instrument system reliability test Withdrawn - After Issue CN204546289U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520208739.1U CN204546289U (en) 2015-04-08 2015-04-08 A kind of numerically control grinder amount instrument system reliability test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201520208739.1U CN204546289U (en) 2015-04-08 2015-04-08 A kind of numerically control grinder amount instrument system reliability test

Publications (1)

Publication Number Publication Date
CN204546289U true CN204546289U (en) 2015-08-12

Family

ID=53821453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201520208739.1U Withdrawn - After Issue CN204546289U (en) 2015-04-08 2015-04-08 A kind of numerically control grinder amount instrument system reliability test

Country Status (1)

Country Link
CN (1) CN204546289U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104786149A (en) * 2015-04-08 2015-07-22 北京工业大学 Reliability testing device of numerical control grinder measuring instrument system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104786149A (en) * 2015-04-08 2015-07-22 北京工业大学 Reliability testing device of numerical control grinder measuring instrument system
CN104786149B (en) * 2015-04-08 2017-05-17 北京工业大学 Reliability testing device of numerical control grinder measuring instrument system

Similar Documents

Publication Publication Date Title
CN104807660B (en) A kind of numerically control grinder feed system reliability test
CN102637014B (en) Method for obtaining energy efficiency of main electromechanical driving system in machining process of numerically-controlled machine tool
CN103743567A (en) Reliability test device for grinding wheel main shaft of numerical control grinding machine
CN103712793B (en) A kind of ball screw assembly, dynamic load rating and life test apparatus and method
CN103481123B (en) A kind of wire drawing die automatic ultrasonic shaping processing machine and processing method
CN105458330A (en) Self-adaption control system and method for cutting of deep hole boring machine
CN205870293U (en) Grinding machine with on line measurement function
CN104786149B (en) Reliability testing device of numerical control grinder measuring instrument system
CN204546289U (en) A kind of numerically control grinder amount instrument system reliability test
CN102615594B (en) Grinding wheel grinding force detection method in shaft part machining process
CN205342002U (en) Deep -hole drilling and boring machine cuts adaptive control system
CN103759960B (en) A kind of numerically control grinder headstock reliability test
CN204851856U (en) Numerically control grinder hydraulic system reliability test device
CN104020716B (en) Detection device for keeping precision of numerically controlled rotary table
CN213022299U (en) Ball screw pair accelerated degradation test platform
CN106112713A (en) Numerical control deep hole internal grinder measures monitoring processing integrated apparatus and control system
CN103551919B (en) A kind of repetitive positioning accuracy measurement mechanism of rotating machine arm automatic tool changer
CN104989703A (en) Testing device for reliability of numerical control grinder hydraulic system
CN105115743A (en) Numerical control external cylindrical grinding machine reliability test comprehensive loading device
CN205049177U (en) Super smart grinding precision of cylindrical roller and surface quality on -line monitoring device
CN204514630U (en) A kind of numerically control grinder feed system reliability test
CN111896245A (en) General gear pair life test bench
CN109521220A (en) A kind of test method based on DC motor rotor test equipment
CN203811396U (en) Reliability test device for numerical control grinding machine headstock
CN202994066U (en) Detection device for concentricity and verticality of crosshead body

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20150812

Effective date of abandoning: 20170517

AV01 Patent right actively abandoned