CN204392104U - A kind of balance modulation system multiple-channel output stabilized voltage power supply - Google Patents

A kind of balance modulation system multiple-channel output stabilized voltage power supply Download PDF

Info

Publication number
CN204392104U
CN204392104U CN201420708275.6U CN201420708275U CN204392104U CN 204392104 U CN204392104 U CN 204392104U CN 201420708275 U CN201420708275 U CN 201420708275U CN 204392104 U CN204392104 U CN 204392104U
Authority
CN
China
Prior art keywords
electric capacity
output
resistance
secondary coil
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420708275.6U
Other languages
Chinese (zh)
Inventor
杜琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Rui Xin Electrical Appliances Co Ltd
Original Assignee
Jiangsu Rui Xin Electrical Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Rui Xin Electrical Appliances Co Ltd filed Critical Jiangsu Rui Xin Electrical Appliances Co Ltd
Priority to CN201420708275.6U priority Critical patent/CN204392104U/en
Application granted granted Critical
Publication of CN204392104U publication Critical patent/CN204392104U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model discloses a kind of balance modulation system multiple-channel output stabilized voltage power supply, it is characterized in that, primarily of diode rectifier U1, three terminal regulator W1, three terminal regulator W2, transformer T, be arranged on the primary coil L1 on the former limit of transformer T, be arranged on the secondary coil L2 of transformer T secondary, secondary coil L3 and secondary coil L4, be serially connected in the equilibrium modulation circuit between diode rectifier U1 and three terminal regulator W1, be serially connected in the switched filter circuit between equilibrium modulation circuit and primary coil L1, be serially connected in the power amplifier group between three terminal regulator W1 and three terminal regulator W2, the first output circuit be connected with secondary coil L2, the second output circuit be connected with secondary coil L3, and the 3rd output circuit to be connected with secondary coil L4 forms.Integrated circuit structure of the present utility model is not only comparatively simple, and after binding equilibrium modulation circuit, can also effectively reduce circuit self and external radio frequency interference, thus cost of manufacture and maintenance cost are had reduction by a relatively large margin.

Description

A kind of balance modulation system multiple-channel output stabilized voltage power supply
Technical field
The utility model relates to a kind of switching power supply, specifically refers to a kind of balance modulation system multiple-channel output stabilized voltage power supply.
Background technology
Along with continuous progress scientific and technological at present, electronic product also brings great convenience to people are in life while function from strength to strength.Voltage stabilizing circuit is just runed and gives birth to, and traditional series connection linear regulator type voltage stabilizing circuit has the features such as stability is high, output voltage is adjustable, ripple coefficient is little, circuit is simple.But the Correctional tube of these series connection linear regulator type voltage stabilizing circuits is always operating at magnifying state, and have electric current to flow through, therefore the power consumption of its pipe is comparatively large, the efficiency of circuit is not high, generally can only reach about 30% ~ 50% always.In order to overcome above-mentioned defect, people just have developed switching mode voltage stabilizing circuit.
In switching mode voltage stabilizing circuit, surge pipe is operated on off state, pipe alternation saturated with cut-off two states in.When pipe saturation conduction, though it is large to flow through pipe current, but tube voltage drop is very little; When pipe ends, tube voltage drop is large, but the electric current flow through is close to zero.Therefore, under power output the same terms, the efficiency of switching mode voltage stabilizer coin series regulator is high, generally can reach about 80% ~ 90%.But it is comparatively large that the switching mode voltage stabilizer that current people adopt but exists ripple coefficient, when Correctional tube constantly switches between saturated and cut-off state, radio frequency interference can be produced to circuit, circuit more complicated and cost is higher.Meanwhile, traditional stabilized voltage power supply only has an output, namely can only have unique output voltage values, and this just largely limits the scope of application of stabilized voltage power supply.
Utility model content
The purpose of this utility model is the defect that ripple coefficient is comparatively large, radio frequency interference is serious, circuit is complicated, efficiency is not high and output voltage is unique overcoming the existence of current switching mode voltage stabilizer, provides a kind of balance modulation system multiple-channel output stabilized voltage power supply.
The purpose of this utility model is achieved through the following technical solutions: a kind of balance modulation system multiple-channel output stabilized voltage power supply, primarily of diode rectifier U1, three terminal regulator W1, three terminal regulator W2, transformer T, be arranged on the primary coil L1 on the former limit of transformer T, be arranged on the secondary coil L2 of transformer T secondary, secondary coil L3 and secondary coil L4, be serially connected in the equilibrium modulation circuit between diode rectifier U1 and three terminal regulator W1, be serially connected in the switched filter circuit between equilibrium modulation circuit and primary coil L1, be serially connected in the power amplifier group between three terminal regulator W1 and three terminal regulator W2, the first output circuit be connected with secondary coil L2, the second output circuit be connected with secondary coil L3, and the 3rd output circuit to be connected with secondary coil L4 forms.
Described equilibrium modulation circuit is by field effect transistor MOS1, field effect transistor MOS2, field effect transistor MOS3, field effect transistor MOS4, the resistance R3 that one end is connected with the grid of field effect transistor MOS1, the other end is connected with the grid of field effect transistor MOS2 after resistance R4, and the resistance R5 that one end is connected with the grid of field effect transistor MOS3, the other end is connected with the grid of field effect transistor MOS4 after resistance R6 forms; The source electrode of described field effect transistor MOS1 is held with the S of three terminal regulator W1 and is connected, and its drain electrode is then connected with switched filter circuit; The source electrode of described field effect transistor MOS2 is connected with the cathode output end of diode rectifier U1, it drains and to be connected with the drain electrode of effect pipe MOS1; The source electrode of field effect transistor MOS3 is held with the R of three terminal regulator W1 and is connected, its grounded drain; The source electrode of field effect transistor MOS4 is connected with the cathode output end of diode rectifier U1, its grounded drain; External+6V the voltage of tie point of described resistance R3 and resistance R4, the tie point also external+6V voltage of resistance R5 and resistance R6.
Described switched filter circuit is by triode Q, and electric capacity C1, resistance R1, resistance R2 and diode D1 form; The base stage of described triode Q forms loop with its collector electrode in turn after resistance R2, diode D1 and resistance R1, and electric capacity C1 and resistance R2 is in parallel; The collector electrode of triode Q is connected with the drain electrode of field effect transistor MOS2, its grounded emitter.
Described power amplifier group is made up of power amplifier P1 and power amplifier P2; Power amplifier P1 is all connected with the tie point of diode D1 with resistance R2 with the in-phase end of power amplifier P2, and its end of oppisite phase is then all held with the Q of three terminal regulator W1 and is connected; The output of power amplifier P1 is held with the Q of three terminal regulator W2 and is connected, and the output of power amplifier P2 is then held with the R of three terminal regulator W2 and is connected; The Same Name of Ends of the primary coil L1 of described transformer T is connected with the tie point of diode D1 with resistance R1, its non-same polarity is then held with the S of three terminal regulator W2 and is connected.
Described first output circuit is made up of diode D2, electric capacity C2, electric capacity C3 and inductance L 5, and the P pole of described diode D2 is connected with the Same Name of Ends of secondary coil L2, its N pole is then connected with the non-same polarity of secondary coil L2 after electric capacity C2; One end of inductance L 5 is connected with the tie point of electric capacity C2 with diode D2, the other end is then connected with the non-same polarity of secondary coil L2 after electric capacity C3.
Described second output circuit is made up of diode rectifier U2, electric capacity C4, electric capacity C5, electric capacity C6, electric capacity C7, integrated regulator W7806 and integrated regulator W7809; Input and the secondary coil L3 of described diode rectifier U2 are in parallel, and the positive pole of electric capacity C4 is connected with the cathode output end of diode rectifier U2, its negative pole is then connected with the cathode output end of diode rectifier U2; The positive pole of electric capacity C5 is connected with the positive pole of electric capacity C4, its negative pole is connected with the positive pole of electric capacity C6, and the negative pole of electric capacity C6 is then connected with the negative pole of electric capacity C4; First output of integrated regulator W7806 is connected with the positive pole of electric capacity C5, the negative pole of its second output then electric capacity C5 is connected; First output of integrated regulator W7809 is connected with the positive pole of electric capacity C6, the negative pole of its second output then electric capacity C6 is connected, and electric capacity C7 is then serially connected between first output of integrated regulator W7809 and the 3rd output.
Described 3rd output circuit is made up of diode rectifier U3, electric capacity C8, electric capacity C9, electric capacity C10, diode D3 and integrated regulator W7809; Input and the secondary coil L4 of described diode rectifier U3 are in parallel, and the positive pole of electric capacity C8 is connected with the cathode output end of diode rectifier U3, its negative pole is then connected with the cathode output end of diode rectifier U3; Electric capacity C9 and electric capacity C8 is in parallel; First output of integrated regulator W7809 is connected with the positive pole of electric capacity C9, its second output is then connected with the negative pole of electric capacity C9; Electric capacity C10 is then serially connected between the 3rd output of integrated regulator W7809 and the second output; Diode D3 is then serially connected between first output of integrated regulator W7809 and the 3rd output.
The utility model comparatively prior art is compared, and has the following advantages and beneficial effect:
(1) integrated circuit structure of the present utility model is not only comparatively simple, and after binding equilibrium modulation circuit, can also effectively reduce circuit self and external radio frequency interference, thus cost of manufacture and maintenance cost are had reduction by a relatively large margin.
(2) the utility model has three groups of voltage output ends, therefore can meet the normal demand value of people to voltage.
(3) stability of the present utility model and sensitivity higher, can the ripple coefficient of reduction output voltage of high degree.
Accompanying drawing explanation
Fig. 1 is overall structure schematic diagram of the present utility model.
Embodiment
Below in conjunction with embodiment, the utility model is described in further detail, but execution mode of the present utility model is not limited thereto.
Embodiment
As shown in Figure 1, balance modulation system multiple-channel output stabilized voltage power supply described in the utility model, primarily of diode rectifier U1, three terminal regulator W1, three terminal regulator W2, transformer T, be arranged on the primary coil L1 on the former limit of transformer T, be arranged on the secondary coil L2 of transformer T secondary, secondary coil L3 and secondary coil L4, be serially connected in the equilibrium modulation circuit between diode rectifier U1 and three terminal regulator W1, be serially connected in the switched filter circuit between equilibrium modulation circuit and primary coil L1, be serially connected in the power amplifier group between three terminal regulator W1 and three terminal regulator W2, the first output circuit be connected with secondary coil L2, the second output circuit be connected with secondary coil L3, and the 3rd output circuit to be connected with secondary coil L4 forms.
Described equilibrium modulation circuit by field effect transistor MOS1, field effect transistor MOS2, field effect transistor MOS3, field effect transistor MOS4, and resistance R3, resistance R4, resistance R5 and resistance R6 form.During connection, one end of resistance R3 is connected with the grid of field effect transistor MOS1, the other end is connected with the grid of field effect transistor MOS2 after resistance R4, and one end of resistance R5 is connected with the grid of field effect transistor MOS3, the other end is connected with the grid of field effect transistor MOS4 after resistance R6.
Meanwhile, the source electrode of field effect transistor MOS1 is held with the S of three terminal regulator W1 and is connected, and its drain electrode is then connected with switched filter circuit; The source electrode of field effect transistor MOS2 is connected with the cathode output end of diode rectifier U1, it drains and to be connected with the drain electrode of effect pipe MOS1; The source electrode of field effect transistor MOS3 is held with the R of three terminal regulator W1 and is connected, its grounded drain; The source electrode of field effect transistor MOS4 is connected with the cathode output end of diode rectifier U1, its grounded drain.Balance modulation function in order to ensure realizing normally, wherein the tie point of resistance R3 and resistance R4 needs external+6V voltage, and the tie point of resistance R5 and resistance R6 also needs external+6V voltage.
Described switched filter circuit is then by triode Q, and electric capacity C1, resistance R1, resistance R2 and diode D1 form.During connection, the base stage of triode Q forms loop with its collector electrode in turn after resistance R2, diode D1 and resistance R1, and electric capacity C1 and resistance R2 is in parallel; The collector electrode of triode Q is connected with the drain electrode of field effect transistor MOS2, its grounded emitter.That is, the collector electrode of triode Q is connected with the drain electrode of field effect transistor MOS2 with field effect transistor MOS1 simultaneously.
Power amplifier group is made up of power amplifier P1 and power amplifier P2.As shown in the figure, this power amplifier P1 is all connected with the tie point of diode D1 with resistance R2 with the in-phase end of power amplifier P2, and its end of oppisite phase is then all held with the Q of three terminal regulator W1 and is connected.Meanwhile, the output of power amplifier P1 is held with the Q of three terminal regulator W2 and is connected, and the output of power amplifier P2 is then held with the R of three terminal regulator W2 and is connected; The Same Name of Ends of the primary coil L1 of described transformer T is connected with the tie point of diode D1 with resistance R1, its non-same polarity is then held with the S of three terminal regulator W2 and is connected.
Described first output circuit is for exporting the voltage of+12V, and it is made up of diode D2, electric capacity C2, electric capacity C3 and inductance L 5.During connection, the P pole of diode D2 is connected with the Same Name of Ends of secondary coil L2, its N pole is then connected with the non-same polarity of secondary coil L2 after electric capacity C2; One end of inductance L 5 is connected with the tie point of electric capacity C2 with diode D2, the other end is then connected with the non-same polarity of secondary coil L2 after electric capacity C3, and the two ends of electric capacity C3 are then output.
Described second output circuit is made up of diode rectifier U2, electric capacity C4, electric capacity C5, electric capacity C6, electric capacity C7, integrated regulator W7806 and integrated regulator W7809.Wherein, integrated regulator W7806 and integrated regulator W7809 all has three ends and fixes output characteristic.The utility model makes full use of the characteristic of its output characteristic and diode forward pressure drop, makes the second output circuit can export-6V and+6V voltage.
During connection, input and the secondary coil L3 of diode rectifier U2 are in parallel, and the positive pole of electric capacity C4 is connected with the cathode output end of diode rectifier U2, its negative pole is then connected with the cathode output end of diode rectifier U2; The positive pole of electric capacity C5 is connected with the positive pole of electric capacity C4, its negative pole is connected with the positive pole of electric capacity C6, and the negative pole of electric capacity C6 is then connected with the negative pole of electric capacity C4; First output of integrated regulator W7806 is connected with the positive pole of electric capacity C5, the negative pole of its second output then electric capacity C5 is connected; First output of integrated regulator W7809 is connected with the positive pole of electric capacity C6, the negative pole of its second output then electric capacity C6 is connected, and electric capacity C7 is then serially connected between first output of integrated regulator W7809 and the 3rd output.
In like manner, the 3rd output circuit also adopts similar principle, utilizes the forward voltage drop of the output characteristic of integrated regulator W7809 and diode to realize the output of+9V voltage.3rd output circuit is made up of diode rectifier U3, electric capacity C8, electric capacity C9, electric capacity C10, diode D3 and integrated regulator W7809; Input and the secondary coil L4 of described diode rectifier U3 are in parallel, and the positive pole of electric capacity C8 is connected with the cathode output end of diode rectifier U3, its negative pole is then connected with the cathode output end of diode rectifier U3; Electric capacity C9 and electric capacity C8 is in parallel; First output of integrated regulator W7809 is connected with the positive pole of electric capacity C9, its second output is then connected with the negative pole of electric capacity C9; Electric capacity C10 is then serially connected between the 3rd output of integrated regulator W7809 and the second output; Diode D3 is then serially connected between first output of integrated regulator W7809 and the 3rd output.
As mentioned above, just the utility model can well be realized.

Claims (7)

1. a balance modulation system multiple-channel output stabilized voltage power supply, it is characterized in that, primarily of diode rectifier U1, three terminal regulator W1, three terminal regulator W2, transformer T, be arranged on the primary coil L1 on the former limit of transformer T, be arranged on the secondary coil L2 of transformer T secondary, secondary coil L3 and secondary coil L4, be serially connected in the equilibrium modulation circuit between diode rectifier U1 and three terminal regulator W1, be serially connected in the switched filter circuit between equilibrium modulation circuit and primary coil L1, be serially connected in the power amplifier group between three terminal regulator W1 and three terminal regulator W2, the first output circuit be connected with secondary coil L2, the second output circuit be connected with secondary coil L3, and the 3rd output circuit to be connected with secondary coil L4 forms.
2. one balance modulation system multiple-channel output stabilized voltage power supply according to claim 1, it is characterized in that, described equilibrium modulation circuit is by field effect transistor MOS1, field effect transistor MOS2, field effect transistor MOS3, field effect transistor MOS4, the resistance R3 that one end is connected with the grid of field effect transistor MOS1, the other end is connected with the grid of field effect transistor MOS2 after resistance R4, and the resistance R5 that one end is connected with the grid of field effect transistor MOS3, the other end is connected with the grid of field effect transistor MOS4 after resistance R6 forms; The source electrode of described field effect transistor MOS1 is held with the S of three terminal regulator W1 and is connected, and its drain electrode is then connected with switched filter circuit; The source electrode of described field effect transistor MOS2 is connected with the cathode output end of diode rectifier U1, it drains and to be connected with the drain electrode of effect pipe MOS1; The source electrode of field effect transistor MOS3 is held with the R of three terminal regulator W1 and is connected, its grounded drain; The source electrode of field effect transistor MOS4 is connected with the cathode output end of diode rectifier U1, its grounded drain; External+6V the voltage of tie point of described resistance R3 and resistance R4, the tie point also external+6V voltage of resistance R5 and resistance R6.
3. one balance modulation system multiple-channel output stabilized voltage power supply according to claim 2, it is characterized in that, described switched filter circuit is by triode Q, and electric capacity C1, resistance R1, resistance R2 and diode D1 form; The base stage of described triode Q forms loop with its collector electrode in turn after resistance R2, diode D1 and resistance R1, and electric capacity C1 and resistance R2 is in parallel; The collector electrode of triode Q is connected with the drain electrode of field effect transistor MOS2, its grounded emitter.
4. one balance modulation system multiple-channel output stabilized voltage power supply according to claim 3, it is characterized in that, described power amplifier group is made up of power amplifier P1 and power amplifier P2; Power amplifier P1 is all connected with the tie point of diode D1 with resistance R2 with the in-phase end of power amplifier P2, and its end of oppisite phase is then all held with the Q of three terminal regulator W1 and is connected; The output of power amplifier P1 is held with the Q of three terminal regulator W2 and is connected, and the output of power amplifier P2 is then held with the R of three terminal regulator W2 and is connected; The Same Name of Ends of the primary coil L1 of described transformer T is connected with the tie point of diode D1 with resistance R1, its non-same polarity is then held with the S of three terminal regulator W2 and is connected.
5. one balance modulation system multiple-channel output stabilized voltage power supply according to claim 4, it is characterized in that, described first output circuit is made up of diode D2, electric capacity C2, electric capacity C3 and inductance L 5, and the P pole of described diode D2 is connected with the Same Name of Ends of secondary coil L2, its N pole is then connected with the non-same polarity of secondary coil L2 after electric capacity C2; One end of inductance L 5 is connected with the tie point of electric capacity C2 with diode D2, the other end is then connected with the non-same polarity of secondary coil L2 after electric capacity C3.
6. one balance modulation system multiple-channel output stabilized voltage power supply according to claim 5, it is characterized in that, described second output circuit is made up of diode rectifier U2, electric capacity C4, electric capacity C5, electric capacity C6, electric capacity C7, integrated regulator W7806 and integrated regulator W7809; Input and the secondary coil L3 of described diode rectifier U2 are in parallel, and the positive pole of electric capacity C4 is connected with the cathode output end of diode rectifier U2, its negative pole is then connected with the cathode output end of diode rectifier U2; The positive pole of electric capacity C5 is connected with the positive pole of electric capacity C4, its negative pole is connected with the positive pole of electric capacity C6, and the negative pole of electric capacity C6 is then connected with the negative pole of electric capacity C4; First output of integrated regulator W7806 is connected with the positive pole of electric capacity C5, the negative pole of its second output then electric capacity C5 is connected; First output of integrated regulator W7809 is connected with the positive pole of electric capacity C6, the negative pole of its second output then electric capacity C6 is connected, and electric capacity C7 is then serially connected between first output of integrated regulator W7809 and the 3rd output.
7. one balance modulation system multiple-channel output stabilized voltage power supply according to claim 6, it is characterized in that, described 3rd output circuit is made up of diode rectifier U3, electric capacity C8, electric capacity C9, electric capacity C10, diode D3 and integrated regulator W7809; Input and the secondary coil L4 of described diode rectifier U3 are in parallel, and the positive pole of electric capacity C8 is connected with the cathode output end of diode rectifier U3, its negative pole is then connected with the cathode output end of diode rectifier U3; Electric capacity C9 and electric capacity C8 is in parallel; First output of integrated regulator W7809 is connected with the positive pole of electric capacity C9, its second output is then connected with the negative pole of electric capacity C9; Electric capacity C10 is then serially connected between the 3rd output of integrated regulator W7809 and the second output; Diode D3 is then serially connected between first output of integrated regulator W7809 and the 3rd output.
CN201420708275.6U 2014-11-22 2014-11-22 A kind of balance modulation system multiple-channel output stabilized voltage power supply Expired - Fee Related CN204392104U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420708275.6U CN204392104U (en) 2014-11-22 2014-11-22 A kind of balance modulation system multiple-channel output stabilized voltage power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420708275.6U CN204392104U (en) 2014-11-22 2014-11-22 A kind of balance modulation system multiple-channel output stabilized voltage power supply

Publications (1)

Publication Number Publication Date
CN204392104U true CN204392104U (en) 2015-06-10

Family

ID=53364784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420708275.6U Expired - Fee Related CN204392104U (en) 2014-11-22 2014-11-22 A kind of balance modulation system multiple-channel output stabilized voltage power supply

Country Status (1)

Country Link
CN (1) CN204392104U (en)

Similar Documents

Publication Publication Date Title
CN104410281A (en) Beam-excited pulse width modulation power supply based on logic protection emitter-coupled mode
CN103762839B (en) A kind of magnetic coupling type single-phase high-gain Bridgeless power factor circuit correcting circuit
CN104467435A (en) Balance modulation type multiplex output stabilized voltage supply based on logic protection amplifying circuit
CN104467478A (en) Novel balanced modulation type multiplexed output voltage-stabilized source
CN104467485A (en) Multi-stage power amplification pulse width-modulation type switch voltage stabilizing power source
CN104506058A (en) Switching voltage-stabilizing power supply based on pulse width modulation
CN104506057A (en) Balanced modulation-type multipath output voltage-stabilizing power supply
CN104467474A (en) Nonlinearity negative-feedback and large-current constant stabilized switching power supply of LED
CN204392104U (en) A kind of balance modulation system multiple-channel output stabilized voltage power supply
CN204349824U (en) A kind of switching power supply based on multiple power levels amplification balance modulation circuit
CN205051415U (en) Lithium battery charging circuit
CN204316360U (en) A kind of Novel balance modulation system multiple-channel output stabilized voltage power supply
CN204349804U (en) A kind of balance modulation system multiple-channel output stabilized voltage power supply of logic-based protection amplifying circuit
CN204316355U (en) Based on the switching power supply of equilibrium modulation circuit
CN206195601U (en) Low pressure supplies electrofiltration ripples power supply circuit
CN104467487A (en) Nonlinear negative feedback logic protection emitter coupling type switch voltage stabilizing power source
CN104470093A (en) Excitation type large-current LED constant switching stabilized power source
CN204334364U (en) A kind of non-linear negative feedback switching power supply of logic-based protection emitter-base bandgap grading manifold type
CN204304816U (en) Based on the balance modulation switch stabilized voltage power supply of beam excitation formula logic amplifying circuit
CN103633833A (en) Single-switching-tube converter Boost-Buck-Boost converter
CN104467483A (en) Switching voltage-stabilized power supply based on multi-stage power amplification balanced modulation circuit
CN104506056A (en) Switching voltage-stabilizing power supply based on balanced modulation circuit
CN204316356U (en) Based on the switching power supply of pulse-width-modulating type
CN204316359U (en) A kind of pulse width modulated power supply based on beam excitation formula logic amplifying circuit
CN203827173U (en) Single-tube Boost-Buck-Boost converter

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150610

Termination date: 20181122

CF01 Termination of patent right due to non-payment of annual fee