CN204376191U - 一种基于前缀脉冲的激光能量稳定装置 - Google Patents
一种基于前缀脉冲的激光能量稳定装置 Download PDFInfo
- Publication number
- CN204376191U CN204376191U CN201520104422.3U CN201520104422U CN204376191U CN 204376191 U CN204376191 U CN 204376191U CN 201520104422 U CN201520104422 U CN 201520104422U CN 204376191 U CN204376191 U CN 204376191U
- Authority
- CN
- China
- Prior art keywords
- pulse
- switching
- laser
- pockers cell
- cell electrooptical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本实用新型公开了一种基于前缀脉冲的激光能量稳定装置,属于激光技术领域,包括主光路和取样光路,所述主光路包括种子光源、普克尔盒电光开关、反射镜、削波开关,所述取样光路包括光强可调衰减器、耦合器、光电导开关,所述光电导开关的两端分别与普克尔盒电光开关的两极相连接,本实用新型采用普克尔盒电光开关与光电导开关结合,预先在普克尔盒电光开关上施加电压,在主激光脉冲前先产生一个前缀脉冲,利用前缀脉冲的能量起伏去改变光电导开关的动态阻值,从而改变普克尔盒电光开关两端的实际电压及普克尔盒电光开关的透射率,实现对主激光脉冲的能量稳定控制,具有同发稳定的特征,并使主激光脉冲的时间波形不发生畸变。
Description
技术领域
本实用新型涉及激光技术领域,具体而言涉及一种基于前缀脉冲的激光能量稳定装置。
背景技术
通常脉冲激光器系统的泵浦脉冲宽度在微秒量级,而激光脉冲的宽度在纳秒量级,或者更短。因此,在一次泵浦过程中,被放大的激光脉冲(主脉冲)与位于其前数十纳秒处的脉冲(前缀脉冲)具有相同的不稳定特征,可视为同一发激光。
稳定激光脉冲能量的传统方法是测量激光脉冲能量并与目标能量比较,根据测试能量与目标能量的差异反馈调整光路上游的控制器或驱动电源。这种方法只能根据当前脉冲的能量起伏校正下一发激光脉冲,如果下一发激光脉冲的起伏规律和尺度与当前测量激光脉冲的起伏规律和尺度不一致时,稳定的效果就会打折扣甚至变差。非同发次的激光脉冲能量稳定技术只能稳定激光脉冲能量的平均值,不能消除激光脉冲发与发之间的能量随机起伏。
郭小东公开的文献“光电预偏置激光脉冲稳幅器性能研究”(期刊:强激光与粒子束,1997年)利用激光技术领域的通用器件普克尔盒电光开关与偏振器组成预加动态偏置电压的光电可变透射率装置来稳定调Q激光脉冲幅度。其利用快速光电取样门获得激光脉冲取样信号,输出一个与激光脉冲幅度成线性正比的低压电脉冲,再经线性电脉冲高压放大器放大成高压电脉冲加载到普克尔盒电光开关电极上,高压放大电路的线性放大区域有限,影响能量控制精度。激光脉冲与高压脉冲同步到达普克尔盒电光开关,激光脉冲的时间变化会转化为高压驱动脉冲的时间变化,进而反过来改变待稳定的激光脉冲时间波形,从而导致时间波形畸变。
实用新型内容
针对上述现有技术中存在的问题,本实用新型提供一种基于前缀脉冲的激光能量稳定装置,该装置利用前缀脉冲的能量起伏实现对主激光脉冲的能量稳定控制,具有同发稳定的特征,并使主激光脉冲的时间波形不发生畸变。
为实现上述目的,本实用新型提供如下技术方案:
一种基于前缀脉冲的激光能量稳定装置,包括主光路和取样光路,所述主光路包括依次设置的种子光源、普克尔盒电光开关、反射镜,所述普克尔盒电光开关是预先施加电压的,所述主光路还包括削波开关,所述主光路按照种子光源发出的激光传输路径依次设置为:普克尔盒电光开关、反射镜、削波开关,所述取样光路包括依次设置的光强可调衰减器、耦合器、光电导开关,所述光强可调衰减器设于所述反射镜的与普克尔盒电光开关相对的一侧,所述耦合器与所述光电导开关通过光纤连接,所述光电导开关的两端分别与普克尔盒电光开关的两极相连接。
进一步,所述主光路还包括偏振器一、法拉第磁旋光器、偏振器二、1/4波相位延迟器,所述主光路按照种子光源发出的激光传输路径依次设置为:偏振器一、法拉第磁旋光器、偏振器二、1/4波相位延迟器、普克尔盒电光开关、反射镜、普克尔盒电光开关、1/4波相位延迟器、偏振器二、法拉第磁旋光器、偏振器一、削波开关。
进一步,所述反射镜镀有反射膜,漏光率为10%。
本实用新型的有益效果如下:
1、本实用新型在取样光路中采用光电导开关,利用光电导开关的亮阻值变化迅速泄放普克尔盒电光开关电极的电荷来控制透射率,该控制方法响应速度快、更精确的调整激光脉冲的能量起伏;
2、光电导的暗阻值非常高,不会泄放电荷,从而使普克尔盒电光开关被调控后的电压保持恒定,从而不会引起激光脉冲波形畸变。
3、通过种子光源发出可视为与主脉冲同发的前缀脉冲,前缀脉冲通过光电导开关调节普克尔盒电光开关的透射率,实现对同一发激光脉冲能量的精确控制,大大降低了激光脉冲发与发之间的能量起伏,同时不引起激光脉冲波形的畸变;
4、将主激光两次通过普克尔盒电光开关,降低了普克尔盒电光开关的工作电压,有利于激光脉冲能量的稳定;
5、无需通过空间光路将主脉冲延迟,大大减小了装置的体积。
附图说明
图1为本实用新型的整体结构和光路示意图;
图2为本实用新型的前缀脉冲和主脉冲时序关系及普克尔盒电光开关电压变化示意图;
图3为本实用新型电路示意图;
图4为经本实用新型实施例一稳定前后的激光能量起伏图;
图5为经本实用新型实施例一稳定前后的脉冲波形图。
图中:1—种子光源,2—耦合器,3—偏振器一,4—法拉第磁旋光器,5—偏振器二,6—1/4波相位延迟器,7—普克尔盒电光开关,8—反射镜,9—光强可调衰减器,10—光纤,11—光电导开关,12—削波开关。
具体实施方式
为了使本领域的人员更好地理解本实用新型的技术方案,下面结合本实用新型的附图,对本实用新型的技术方案进行清楚、完整的描述,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它类同实施例,都应当属于本申请保护的范围。
实施例一:
如图1所示,一种基于前缀脉冲的激光能量稳定装置,包括主光路和取样光路,所述主光路包括依次设置的:种子光源1、偏振器一3、法拉第磁旋光器4、偏振器二5、1/4波相位延迟器6、普克尔盒电光开关7、反射镜8、削波开关12。由种子光源1发出的激光在主光路的传输路径为:偏振器一3、法拉第磁旋光器4、偏振器二5、1/4波相位延迟器6、普克尔盒电光开关7、反射镜8、普克尔盒电光开关7、1/4波相位延迟器6、偏振器二5、法拉第磁旋光器4、偏振器一3、削波开关12,所述普克尔盒电光开关7为磷酸二氘钾电光开关,双程工作,1/4波电压为3.5kV,等效电容值C为10pF,预先施加电压为V0,所述削波开关12也为磷酸二氘钾电光开关,单程工作,1/2波电压为7kV,当需要削波时,在削波开关12上预先施加1/2波电压,此时激光脉冲的透射率为0,达到削波的目的,削波完成后,退去削波开关12两端的电压即可。无需通过空间光路将主脉冲延迟,大大减小了装置的体积。
如图1所示,所述取样光路包括依次设置的光强可调衰减器9、耦合器2、光电导开关11,所述光强可调衰减器9设于所述反射镜8的与普克尔盒电光开关7相对的一侧,所述耦合器2与光电导开关11通过光纤10连接,通过改变光纤10的长度,可以延迟取样光到达光电导开关11的时间,所述光电导开关11的两端分别与普克尔盒电光开关7的两极通过导线相连接。在取样光路中采用光电导开关11,利用光电导开关11的亮阻值变化迅速泄放普克尔盒电光开关7电极的电荷来控制透射率,该控制方法响应速度快、更精确的调整激光脉冲的能量起伏。
如图2所示,上述装置中的主激光与取样光的时序关系及普克尔盒电光开关7的电压变化,通过改变取样光路光纤10的长度,使取样光延迟时间t3,使所述主激光的主脉冲在时序关系上处于取样光的前缀脉冲与取样光的主脉冲之间。
利用如上所述的基于前缀脉冲的激光能量稳定装置的激光能量稳定方法,包括以下步骤:
(1)所述普克尔盒电光开关7预先施加电压V0,为3.5kV,在普克尔盒电光开关7的电极存储电荷,然后种子光源1在发出主脉冲前先发出前缀脉冲,所述前缀脉冲的持续时间为t,所述主脉冲的持续时间为t1,所述前缀脉冲与主脉冲的时间间隔为t2,满足t1<t2,前缀脉冲和主脉冲均沿主光路传输,得到主激光的前缀脉冲和主激光的主脉冲,主脉冲激光能量为Ein;
(2)步骤(1)得到的主激光的前缀脉冲沿主光路第一次传输到普克尔盒电光开关7,此时,普克尔盒电光开关7两端的实际电压仍为V0,透射率为100%(相对值),所以主激光的前缀脉冲全部透射后传输到反射镜8,由于反射镜8上镀有漏光率为10%的反射膜,因此有10%的前缀脉冲透过反射镜8,90%的前缀脉冲被反射回主光路,透过反射镜8的前缀脉冲成为取样光的前缀脉冲,被反射回主光路的为主激光的前缀脉冲,所述主激光的前缀脉冲沿主光路依次传输到普克尔盒电光开关7、1/4波相位延迟器6、偏振器二5、法拉第磁旋光器4、偏振器一3,最后通过削波开关12削去,所述取样光的前缀脉冲经过光强可调衰减器9的调节和耦合器2的耦合后,然后通过光纤10传输到光电导开关11,使所述光电导开关11电阻值由暗阻值降低至亮阻值RAS,所述光电导开关7选择砷化镓光电导元件,其暗阻值为兆欧姆量级,亮阻值为欧姆数量级,并且其亮阻值与取样光的能量成反比,当光电导开关11的阻值降低至亮阻值后,如图3所示,光电导开关11与普克尔盒电光开关7形成RC闭合回路,存储在所述普克尔盒电光开关7上的电荷通过电阻值降低的光电导开关11泄放,普克尔盒电光开关7两端的电压由V0降低至VPC,即普克尔盒电光开关的实际电压值其中,C为普克尔盒电光开关的等效电容值,t为前缀脉冲宽度,VPC为1.2-2.3kV,VPC的中心值为1.75kV。
(3)由于前缀脉冲与主脉冲存在时间间隔t2,因此取样光的前缀脉冲到达之后主脉冲未到达之前的时间间隔t2内,所述光电导开关11的电阻值恢复至暗阻值,相当于RC回路断开,存储在所述普克尔盒电光开关7上的电荷不能通过光电导开关11泄放,普克尔盒电光开关7的电压恒定在VPC,光电导开关的暗阻值非常高,不会泄放电荷,从而使普克尔盒电光开关7被调控后的电压保持恒定,不会引起激光脉冲波形畸变;
(4)主激光的主脉冲依次经过偏振器一3、法拉第磁旋光器4、偏振器二5、1/4波相位延迟器6,所述1/4波相位延迟器6的作用是改变激光的偏振状态,便于能量调控,所述偏振器一3、法拉第磁旋光器4、偏振器二5组合设置可以将主脉冲从光路中分离,避免有害反射光的影响,主激光的主脉冲在到达普克尔盒电光开关7,此时,普克尔盒电光开关7的电压在主激光的主脉冲通过期间恒定在VPC,主激光的主脉冲经过普克尔盒电光开关7后,传输到反射镜8,透过反射镜8的主脉冲成为取样光的主脉冲,被反射回主光路的为主激光的主脉冲,此时,主激光的主脉冲激光能量为0.9Ein,所述主激光的主脉冲在时序关系上处于取样光的前缀脉冲与取样光的主脉冲之间,主激光的主脉冲第二次通过普克尔盒电光开关7,此时,取样光的主脉冲尚未传输到光电导开关11,普克尔盒电光开关7的电压在主脉冲第二次通过期间恒定在VPC,之后主激光的主脉冲依次传输到1/4波相位延迟器6、偏振器二5、法拉第磁旋光器4、偏振器一3、削波开关12输出,对于不需要的杂质光则由偏振器二5输出,此时削波开关12两端没有施加电压,没有削波作用,主激光的主脉冲能量被调整为Eout,即Eout=0.9T·Ein,其中主激光的主脉冲两次经过普克尔盒电光开关7与偏振器二组合的双程透射率,T为30%-70%,T的中心值为50%,得到能量稳定的激光脉冲。将主激光两次通过普克尔盒电光开关7,降低了普克尔盒电光开关7的工作电压,有利于激光脉冲能量的稳定。
具体工作时,当本发脉冲能量没有起伏时,取样光的前缀脉冲使光电导开关11的动态电阻变为中心值,相应地使普克尔盒电光开关7的实际电压VPC降低为中心值1.75kV,双程透射率T=50%,从而使主光路输出的主脉冲能量为Eout,即0.9×0.5Ein;当本发激光脉冲能量偏高时,取样光的前缀脉冲使光电导开关11的动态电阻变得小于中心值,相应地使普克尔盒电光开关7两端的电荷泄放的更多,普克尔盒电光开关7的实际电压VPC低于1.75kV,双程透射率T<50%,从而使主光路输出的主脉冲能量降低至Eout;当本发激光脉冲能量偏低时,主激光和取样光的能量均会偏低,取样光的前缀脉冲使光电导开关11的动态电阻稍大于中心值,相应地使普克尔盒电光开关7两端的电荷泄放减少,普克尔盒电光开关7的实际电压VPC高于1.75kV,双程透射率T>50%,从而使主光路输出的主脉冲能量升高至Eout,从而实现激光能量稳定。由于在主光路的主脉冲通过期间,普克尔盒电光开关7透射率T不随时间变化,因此不会引起激光脉冲时间畸变。
利用本实施例的装置和激光能量稳定方法,对种子光源发出的20发主脉冲持续时间t1为200ps的激光脉冲进行能量调控,前缀脉冲为矩形激光脉冲,脉冲持续时间t为1ns,前缀脉冲与主脉冲的间隔时间t2为6ns,取样光的延迟时间t3为3ns,由计算可知,光电导开关的亮阻值的中心值为144Ω,通过调节光强可调衰减器9来实现能量稳定控制,检测每一发脉冲的输入激光能量Ein和输出激光能量Eout,结果如图4所示。由图中可以看出,种子光源发出的(输入)激光发与发之间脉冲能量起伏非常大,PV值(峰谷值)达到50%,RMS值(均方根值)高达16.8%,经过本实施例的装置和方法稳定后的激光脉冲(输出)发与发的能量起伏降低到3.6%,RMS值仅为1%,显著地降低了激光脉冲发与发之间的能量起伏。
图5为上述20发激光脉冲中任取的1发激光脉冲的主脉冲输入波形和输出波形,由图中可以看出,在经过本实施例的装置和方法稳定后,主脉冲的输出波形与输入波形完全一致,没有引起波形的畸变。
本实用新型适用的激光脉冲持续时间并不仅限于200ps,也适用于持续时间更短或更长的激光脉冲,例如100fs以下的短脉冲或10ns以上的长脉冲;本实用新型适用的激光脉冲波形并不仅限于台阶状脉冲,也适用于任何其他波形的脉冲,例如高斯脉冲、方波脉冲等任意整形脉冲。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (3)
1.一种基于前缀脉冲的激光能量稳定装置,包括主光路和取样光路,所述主光路包括依次设置的种子光源、普克尔盒电光开关、反射镜,其特征在于,所述普克尔盒电光开关是预先施加电压的,所述主光路还包括削波开关,所述主光路按照种子光源发出激光的传输路径依次设置为:普克尔盒电光开关、反射镜、削波开关,所述取样光路包括依次设置的光强可调衰减器、耦合器、光电导开关,所述光强可调衰减器设于所述反射镜的与普克尔盒电光开关相对的一侧,所述耦合器与所述光电导开关通过光纤连接,所述光电导开关的两端分别与普克尔盒电光开关的两极相连接。
2.根据权利要求1所述的一种基于前缀脉冲的激光能量稳定装置,其特征在于,所述主光路还包括偏振器一、法拉第磁旋光器、偏振器二、1/4波相位延迟器,所述主光路按照种子光源发出的激光传输路径依次设置为:偏振器一、法拉第磁旋光器、偏振器二、1/4波相位延迟器、普克尔盒电光开关、反射镜、削波开关。
3.根据权利要求1或2所述的一种基于前缀脉冲的激光能量稳定装置,其特征在于,所述反射镜镀有反射膜,漏光率为10%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520104422.3U CN204376191U (zh) | 2015-02-13 | 2015-02-13 | 一种基于前缀脉冲的激光能量稳定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520104422.3U CN204376191U (zh) | 2015-02-13 | 2015-02-13 | 一种基于前缀脉冲的激光能量稳定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204376191U true CN204376191U (zh) | 2015-06-03 |
Family
ID=53332375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520104422.3U Expired - Fee Related CN204376191U (zh) | 2015-02-13 | 2015-02-13 | 一种基于前缀脉冲的激光能量稳定装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204376191U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104617479A (zh) * | 2015-02-13 | 2015-05-13 | 中国工程物理研究院激光聚变研究中心 | 一种基于前缀脉冲的激光能量稳定装置及其能量稳定方法 |
CN117673882A (zh) * | 2024-01-31 | 2024-03-08 | 北京中科思远光电科技有限公司 | 一种提高放大激光系统稳定性的装置及控制方法 |
-
2015
- 2015-02-13 CN CN201520104422.3U patent/CN204376191U/zh not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104617479A (zh) * | 2015-02-13 | 2015-05-13 | 中国工程物理研究院激光聚变研究中心 | 一种基于前缀脉冲的激光能量稳定装置及其能量稳定方法 |
CN104617479B (zh) * | 2015-02-13 | 2017-12-08 | 中国工程物理研究院激光聚变研究中心 | 一种基于前缀脉冲的激光能量稳定装置及其能量稳定方法 |
CN117673882A (zh) * | 2024-01-31 | 2024-03-08 | 北京中科思远光电科技有限公司 | 一种提高放大激光系统稳定性的装置及控制方法 |
CN117673882B (zh) * | 2024-01-31 | 2024-04-16 | 北京中科思远光电科技有限公司 | 一种提高放大激光系统稳定性的装置及控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105572915B (zh) | 一种引入参考光的电光调制器光脉冲整形装置及整形方法 | |
CN204376191U (zh) | 一种基于前缀脉冲的激光能量稳定装置 | |
CN105826809A (zh) | 一种基于自相位调制预补偿的单频脉冲全光纤激光器 | |
CN103684360A (zh) | 一种高压方波发生器实现方法 | |
CN204376192U (zh) | 一种激光脉冲能量稳定装置 | |
CN106207737A (zh) | 一种激光整形脉冲获取装置及获取方法 | |
CN102044835B (zh) | 窄脉冲偏振控制器 | |
CN204376190U (zh) | 一种基于前缀脉冲的激光能量稳定装置 | |
CN104617480B (zh) | 一种激光脉冲能量稳定装置及其能量稳定方法 | |
CN203617979U (zh) | 一种高压方波发生器 | |
CN104617479A (zh) | 一种基于前缀脉冲的激光能量稳定装置及其能量稳定方法 | |
CN204179486U (zh) | 一种超短脉冲激光产生装置 | |
CN104659647B (zh) | 一种基于前缀脉冲的激光能量稳定装置及其能量稳定方法 | |
CN103474871A (zh) | 脉冲激光时域整形装置 | |
CN206099035U (zh) | 一种激光整形脉冲获取装置 | |
WO1997023980A1 (en) | High-speed pulse-shape generator, pulse multiplexer | |
CN113109951B (zh) | 基于随机信号的并联电光调制器偏置点控制方法及装置 | |
CN105226494A (zh) | 一种基于棱镜折射的脉冲激光合束装置及其方法 | |
CN103594915A (zh) | 脉冲序列自由调控激光器装置及利用该装置实现脉冲序列自由调控的方法 | |
CN102914882A (zh) | 时分脉冲激光装置 | |
CN205880412U (zh) | 一种引入参考光的电光调制器光脉冲整形装置 | |
CN103888111B (zh) | 基于迈克尔逊干涉仪的脉冲序列调制方法及调制器 | |
CN101308990A (zh) | 一种产生脉冲宽度可调的激光脉冲的方法 | |
CN205880413U (zh) | 一种基于电光调制器的光脉冲整形装置 | |
CN103592783B (zh) | 光致漂移实验研究中基于电光光开关的激光时域调制器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150603 Termination date: 20170213 |
|
CF01 | Termination of patent right due to non-payment of annual fee |