CN204359680U - 一种中红外激光气体传感检测装置 - Google Patents

一种中红外激光气体传感检测装置 Download PDF

Info

Publication number
CN204359680U
CN204359680U CN201420860626.5U CN201420860626U CN204359680U CN 204359680 U CN204359680 U CN 204359680U CN 201420860626 U CN201420860626 U CN 201420860626U CN 204359680 U CN204359680 U CN 204359680U
Authority
CN
China
Prior art keywords
unit
mid
infrared laser
triode
phase lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201420860626.5U
Other languages
English (en)
Inventor
司峻峰
金勇�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING BESTWAY AUTOMATION SYSTEM CO Ltd
Nanjing University
Original Assignee
NANJING BESTWAY AUTOMATION SYSTEM CO Ltd
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING BESTWAY AUTOMATION SYSTEM CO Ltd, Nanjing University filed Critical NANJING BESTWAY AUTOMATION SYSTEM CO Ltd
Priority to CN201420860626.5U priority Critical patent/CN204359680U/zh
Application granted granted Critical
Publication of CN204359680U publication Critical patent/CN204359680U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开了一种中红外激光气体传感检测装置,利用中红外激光LED及正交锁相检测技术实现对微量气体的有效检测。装置的光源由两只远红外激光LED构成,分别覆盖气体的吸收光谱和非气体的吸收光谱。驱动与切换单元对检测信号进行放大并可控制两个激光管按照时序进行发光,同时对气体进行检测,有效消除环境及电路飘移的影响,精确高、本低噪声低。

Description

一种中红外激光气体传感检测装置
技术领域
本实用新型涉及一种中红外激光气体传感检测装置。
背景技术
目前红外吸收技术利用的光源中,宽带光源主要有使用热电器件或红外灯作为检测光源,窄带源主要有具有布拉格反馈的光栅级联激光器。但前者热惯性大,无法进行调制,导致检测系统底噪过大,分辨率低。后者具有很高的分辨率,能够区分不同的吸收谱线,但要求激光波长与幅度精确稳定、成本高,需要频繁的调整激光器的波长和温度。
因此,需要一种新的中红外激光气体传感检测装置以解决上述问题。
实用新型内容
实用新型目的:本实用新型针对现有技术中中红外激光气体传感检测存在问题,提供了一种中红外激光管的驱动与切换单元。
技术方案:为达到上述实用新型目的,本实用新型的中红外激光管的驱动与切换单元采用以下技术方案:
一种中红外激光管的驱动与切换单元,包括三极管Q1、三极管Q2、双控开关S1、双控开关S2、三极管Q3和三极管Q4,所述三极管Q1的集电极连接VCC电压端,所述三极管Q1的集电极和基极通过电阻R1连接,所述三极管Q1的基极连接所述三极管Q2的集电极,所述三极管Q1的发射极连接所述三极管Q2的基极并连接双控开关S1和双控开关S2的一端,所述双控开关S2和双控开关S1的第二端接地,所述三极管Q2的发射极通过电阻R2接地;
所述双控开关S2的第三端连接三极管Q3的基极并通过电阻R5接地,所述双控开关S1的第三端连接三极管Q4的基极并通过电阻R6接地;
所述三极管Q3的集电极连接发光二极管L1,所述三极管Q4的集电极连接发光二极管L2;
所述三极管Q3的发射极通过电阻R3接地;所述三极管Q4的发射极通过电阻R4接地;
缓冲器U1的输出端连接所述双控开关S2的第三端,缓冲器U2的输出端连接所述双控开关S1的第三端。
更进一步的,所述发光二极管L1和发光二极管L2均为中红外激光LED。采用中红外光谱范围的新型激光LED成本较低,激光光谱范围较窄,中心波长易于控制。中红外激光LED的调制频率可达1MHz以上,具有较窄的光谱范围,利用该类激光LED ,结合正交锁相放大技术,可以实现高灵敏度、低成本的红外气体检测装置。
实用新型原理:其中,发光二极管L1和L2分别为参考LED和实测LED,三极管Q1、Q2、Q3和Q4构成了开关恒流源,实现对发光二极管L1和L2的限流驱动。三极管Q1和Q2为驱动晶体管,缓冲器U1和U2分别为驱动晶体管Q1和Q2提供门控信号,控制发光二极管L1和L2按照时序进行发光。
有益效果:本实用新型的中红外激光管的驱动与切换单元可以实现对驱动信号进行放大并可控制两个激光管按照时序进行发光。在每个检测周期内,按照控制时序依次对发光二极管进行驱动并检测光电管的电压,可以有效地消除光电管暗电流飘移带来的影响,通过对比参照LED的检测电压,可以消除光路污染以及电路参数变化对检测结果的影响,能有效地检测气体浓度的微量变化。
本实用新型还公开了一种中红外激光气体传感检测装置,包括如上所述的驱动与切换单元、正交信号产生单元、处理器、锁相检测单元、第一中红外激光LED、第二中红外激光LED、检测气室、光电管、光电放大单元、第一锁相检测单元、第二锁相检测单元、第一滤波单元、第二滤波单元和AD转换单元,所述处理器、正交信号产生单元和驱动与切换单元连接,所述第一中红外激光LED和第二中红外激光LED设置在所述检测气室的一端,所述光电管设置在所述检测气室的另一端,所述第一中红外激光LED和第二中红外激光LED均连接所述驱动与切换单元,所述第一锁相检测单元和第二锁相检测单元均连接所述光电放大单元,所述第一锁相检测单元、第一滤波单元、AD转换单元和处理器依次连接,所述第二锁相检测单元、第二滤波单元、AD转换单元和处理器依次连接,所述正交信号产生单元连接所述第一锁相检测单元和第二锁相检测单元。
其中,所述正交信号产生单元用于产生检测所需要的驱动信号和锁相检测单元的正交参考信号;所述驱动与切换单元中将所述正交信号产生单元的驱动信号进行放大,并将放大后的驱动信号分时加载到所述第一中红外激光LED和第二中红外激光LED上;所述光电放大单元用于对光电管检测到的光信号进行放大;所述第一锁相检测单元和第二锁相检测单元用于提取所述光电放大单元的输出信号中与气体浓度变化相关的信号;所述第一滤波单元和第二滤波单元分别对所述第一锁相检测单元和第二锁相检测单元提取的信号进行处理并将处理后的信号送入处理器。
有益效果:本实用新型的中红外激光气体传感检测装置利用驱动与切换单元控制第一中红外激光LED和第二中红外激光LED按照时序发光,采用两个激光管同时对气体进行检测,有效消除环境的影响,精确度较高。采用中红外激光LED,用激励信号进行激励并利用正交锁相检放大器进行信号解调,大幅度降低了装置自身的噪声,消除了检测装置相位变化带来的检测误差,检测装置的灵敏度和本底噪声两项指标远低于传统的热电式红外气体检测装置。与窄带激光气体检测装置相比,具有更低的成本。
更进一步的,所述第一滤波单元和第二滤波单元均为窄带滤波器。在降低噪声的同时也具有一定的动态特性。
更进一步的,所述第一中红外激光LED和第二中红外激光LED分别为检测激光管和参考激光管。利用检测激光管和参考激光管交替作用以消除环境变化带来的误差。
附图说明
图1为本实用新型中红外激光气体传感装置原理框图;
图2为本实用新型中红外激光管的操作时序图;
图3为本实用新型中红外激光管的光谱分布示意图;
图4为本实用新型中红外激光管的驱动与切换单元示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本实用新型,应理解这些实施例仅用于说明本实用新型而不用于限制本实用新型的范围,在阅读了本实用新型之后,本领域技术人员对本实用新型的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
请参阅图1、图2、图3和图4所示,本实用新型的中红外激光气体传感检测装置,包括中红外激光管的驱动与切换单元。其中,中红外激光管的驱动与切换单元包括三极管Q1、三极管Q2、双控开关S1、双控开关S2、三极管Q3和三极管Q4,三极管Q1的集电极连接VCC电压端,三极管Q1的集电极和基极通过电阻R1连接,三极管Q1的基极连接三极管Q2的集电极,三极管Q1的发射极连接三极管Q2的基极并连接双控开关S1和双控开关S2的一端,双控开关S2和双控开关S1的第二端接地,三极管Q2的发射极通过电阻R2接地。
双控开关S2的第三端连接三极管Q3的基极并通过电阻R5接地,双控开关S1的第三端连接三极管Q4的基极并通过电阻R6接地。
发光二极管L1的正极连接Driver端,负极连接三极管Q3的集电极。发光二极管L2的正极连接Driver端,负极连接三极管Q4的集电极。其中,Driver端即驱动单元的输出端。发光二极管L1和发光二极管L2均为中红外激光LED。采用中红外光谱范围的新型激光LED成本较低,激光波长与幅度精确稳定,能有效地检测气体浓度的微量变化。中红外激光LED的调制频率可达1MHz以上,具有较窄的光谱范围,利用该类激光LED ,结合正交锁相放大技术,可以实现高灵敏度、低成本的红外气体检测装置。本实用新型采用激光二极管作为光源,可以对激光二极管发出的中红外激光进行高速调制,使检测信号的工作频率远离器件的1/f 噪声,消除了直流检测方式带来的温漂,同时为锁相检测提供可能。传统检测方式使用热电器件或红外灯作为检测光源,该类器件具有极大的热惯性,无法进行快速调制,也无法利用微弱信号检测的手段获得更高的灵敏度。
三极管Q3的发射极通过电阻R3接地。三极管Q4的发射极通过电阻R4接地。
缓冲器U1的输出端连接双控开关S2的第三端,缓冲器U2的输出端连接双控开关S1的第三端。
实用新型原理:其中,发光二极管L1和L2分别为参考LED和实测LED,三极管Q1、Q2、Q3和Q4构成了开关恒流源,实现对发光二极管L1和L2的限流驱动。三极管Q1和Q2为驱动晶体管,缓冲器U1和U2分别为驱动晶体管Q1和Q2提供门控信号,控制发光二极管L1和L2按照时序进行发光。
本实用新型的中红外激光管的驱动与切换单元可以实现对驱动信号进行放大并可控制两个激光管按照时序进行发光。在每个检测周期内,按照控制时序依次对发光二极管进行驱动并检测光电管的电压,可以有效地消除光电管暗电流飘移带来的影响,通过对比参照LED的检测电压,可以消除光路污染以及电路参数变化对检测结果的影响,使得检测气体的微量变化成为可能。
本实用新型还公开了一种中红外激光气体传感检测装置,包括如上的驱动与切换单元、正交信号产生单元、处理器、锁相检测单元、第一中红外激光LED、第二中红外激光LED、检测气室、光电管、光电放大单元、第一锁相检测单元、第二锁相检测单元、第一滤波单元、第二滤波单元和AD转换单元,处理器、正交信号产生单元和驱动与切换单元连接,第一中红外激光LED和第二中红外激光LED设置在检测气室的一端,光电管设置在检测气室的另一端,第一中红外激光LED和第二中红外激光LED均连接驱动与切换单元,第一锁相检测单元和第二锁相检测单元均连接光电放大单元,第一锁相检测单元、第一滤波单元、AD转换单元和处理器依次连接,第二锁相检测单元、第二滤波单元、AD转换单元和处理器依次连接,正交信号产生单元连接第一锁相检测单元和第二锁相检测单元,
正交信号产生单元用于产生检测所需要的检测信号和锁相检测单元的正交参考信号。驱动与切换单元中驱动单元将正交信号产生单元的驱动信号进行放大,达到能够驱动LED激光管的强度。切换单元用将放大后的驱动信号分时加载到第一中红外激光LED和第二中红外激光LED上,以消除环境变化带来的误差。检测气室为一腔体,根据实际需要可以设计为封闭型和贯穿型,气室内主要由两只LED激光管和一只光电管构成,也可以根据需要增加相应光学元件,以增长气室内光路的长度。光电放大单元用于对光电管检测到的光信号进行放大。第一锁相检测及滤波单元和第二锁相检测及滤波单元用于提取光电放大单元的输出信号中与气体浓度变化相关的信号,抑制噪声,并将处理后的信号送入处理器。锁相检测单元中的锁相放大器具有的从强噪声中检测出微弱信号变化的能力,利用锁相放大器可以有效地检测由于少量气体变化带来的微弱电信号变化,从而提高对气体检测的灵敏度和分辨率。相比传统的检测光敏器件直流信号强度的方法,灵敏度得到大幅度提高。第一滤波单元和第二滤波单元均为窄带滤波器。在降低噪声的同时也具有一定的动态特性。第一中红外激光LED和第二中红外激光LED分别为检测激光管和参考激光管。利用检测激光管和参考激光管交替作用以消除环境变化带来的误差。
本实用新型采用激光二极管作为光源,可以对激光二极管发出的中红外激光进行高速调制,使检测信号的工作频率远离器件的1/f 噪声,消除了直流检测方式带来的温漂,同时为锁相检测提供可能。传统检测方式使用热电器件或红外灯作为检测光源,该类器件具有极大的热惯性,无法进行快速调制,也无法利用微弱信号检测的手段获得更高的灵敏度。
本实用新型的中红外激光气体传感检测装置利用驱动与切换单元控制第一中红外激光LED和第二中红外激光LED按照时序发光,采用两个激光管同时对气体进行检测,有效消除环境的影响,精确度较高。采用中红外激光LED,用激励信号进行激励并利用正交锁相检放大器进行信号解调,大幅度降低了装置自身的噪声,消除了检测装置相位变化带来的检测误差,检测装置的灵敏度和本底噪声两项指标远低于传统的热电式红外气体检测装置。与窄带激光气体检测装置相比,具有更低的成本。
本实用新型还公开了一种中红外激光气体传感检测方法,利用如上任一项的中红外激光气体传感检测装置,包括以下步骤:
1)、利用正交信号产生单元产生激励信号并将此信号送入驱动单元进行放大,其中,激励信号的频率大于10KHz。
2)切换单元将步骤1)得到的放大的激励信号分时加载到第一中红外激光LED和第二中红外激光LED上。优选的,激光管的驱动时序如图2所示。每个采集周期分四个时间片进行。所述激励信号的驱动时序中每个周期包括四个时间片,第一时间片中,第二中红外激光LED不发射激光,第一中红外激光LED发射中红外激光,光电管采集检测量;第二时间片中,第一中红外激光LED和第二中红外激光LED均不发射激光,光电管采集一次暗电流数值;第三时间片中,第二中红外激光LED发射中红外激光,第一中红外激光LED不发射激光,光电管采集检测通路的参考值;第四时间片中,第一中红外激光LED和第二中红外激管光均不发射激光,光电管采集一次暗电流数值。
3)、第一中红外激光LED和第二中红外激光LED在切换单元的作用下交替发出中红外激光。
4)、光电管检测经过气体吸收后的中红外激光并将光强信息转化为光电流。
5)、光电放大单元对步骤4)的光电流进行放大并消除其中的暗电流分量。
6)、采用锁相检测方法提取光电放大单元输出的信号中与气体浓度相关的信号分量并利用第一滤波单元和第二滤波单元滤除其它信号分量。由于被测气体引起的光强度衰减极其微弱,光电检测器得到的信号中含有大量的背景噪声,本实用新型采用相关检测方法对待测信号进行检出。锁相单元与滤波单元完成从背景噪声中提取气体浓度信号的过程。采用两路锁相检测单元进行正交检测用以克服信号传递过程中的畸变对检测结果的影响,正交参考信号有正交信号产生单元提供。滤波单元采用窄带滤波器,在降低噪声的同时也具有一定的动态特性。采用正交检测方法,正交方法同时检测出信号在实部和虚部的分量,求出信号的模值,消除了相位因素,能克服由于放大器相位误差以及传统移相器所带来的误差,使检测结果更加稳定和精确。传统锁相检测方法仅有一个相关通道,同步信号的相位通过移相器进行调整,相位的稳定度差,导致气体检测结果不稳定,分辨率和灵敏度不高。
7)、利用AD转换单元将第一滤波单元和第二滤波单元的模拟信号转化为数字梁并送至处理器进行处理,得到气体的浓度值。AD转换单元实现将锁相检测后得到的与气体浓度有关的模拟量转换为数字量送至处理器单元进行处理。在本实用新型中可以采用较高速度的D-SAD,从而在信号处理后得到较高的分辨率。D-SAD产生的量化噪声可以采用低通滤波器进行滤除,以提高检测的精度。
处理器单元的作用是对模数转换器送来的数字信号进行降噪、滤波以及气体检测算法实现等处理。该处理器同时还完成对信号源的初始化和控制,LED激光驱动单元的驱动信号的控制,传感器工作状态的设置与自检以及与上位机之间的通信过程。
请参阅图3所示,常见气体大多在中红外区域都具有较高的吸收谱峰,本实用新型采用与检测气体吸收光谱具有相同波长的LED激光器作为检测激光器,在吸收谱外选择一个受影响小的区域作为参照LED激光器的光谱区域。检测光电管的光谱分布包括上述两类LED激光器的光谱区域。
本实用新型检测气体的实施依据朗伯比尔定律,通过比较参照激光器和检测激光器分别作用时检测光电管的检测电压,通过计算和修正,消除光程影响,获得气体的浓度值。
本实用新型检测气体的实施依据谐波检测技术。采用高频电流f0激励LED激光器照射被测气体,在光电检测端检测到的信号中,一次谐波分量f0强度主要由光源的平均功率决定,二次谐波信号2f0与气体浓度和光源平均功率均有关,通过处理一次谐波和和二次谐波的数值,消除光程影响,即可得到气体的浓度值。

Claims (5)

1.一种中红外激光管的驱动与切换单元,其特征在于,包括三极管Q1、三极管Q2、双控开关S1、双控开关S2、三极管Q3和三极管Q4,所述三极管Q1的集电极连接VCC电压端,所述三极管Q1的集电极和基极通过电阻R1连接,所述三极管Q1的基极连接所述三极管Q2的集电极,所述三极管Q1的发射极连接所述三极管Q2的基极并连接双控开关S1和双控开关S2的一端,所述双控开关S2和双控开关S1的第二端接地,所述三极管Q2的发射极通过电阻R2接地;
所述双控开关S2的第三端连接三极管Q3的基极并通过电阻R5接地,所述双控开关S1的第三端连接三极管Q4的基极并通过电阻R6接地;
所述三极管Q3的集电极连接发光二极管L1,所述三极管Q4的集电极连接发光二极管L2;
所述三极管Q3的发射极通过电阻R3接地;所述三极管Q4的发射极通过电阻R4接地;
缓冲器U1的输出端连接所述双控开关S2的第三端,缓冲器U2的输出端连接所述双控开关S1的第三端。
2.如权利要求1所述的中红外激光管的驱动与切换单元,其特征在于,所述发光二极管L1和发光二极管L2均为中红外激光LED。
3.一种中红外激光气体传感检测装置,其特征在于,包括权利要求1所述的驱动与切换单元、正交信号产生单元、处理器、锁相检测单元、第一中红外激光LED、第二中红外激光LED、检测气室、光电管、光电放大单元、第一锁相检测单元、第二锁相检测单元、第一滤波单元、第二滤波单元和AD转换单元,所述处理器、正交信号产生单元和驱动与切换单元连接,所述第一中红外激光LED和第二中红外激光LED设置在所述检测气室的一端,所述光电管设置在所述检测气室的另一端,所述第一中红外激光LED和第二中红外激光LED均连接所述驱动与切换单元,所述第一锁相检测单元和第二锁相检测单元均连接所述光电放大单元,所述第一锁相检测单元、第一滤波单元、AD转换单元和处理器依次连接,所述第二锁相检测单元、第二滤波单元、AD转换单元和处理器依次连接,所述正交信号产生单元连接所述第一锁相检测单元和第二锁相检测单元。
4.如权利要求3所述的中红外激光气体传感检测装置,其特征在于,所述第一滤波单元和第二滤波单元均为窄带滤波器。
5.如权利要求3所述的中红外激光气体传感检测装置,其特征在于,所述第一中红外激光LED和第二中红外激光LED分别为检测激光管和参考激光管。
CN201420860626.5U 2014-12-30 2014-12-30 一种中红外激光气体传感检测装置 Withdrawn - After Issue CN204359680U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420860626.5U CN204359680U (zh) 2014-12-30 2014-12-30 一种中红外激光气体传感检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420860626.5U CN204359680U (zh) 2014-12-30 2014-12-30 一种中红外激光气体传感检测装置

Publications (1)

Publication Number Publication Date
CN204359680U true CN204359680U (zh) 2015-05-27

Family

ID=53261144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420860626.5U Withdrawn - After Issue CN204359680U (zh) 2014-12-30 2014-12-30 一种中红外激光气体传感检测装置

Country Status (1)

Country Link
CN (1) CN204359680U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596970A (zh) * 2014-12-30 2015-05-06 南京大学 一种中红外激光气体传感检测装置及方法
CN110715906A (zh) * 2018-07-13 2020-01-21 横河电机株式会社 光谱测定装置和光谱测定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596970A (zh) * 2014-12-30 2015-05-06 南京大学 一种中红外激光气体传感检测装置及方法
CN104596970B (zh) * 2014-12-30 2017-03-22 南京大学 一种中红外激光气体传感检测装置及方法
CN110715906A (zh) * 2018-07-13 2020-01-21 横河电机株式会社 光谱测定装置和光谱测定方法

Similar Documents

Publication Publication Date Title
CN104535530B (zh) 一种高精度气体浓度检测方法及检测装置
CN101435773B (zh) 基于准连续二极管激光器调制光谱气体监测方法和装置
CN104075802B (zh) 一种高动态范围的光子计数型微弱光信号测量装置及方法
CN104596970A (zh) 一种中红外激光气体传感检测装置及方法
CN103162724B (zh) 基于动态扫描的光纤光栅传感解调仪及方法
CN105136740A (zh) 一种基于tdlas的温湿度监测系统
CN103616347B (zh) 多气体谱线检测的最佳调制系数实现方法和装置
CN105258798A (zh) 光电探测器光谱响应测试系统及其测量方法
CN105388125A (zh) 一氧化碳浓度的光学检测系统
CN204359680U (zh) 一种中红外激光气体传感检测装置
CN101964633B (zh) 用于探测太赫兹脉冲信号的锁相放大电路
CN107091808A (zh) 一种基于数字锁相的抗杂散光干扰光电检测系统
CN106556580A (zh) 一种叶绿素荧光检测电路
CN103528991A (zh) 土壤有机质含量的测量系统及测量方法
CN102338664A (zh) 一种目标辐射测量背景实时扣除的方法
CN205049184U (zh) 一种基于tdlas的温湿度监测系统
CN114166774A (zh) 基于ndir原理的红外气体测量系统
CN107764285B (zh) 一种基于锁相放大器的光电探测组件电源抑制比测试系统
CN103308465B (zh) 一种主动光源式作物冠层反射光谱测量装置用信号处理系统及方法
CN107860726B (zh) 准分布式气体浓度检测二次谐波归一化方法
CN203881848U (zh) 一种基于光电池测量原子频标的线宽及鉴频斜率的装置
CN103196472B (zh) 基于随机非等间隔采样的光纤光栅动态应变解调仪及方法
CN204789251U (zh) 基于Mie散射的颗粒物在线监测仪的信号前置处理电路
CN111385021A (zh) 一种基于载波调制的多波长光功率监测系统及方法
CN206146554U (zh) 一种基于可调谐二极管激光吸收光谱的气体温度检测装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20150527

Effective date of abandoning: 20170322

AV01 Patent right actively abandoned

Granted publication date: 20150527

Effective date of abandoning: 20170322

C25 Abandonment of patent right or utility model to avoid double patenting