CN204346252U - The tommy gun of configuration infrared scan detection sighting instrument - Google Patents

The tommy gun of configuration infrared scan detection sighting instrument Download PDF

Info

Publication number
CN204346252U
CN204346252U CN201420768555.6U CN201420768555U CN204346252U CN 204346252 U CN204346252 U CN 204346252U CN 201420768555 U CN201420768555 U CN 201420768555U CN 204346252 U CN204346252 U CN 204346252U
Authority
CN
China
Prior art keywords
infrared
module
infrared probe
ultrasonic wave
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420768555.6U
Other languages
Chinese (zh)
Inventor
郭庆国
孙昭华
李响
李兴海
耿志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIAONING ADVANCED SPECIAL SCHOOL OF POLICE
Original Assignee
LIAONING ADVANCED SPECIAL SCHOOL OF POLICE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIAONING ADVANCED SPECIAL SCHOOL OF POLICE filed Critical LIAONING ADVANCED SPECIAL SCHOOL OF POLICE
Priority to CN201420768555.6U priority Critical patent/CN204346252U/en
Application granted granted Critical
Publication of CN204346252U publication Critical patent/CN204346252U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

The utility model discloses a kind of tommy gun configuring infrared scan detection sighting instrument, belong to firearms equipment technical field.The tommy gun of configuration infrared scan detection sighting instrument of the present utility model, comprise rifle body, gun sight and scanning probe sighting instrument, described gun sight is arranged on described rifle body, described scanning probe sighting instrument is connected with at described rifle body, it is characterized in that: described scanning probe sighting instrument comprises controller (1), gun sight is warned module (2), power module (3), ultrasonic distance measuring module (4), infrared sensing module (5), motor control module (6), motor (8); Described controller (1) module (2) of warning with described ultrasonic distance measuring module (4), infrared sensing module (5), gun sight is respectively electrical connected.The utility model compared with prior art has that structure is simple, dependable performance, stability are high, fighting efficiency high.

Description

The tommy gun of configuration infrared scan detection sighting instrument
Technical field
The invention belongs to firearms equipment technical field, in particular, belong to a kind of and use infrared technology and the collaborative firearms carrying out scanning probe aiming of ultrasonic technology mixing.
Background technology
Armed policeman, special policeman soldier and field army soldier need when dealing with contingencies to carry out actual combat ball firing usually, usually in combat environment, contact is between ourselves and the enemy a complicated process, the pattern of bayoneting in World War II has been different from today that automation weapon is popularized, fight between ourselves and the enemy, normally contactless fight mode between ourselves and the enemy, battlefield surroundings is ever-changing to be made can to make full use of environment between ourselves and the enemy and artificiality effectively pretends.In course of battle, how to identify the camouflage of enemy and ensure that shooting course does not accidentally injure innocent people and one's own side personnel, be armed policeman, special policeman soldier and field army soldier must faced by a great problem.
How emergency action is carried out to similar accident, with avoid the unnecessary injures and deaths of the not guilty masses become armed policeman and special policeman soldier must faced by actual combat problem, lacking necessary technical equipment in prior art is also the key factor that restriction armed policeman and special policeman soldier dispose similar incidents.Armed policeman, special policeman soldier and field army soldier carry out fire tactics training daily also needs in addition, how to utilize the skills of actual combat of limited resource raising soldiers and tactics technical ability to be the great difficult problems restricting training guidance personnel always.How to give full play to the effect of auxiliary technique and tactics means, to improve a great problem that armed policeman, the fighting quality of special policeman soldier and field army soldier and technical ability are restriction the art as far as possible always.
Summary of the invention
The present invention, in order to effectively solve above technical problem, gives a kind of tommy gun configuring infrared scan detection sighting instrument.
A kind of tommy gun configuring infrared scan detection sighting instrument of the present invention, comprise rifle body, gun sight and scanning probe sighting instrument, described gun sight is arranged on described rifle body, described scanning probe sighting instrument is connected with at described rifle body, it is characterized in that: described scanning probe sighting instrument comprises controller, gun sight warns module, power module, ultrasonic distance measuring module, infrared sensing module, motor control module, motor; Wherein:
Warn with described ultrasonic distance measuring module, described infrared sensing module, described gun sight respectively module, described motor control module of described controller is electrical connected; Described motor control module and described motor are electrical connected;
Described ultrasonic distance measuring module comprises ultrasonic wave emitting portion, ultrasonic wave reception unit is divided, described ultrasonic wave emitting portion and described ultrasonic wave reception unit are divided and are arranged in described scanning probe sighting instrument abreast, and the ultrasonic wave transmit direction of described ultrasonic wave emitting portion and described ultrasonic wave reception unit divide ultrasonic wave receive direction and rifle body ballistic projections direction to be consistent;
Described infrared sensing module comprises the first infrared probe, the second infrared probe, and described first infrared probe, described second infrared probe are arranged in the gear train that rotated by described driven by motor respectively symmetrically; Wherein: the infra-red detection amplitude angle A of described first infrared probe is identical with the infra-red detection amplitude angle B of described second infrared probe; The infra-red detection region S of described first infrared probe 3with the infra-red detection region S of described second infrared probe 4form an infrared ray blind area region S 1and an infrared ray overlap-add region S 2, described infrared ray overlap-add region S 2angle C, the distance between described first infrared probe and described second infrared probe is H 1, described infrared ray blind area region S 1with infrared ray overlap-add region S 2coaxial line, described infrared ray blind area region S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Described motor carries out symmetry adjustment to change described infrared ray overlap-add region S to described first infrared probe be arranged in gear train, described second infrared probe 2angle C; Described infrared ray overlap-add region S 2angle C scope be 21 °-29 °; Distance H between described first infrared probe and described second infrared probe 1for 2.1-2.9cm;
The ultrasonic wave transmit direction of described ultrasonic wave emitting portion and described ultrasonic wave reception unit divide the axis being parallel of ultrasonic wave receive direction and described infrared ray blind area region S1 and infrared ray overlap-add region S2 to arrange.
According to the tommy gun of above-described configuration infrared scan detection sighting instrument, preferably: described gun sight module of warning is optical flicker warning circuit.
According to the tommy gun of above-described configuration infrared scan detection sighting instrument, preferably: described controller can be dsp controller.
According to the tommy gun of above-described configuration infrared scan detection sighting instrument, preferably: described controller can be ARM controller.
According to the tommy gun of above-described configuration infrared scan detection sighting instrument, preferably: described controller can be AVR controller.
The present invention compared with prior art has that structure is simple, dependable performance, stability are high, fighting efficiency high.
Accompanying drawing explanation
Accompanying drawing 1 is the schematic diagram that the present invention configures the tommy gun of infrared scan detection sighting instrument;
Accompanying drawing 2 is schematic diagrames that the present invention configures the tommy gun of infrared scan detection sighting instrument;
Accompanying drawing 3 is structural representations that the present invention configures infrared scan detection sighting instrument;
Accompanying drawing 4 is structural representations of infrared detection of the present invention;
Accompanying drawing 5 is that the present invention configures the gear train and the electric machine structure schematic diagram that are provided with infrared probe in infrared scan detection sighting instrument;
Accompanying drawing 6 is electrical block diagrams of ultrasonic wave emitting portion of the present invention;
Accompanying drawing 7 is electrical block diagrams that ultrasonic wave reception unit of the present invention is divided;
Accompanying drawing 8 is structural representations one of rifle body in prior art;
Accompanying drawing 9 is structural representations two of rifle body in prior art;
Accompanying drawing 10A is that gun sight of the present invention is warned the alarm indication schematic diagram one of module;
Accompanying drawing 10B is that gun sight of the present invention is warned the alarm indication schematic diagram two of module.
Detailed description of the invention
Preferred embodiment 1
Fig. 1 is the schematic diagram that the present invention configures the tommy gun of infrared scan detection sighting instrument; Fig. 2 is the schematic diagram that the present invention configures the tommy gun of infrared scan detection sighting instrument.The tommy gun of scanning probe sighting instrument is arranged under the muzzle of rifle body, and direction and the rifle body ballistic projections direction of infrared ray and ultrasound examination are consistent, and the gun sight above rifle body is the same with the mounting means of gun gun sight in prior art.The mounting means of scanning probe sighting instrument on assault rifle and the mounting means of bayonet on rifle body similar, scanning probe sighting instrument can be stably arranged on above rifle body.Gun sight above rifle body can be connected by electrical signal line with the scanning probe sighting instrument of rifle body front lower place, and electrical signal line can be arranged in rifle body, and electrical signal line does not all show in fig. 1 and 2.Optical flare stand by lamp is arranged in aiming, with the soldier's Timeliness coverage alarm signal with gun sight gun easy to use.
Fig. 3 is the structural representation that the present invention configures infrared scan detection sighting instrument, and configuration infrared scan of the present invention detection sighting instrument comprises controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, power module 3, motor control module 6, motor 8;
Warn with ultrasonic distance measuring module 4, infrared sensing module 5, gun sight respectively module 2, motor control module 6 of controller 1 is electrical connected; Motor control module 6 and motor 8 are electrical connected; Power module 3 is respectively controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, motor control module 6, motor 8 provide electric energy; Power module 3 also can be respectively ultrasonic distance measuring module 4 by controller 1, infrared sensing module 5, gun sight are warned, and module 2 provides electric energy; Ultrasonic distance measuring module 4 is connected to ultrasonic wave emitting portion 401, ultrasonic wave reception unit divides 402, and ultrasonic wave emitting portion 401 and ultrasonic wave reception unit are divided 402 to be symmetricly set on rifle body and be consistent with rifle body ballistic projections direction; Infrared sensing module 5 is connected to the front end that the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged on rifle body sighting device symmetrically; Controller 1 is dsp controller.
Distance between the gun user of service that ultrasonic distance measuring module 4 detects and the hidden hostile element in front, infrared sensing module 5 detects according to the first infrared probe 501, second infrared probe 502 the hostile personal information being in hidden state or active state.Controller 1 judges whether to exist hidden personnel that naked eyes should not differentiate according to the testing result of the testing result of ultrasonic distance measuring module 4 and infrared sensing module 5, automatically or not easily discovers personnel; If determine really there are hidden personnel or not easily discover personnel, then controller 1 controls gun sight module 2 of warning and sends optics alarm signal.
Gun sight warns module 2 for optical flicker warning circuit, gun sight module 2 of warning will detect that front has the signal of people can be shown to armed armed policeman, special policeman soldier and field army soldier in the mode of blinking red lamp in real time, makes armed policeman, special policeman soldier and field army soldier carry out confirming to determine whether really shoot further to the enemy's situation in front according to the warn prompting of module 2 of gun sight.The warning red light of flicker is arranged on the sighting device body shown in Fig. 1 or Fig. 2, usual gun user is the armed triggering pulling of the right hand, like this can so that armed armed policeman, special policeman soldier and field army soldier see the alarm signal of sighting device body in time.
The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1and with infrared ray overlap-add region S 2coaxially, region, blind area S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 to be arranged between the first infrared probe 501 and the second infrared probe 502, and ultrasonic wave emitting portion 401, ultrasonic wave reception unit are divided 402 and first distances between infrared probe 501 and the second infrared probe 502 to detect the Detection results of the tommy gun of sighting instrument good close to ensureing the present invention to configure infrared scan.
Fig. 4 is the structural representation of infrared detection of the present invention; Extraordinary aiming Detection results can be obtained when first infrared probe 501 and the second infrared probe 502 are set together symmetrically as can be seen from Figure.The infra-red detection amplitude angle of the first infrared probe 501 is A, and the infra-red detection amplitude angle of the second infrared probe 502 is B, and the distance between the first infrared probe 501 and the second infrared probe 502 is H 1, H 1scope can be 2.1-2.9cm; Distance H between first infrared probe 501 and the second infrared probe 502 1preferred 3cm.The infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is region, a blind area S 1, the infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is the infrared ray overlap-add region S of an overlap 2, wherein region, blind area S 1axis coverage be H 2, infrared ray overlap-add region S 2axis coverage be H 3, region, blind area S 1and with infrared ray overlap-add region S 2coaxial line, i.e. H 2and H 3coaxial line, region, blind area S 1and with infrared ray overlap-add region S 2axis and ballistic projections direction is consistent, i.e. H 2and H 3be consistent with ballistic projections direction.
First infrared probe 501 and the second infrared probe 502 all can adopt pyroelectric infrared sensor to detect be in hidden state personnel radiate the infrared signal of radiation, the detector front end formed at the first infrared probe 501 and the second infrared probe 502 forms blind area region S 1with an infrared ray overlap-add region S 2, S 2angle C scope be 21 °-29 ° degree.When having movable personnel or hidden personnel before lens, what the infrared ray that human body sends just constantly alternately changed enters infrared ray overlap-add region S 2, so just obtain with dynamic infrared signal feedback pulse signal, whether the part of ultrasound examination simultaneously remains static to object and judges, and then can judge whether to there are hidden personnel.The infrared ray centre wavelength of human body radiation is 9 ~ 10um, the window that one is equipped with filter glass has been offered at transducer tip, this optical filter is 7 ~ 10um by the wave-length coverage of light, just in time be suitable for the detection of human infrared radiation, and the infrared ray of other wavelength is absorbed by optical filter.Under the control of controller 1, motor 8 carries out symmetry adjustment to change infrared ray overlap-add region S to the first infrared probe 501, second infrared probe 502 be arranged in gear train 2angle C, and then extraordinary Detection results can be obtained.
Infrared sensing module 5 is electrical connected with the first infrared probe 501, second infrared probe 502 respectively, and the first infrared probe 501 and the second infrared probe 502 are arranged on the sighting device body of rifle body symmetrically; The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1distance rifle body has certain distance.Ultrasonic distance measuring module 4 divides 402 to be electrical connected with ultrasonic wave emitting portion 401, ultrasonic wave reception unit respectively, and the sighting device body that described ultrasonic wave emitting portion 401 and described ultrasonic wave reception unit divide 402 to be arranged on rifle body is consistent with rifle body ballistic projections direction.When rifle body is in level, the first infrared probe 501 and the second infrared probe 502 are also all in same plane, all consistent with the distance of muzzle.
First infrared probe 501, second infrared probe 502 of infrared sensing module 5 divides 402 to be arranged in closer distance range with the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit as far as possible, the front end that the first infrared probe 501, second infrared probe 502 of infrared sensing module 5 and the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit divide 402 to be all arranged on sighting device shown in Fig. 1 and Fig. 2.
Fig. 5 is that the present invention configures the structural representation being provided with infrared probe motor in infrared scan detection sighting instrument, infrared sensing module 5 comprises the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged symmetrically, and the first infrared probe 501, second infrared probe 502 is arranged in the gear train of motor 8 driven rotary respectively; Under the control of controller 1, motor 8 driven gear system carries out symmetry adjustment to the first infrared probe 501, second infrared probe 502, changes the position between the first infrared probe 501, second infrared probe 502.
Fig. 6 is the electrical block diagram of ultrasonic wave emitting portion 401 of the present invention; Ultrasonic wave emission sensor LS1 and and door U8 between have phase inverter U3, phase inverter U4, phase inverter U5, phase inverter U6, phase inverter U7, phase inverter U4 and phase inverter U5 is in parallel, phase inverter U6 and phase inverter U7 is in parallel, be connected with two self-oscillation circuit respectively with two inputs of door U8, difference two Schmidt trigger U1 and U2 in two self-oscillation circuit.
Fig. 7 is the electrical block diagram that ultrasonic wave reception unit of the present invention divides 402; 5V direct current is the fuse F1 of 500mA and diode D1 through resistance to stream and forms 5V digital voltage source VDD through two-stage capacitor filtering C1 and C2, and digital voltage source VDD provides power supply for 2 NE5532P power amplifiers.Ultrasonic wave receiving sensor LS1 10K resistance in parallel R3 changes the ultrasonic signal received into input signal, and input signal amplifies through first order amplifier NE5532P, second level amplifier NE5532P is input to ultrasonic distance measuring module 4 after amplifying, input signal is exaggerated altogether 400 times after two-stage is amplified.
Figure 10 A is that gun sight of the present invention is warned the alarm indication schematic diagram one of module; Figure 10 B is four arrows that gun sight of the present invention is warned in the alarm indication schematic diagram two of module, gun sight is photoelectricity flash signal.Gun sight of the present invention module 2 of warning is arranged in the gun sight of rifle body, shown by Figure 10 A be to mix situation when auxiliary sighting device does not detect any information with ultrasonic wave at infrared ray, gun sight module 2 of warning do not send alerting signal of warning; Shown by Figure 10 B is to mix with ultrasonic wave at infrared ray that auxiliary sighting device detects situation when there is hidden hostile personal information, gun sight is warned, and module 2 sends alerting signal of warning, by the flicker of gun sight four arrows, soldier can know that the sighted direction of gun exists hidden hostile personnel, therefore soldier will enhancing your vigilance property.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body.
Preferred embodiment 2
Fig. 1 is the schematic diagram that the present invention configures the tommy gun of infrared scan detection sighting instrument; Fig. 2 is the schematic diagram that the present invention configures the tommy gun of infrared scan detection sighting instrument.The tommy gun of scanning probe sighting instrument is arranged under the muzzle of rifle body, and direction and the rifle body ballistic projections direction of infrared ray and ultrasound examination are consistent, and the gun sight above rifle body is the same with the mounting means of gun gun sight in prior art.The mounting means of scanning probe sighting instrument on assault rifle and the mounting means of bayonet on rifle body similar, scanning probe sighting instrument can be stably arranged on above rifle body.Gun sight above rifle body can be connected by electrical signal line with the scanning probe sighting instrument of rifle body front lower place, and electrical signal line can be arranged in rifle body, and electrical signal line does not all show in fig. 1 and 2.Optical flare stand by lamp is arranged in aiming, with the soldier's Timeliness coverage alarm signal with gun sight gun easy to use.
Fig. 3 is the structural representation that the present invention configures infrared scan detection sighting instrument, and configuration infrared scan of the present invention detection sighting instrument comprises controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, power module 3, motor control module 6, motor 8;
Warn with ultrasonic distance measuring module 4, infrared sensing module 5, gun sight respectively module 2, motor control module 6 of controller 1 is electrical connected; Motor control module 6 and motor 8 are electrical connected; Power module 3 is respectively controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, motor control module 6, motor 8 provide electric energy; Power module 3 also can be respectively ultrasonic distance measuring module 4 by controller 1, infrared sensing module 5, gun sight are warned, and module 2 provides electric energy; Ultrasonic distance measuring module 4 is connected to ultrasonic wave emitting portion 401, ultrasonic wave reception unit divides 402, and ultrasonic wave emitting portion 401 and ultrasonic wave reception unit are divided 402 to be symmetricly set on rifle body and be consistent with rifle body ballistic projections direction; Infrared sensing module 5 is connected to the front end that the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged on rifle body sighting device symmetrically; Controller 1 is ARM controller.
Distance between the gun user of service that ultrasonic distance measuring module 4 detects and the hidden hostile element in front, infrared sensing module 5 detects according to the first infrared probe 501, second infrared probe 502 the hostile personal information being in hidden state or active state.Controller 1 judges whether to exist hidden personnel that naked eyes should not differentiate according to the testing result of the testing result of ultrasonic distance measuring module 4 and infrared sensing module 5, automatically or not easily discovers personnel; If determine really there are hidden personnel or not easily discover personnel, then controller 1 controls gun sight module 2 of warning and sends optics alarm signal.
Gun sight warns module 2 for optical flicker warning circuit, gun sight module 2 of warning will detect that front has the signal of people can be shown to armed armed policeman, special policeman soldier and field army soldier in the mode of blinking red lamp in real time, makes armed policeman, special policeman soldier and field army soldier carry out confirming to determine whether really shoot further to the enemy's situation in front according to the warn prompting of module 2 of gun sight.The warning red light of flicker is arranged on the sighting device body shown in Fig. 1 or Fig. 2, usual gun user is the armed triggering pulling of the right hand, like this can so that armed armed policeman, special policeman soldier and field army soldier see the alarm signal of sighting device body in time.
The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1and with infrared ray overlap-add region S 2coaxially, region, blind area S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 to be arranged between the first infrared probe 501 and the second infrared probe 502, and ultrasonic wave emitting portion 401, ultrasonic wave reception unit are divided 402 and first distances between infrared probe 501 and the second infrared probe 502 to detect the Detection results of the tommy gun of sighting instrument good close to ensureing the present invention to configure infrared scan.
Fig. 4 is the structural representation of infrared detection of the present invention; Extraordinary aiming Detection results can be obtained when first infrared probe 501 and the second infrared probe 502 are set together symmetrically as can be seen from Figure.The infra-red detection amplitude angle of the first infrared probe 501 is A, and the infra-red detection amplitude angle of the second infrared probe 502 is B, and the distance between the first infrared probe 501 and the second infrared probe 502 is H 1, H 1scope can be 2.1-2.9cm; Distance H between first infrared probe 501 and the second infrared probe 502 1preferred 3cm.The infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is region, a blind area S 1, the infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is the infrared ray overlap-add region S of an overlap 2, wherein region, blind area S 1axis coverage be H 2, infrared ray overlap-add region S 2axis coverage be H 3, region, blind area S 1and with infrared ray overlap-add region S 2coaxial line, i.e. H 2and H 3coaxial line, region, blind area S 1and with infrared ray overlap-add region S 2axis and ballistic projections direction is consistent, i.e. H 2and H 3be consistent with ballistic projections direction.
First infrared probe 501 and the second infrared probe 502 all can adopt pyroelectric infrared sensor to detect be in hidden state personnel radiate the infrared signal of radiation, the detector front end formed at the first infrared probe 501 and the second infrared probe 502 forms blind area region S 1with an infrared ray overlap-add region S 2, S 2angle C scope be 21 °-29 °.When having movable personnel or hidden personnel before lens, what the infrared ray that human body sends just constantly alternately changed enters infrared ray overlap-add region S 2, so just obtain with dynamic infrared signal feedback pulse signal, whether the part of ultrasound examination simultaneously remains static to object and judges, and then can judge whether to there are hidden personnel.The infrared ray centre wavelength of human body radiation is 9 ~ 10um, the window that one is equipped with filter glass has been offered at transducer tip, this optical filter is 7 ~ 10um by the wave-length coverage of light, just in time be suitable for the detection of human infrared radiation, and the infrared ray of other wavelength is absorbed by optical filter.Under the control of controller 1, motor 8 carries out symmetry adjustment to change infrared ray overlap-add region S to the first infrared probe 501, second infrared probe 502 be arranged in gear train 2angle C, and then extraordinary Detection results can be obtained.
Infrared sensing module 5 is electrical connected with the first infrared probe 501, second infrared probe 502 respectively, and the first infrared probe 501 and the second infrared probe 502 are arranged on the sighting device body of rifle body symmetrically; The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1distance rifle body has certain distance.Ultrasonic distance measuring module 4 divides 402 to be electrical connected with ultrasonic wave emitting portion 401, ultrasonic wave reception unit respectively, and the sighting device body that described ultrasonic wave emitting portion 401 and described ultrasonic wave reception unit divide 402 to be arranged on rifle body is consistent with rifle body ballistic projections direction.When rifle body is in level, the first infrared probe 501 and the second infrared probe 502 are also all in same plane, all consistent with the distance of muzzle.
First infrared probe 501, second infrared probe 502 of infrared sensing module 5 divides 402 to be arranged in closer distance range with the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit as far as possible, the front end that the first infrared probe 501, second infrared probe 502 of infrared sensing module 5 and the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit divide 402 to be all arranged on sighting device shown in Fig. 1 and Fig. 2.
Fig. 5 is that the present invention configures the structural representation being provided with infrared probe motor in infrared scan detection sighting instrument, infrared sensing module 5 comprises the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged symmetrically, and the first infrared probe 501, second infrared probe 502 is arranged in the gear train of motor 8 driven rotary respectively; Under the control of controller 1, motor 8 driven gear system carries out symmetry adjustment to the first infrared probe 501, second infrared probe 502, changes the position between the first infrared probe 501, second infrared probe 502.
Fig. 6 is the electrical block diagram of ultrasonic wave emitting portion 401 of the present invention; Ultrasonic wave emission sensor LS1 and and door U8 between have phase inverter U3, phase inverter U4, phase inverter U5, phase inverter U6, phase inverter U7, phase inverter U4 and phase inverter U5 is in parallel, phase inverter U6 and phase inverter U7 is in parallel, be connected with two self-oscillation circuit respectively with two inputs of door U8, difference two Schmidt trigger U1 and U2 in two self-oscillation circuit.
Fig. 7 is the electrical block diagram that ultrasonic wave reception unit of the present invention divides 402; 5V direct current is the fuse F1 of 500mA and diode D1 through resistance to stream and forms 5V digital voltage source VDD through two-stage capacitor filtering C1 and C2, and digital voltage source VDD provides power supply for 2 NE5532P power amplifiers.Ultrasonic wave receiving sensor LS1 10K resistance in parallel R3 changes the ultrasonic signal received into input signal, and input signal amplifies through first order amplifier NE5532P, second level amplifier NE5532P is input to ultrasonic distance measuring module 4 after amplifying, input signal is exaggerated altogether 400 times after two-stage is amplified.
Figure 10 A is that gun sight of the present invention is warned the alarm indication schematic diagram one of module; Figure 10 B is four arrows that gun sight of the present invention is warned in the alarm indication schematic diagram two of module, gun sight is photoelectricity flash signal.Gun sight of the present invention module 2 of warning is arranged in the gun sight of rifle body, shown by Figure 10 A be to mix situation when auxiliary sighting device does not detect any information with ultrasonic wave at infrared ray, gun sight module 2 of warning do not send alerting signal of warning; Shown by Figure 10 B is to mix with ultrasonic wave at infrared ray that auxiliary sighting device detects situation when there is hidden hostile personal information, gun sight is warned, and module 2 sends alerting signal of warning, by the flicker of gun sight four arrows, soldier can know that the sighted direction of gun exists hidden hostile personnel, therefore soldier will enhancing your vigilance property.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body.
Preferred embodiment 3
Fig. 1 is the schematic diagram that the present invention configures the tommy gun of infrared scan detection sighting instrument; Fig. 2 is the schematic diagram that the present invention configures the tommy gun of infrared scan detection sighting instrument.The tommy gun of scanning probe sighting instrument is arranged under the muzzle of rifle body, and direction and the rifle body ballistic projections direction of infrared ray and ultrasound examination are consistent, and the gun sight above rifle body is the same with the mounting means of gun gun sight in prior art.The mounting means of scanning probe sighting instrument on assault rifle and the mounting means of bayonet on rifle body similar, scanning probe sighting instrument can be stably arranged on above rifle body.Gun sight above rifle body can be connected by electrical signal line with the scanning probe sighting instrument of rifle body front lower place, and electrical signal line can be arranged in rifle body, and electrical signal line does not all show in fig. 1 and 2.Optical flare stand by lamp is arranged in aiming, with the soldier's Timeliness coverage alarm signal with gun sight gun easy to use.
Fig. 3 is the structural representation that the present invention configures infrared scan detection sighting instrument, and configuration infrared scan of the present invention detection sighting instrument comprises controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, power module 3, motor control module 6, motor 8;
Warn with ultrasonic distance measuring module 4, infrared sensing module 5, gun sight respectively module 2, motor control module 6 of controller 1 is electrical connected; Motor control module 6 and motor 8 are electrical connected; Power module 3 is respectively controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, motor control module 6, motor 8 provide electric energy; Power module 3 also can be respectively ultrasonic distance measuring module 4 by controller 1, infrared sensing module 5, gun sight are warned, and module 2 provides electric energy; Ultrasonic distance measuring module 4 is connected to ultrasonic wave emitting portion 401, ultrasonic wave reception unit divides 402, and ultrasonic wave emitting portion 401 and ultrasonic wave reception unit are divided 402 to be symmetricly set on rifle body and be consistent with rifle body ballistic projections direction; Infrared sensing module 5 is connected to the front end that the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged on rifle body sighting device symmetrically; Controller 1 is AVR controller.
Distance between the gun user of service that ultrasonic distance measuring module 4 detects and the hidden hostile element in front, infrared sensing module 5 detects according to the first infrared probe 501, second infrared probe 502 the hostile personal information being in hidden state or active state.Controller 1 judges whether to exist hidden personnel that naked eyes should not differentiate according to the testing result of the testing result of ultrasonic distance measuring module 4 and infrared sensing module 5, automatically or not easily discovers personnel; If determine really there are hidden personnel or not easily discover personnel, then controller 1 controls gun sight module 2 of warning and sends optics alarm signal.
Gun sight warns module 2 for optical flicker warning circuit, gun sight module 2 of warning will detect that front has the signal of people can be shown to armed armed policeman, special policeman soldier and field army soldier in the mode of blinking red lamp in real time, makes armed policeman, special policeman soldier and field army soldier carry out confirming to determine whether really shoot further to the enemy's situation in front according to the warn prompting of module 2 of gun sight.The warning red light of flicker is arranged on the sighting device body shown in Fig. 1 or Fig. 2, usual gun user is the armed triggering pulling of the right hand, like this can so that armed armed policeman, special policeman soldier and field army soldier see the alarm signal of sighting device body in time.
The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1and with infrared ray overlap-add region S 2coaxially, region, blind area S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 to be arranged between the first infrared probe 501 and the second infrared probe 502, and ultrasonic wave emitting portion 401, ultrasonic wave reception unit are divided 402 and first distances between infrared probe 501 and the second infrared probe 502 to detect the Detection results of the tommy gun of sighting instrument good close to ensureing the present invention to configure infrared scan.
Fig. 4 is the structural representation of infrared detection of the present invention; Extraordinary aiming Detection results can be obtained when first infrared probe 501 and the second infrared probe 502 are set together symmetrically as can be seen from Figure.The infra-red detection amplitude angle of the first infrared probe 501 is A, and the infra-red detection amplitude angle of the second infrared probe 502 is B, and the distance between the first infrared probe 501 and the second infrared probe 502 is H 1, H 1scope can be 2.1-2.9cm; Distance H between first infrared probe 501 and the second infrared probe 502 1preferred 3cm.The infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is region, a blind area S 1, the infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is the infrared ray overlap-add region S of an overlap 2, wherein region, blind area S 1axis coverage be H 2, infrared ray overlap-add region S 2axis coverage be H 3, region, blind area S 1and with infrared ray overlap-add region S 2coaxial line, i.e. H 2and H 3coaxial line, region, blind area S 1and with infrared ray overlap-add region S 2axis and ballistic projections direction is consistent, i.e. H 2and H 3be consistent with ballistic projections direction.
First infrared probe 501 and the second infrared probe 502 all can adopt pyroelectric infrared sensor to detect be in hidden state personnel radiate the infrared signal of radiation, the detector front end formed at the first infrared probe 501 and the second infrared probe 502 forms blind area region S 1with an infrared ray overlap-add region S 2, S 2angle C scope be 21 °-29 °.When having movable personnel or hidden personnel before lens, what the infrared ray that human body sends just constantly alternately changed enters infrared ray overlap-add region S 2, so just obtain with dynamic infrared signal feedback pulse signal, whether the part of ultrasound examination simultaneously remains static to object and judges, and then can judge whether to there are hidden personnel.The infrared ray centre wavelength of human body radiation is 9 ~ 10um, the window that one is equipped with filter glass has been offered at transducer tip, this optical filter is 7 ~ 10um by the wave-length coverage of light, just in time be suitable for the detection of human infrared radiation, and the infrared ray of other wavelength is absorbed by optical filter.Under the control of controller 1, motor 8 carries out symmetry adjustment to change infrared ray overlap-add region S to the first infrared probe 501, second infrared probe 502 be arranged in gear train 2angle C, and then extraordinary Detection results can be obtained.
Infrared sensing module 5 is electrical connected with the first infrared probe 501, second infrared probe 502 respectively, and the first infrared probe 501 and the second infrared probe 502 are arranged on the sighting device body of rifle body symmetrically; The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1distance rifle body has certain distance.Ultrasonic distance measuring module 4 divides 402 to be electrical connected with ultrasonic wave emitting portion 401, ultrasonic wave reception unit respectively, and the sighting device body that described ultrasonic wave emitting portion 401 and described ultrasonic wave reception unit divide 402 to be arranged on rifle body is consistent with rifle body ballistic projections direction.When rifle body is in level, the first infrared probe 501 and the second infrared probe 502 are also all in same plane, all consistent with the distance of muzzle.
First infrared probe 501, second infrared probe 502 of infrared sensing module 5 divides 402 to be arranged in closer distance range with the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit as far as possible, the front end that the first infrared probe 501, second infrared probe 502 of infrared sensing module 5 and the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit divide 402 to be all arranged on sighting device shown in Fig. 1 and Fig. 2.
Fig. 5 is that the present invention configures the structural representation being provided with infrared probe motor in infrared scan detection sighting instrument, infrared sensing module 5 comprises the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged symmetrically, and the first infrared probe 501, second infrared probe 502 is arranged in the gear train of motor 8 driven rotary respectively; Under the control of controller 1, motor 8 driven gear system carries out symmetry adjustment to the first infrared probe 501, second infrared probe 502, changes the position between the first infrared probe 501, second infrared probe 502.
Fig. 6 is the electrical block diagram of ultrasonic wave emitting portion 401 of the present invention; Ultrasonic wave emission sensor LS1 and and door U8 between have phase inverter U3, phase inverter U4, phase inverter U5, phase inverter U6, phase inverter U7, phase inverter U4 and phase inverter U5 is in parallel, phase inverter U6 and phase inverter U7 is in parallel, be connected with two self-oscillation circuit respectively with two inputs of door U8, difference two Schmidt trigger U1 and U2 in two self-oscillation circuit.
Fig. 7 is the electrical block diagram that ultrasonic wave reception unit of the present invention divides 402; 5V direct current is the fuse F1 of 500mA and diode D1 through resistance to stream and forms 5V digital voltage source VDD through two-stage capacitor filtering C1 and C2, and digital voltage source VDD provides power supply for 2 NE5532P power amplifiers.Ultrasonic wave receiving sensor LS1 10K resistance in parallel R3 changes the ultrasonic signal received into input signal, and input signal amplifies through first order amplifier NE5532P, second level amplifier NE5532P is input to ultrasonic distance measuring module 4 after amplifying, input signal is exaggerated altogether 400 times after two-stage is amplified.
Figure 10 A is that gun sight of the present invention is warned the alarm indication schematic diagram one of module; Figure 10 B is four arrows that gun sight of the present invention is warned in the alarm indication schematic diagram two of module, gun sight is photoelectricity flash signal.Gun sight of the present invention module 2 of warning is arranged in the gun sight of rifle body, shown by Figure 10 A be to mix situation when auxiliary sighting device does not detect any information with ultrasonic wave at infrared ray, gun sight module 2 of warning do not send alerting signal of warning; Shown by Figure 10 B is to mix with ultrasonic wave at infrared ray that auxiliary sighting device detects situation when there is hidden hostile personal information, gun sight is warned, and module 2 sends alerting signal of warning, by the flicker of gun sight four arrows, soldier can know that the sighted direction of gun exists hidden hostile personnel, therefore soldier will enhancing your vigilance property.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body.

Claims (1)

1. one kind configures the tommy gun of infrared scan detection sighting instrument, comprise rifle body, gun sight and scanning probe sighting instrument, described gun sight is arranged on described rifle body, described scanning probe sighting instrument is connected with at described rifle body, it is characterized in that: described scanning probe sighting instrument comprises controller (1), gun sight is warned module (2), power module (3), ultrasonic distance measuring module (4), infrared sensing module (5), motor control module (6), motor (8); Wherein:
Warn with described ultrasonic distance measuring module (4), described infrared sensing module (5), described gun sight respectively module (2), described motor control module (6) of described controller (1) is electrical connected; Described motor control module (6) and described motor (8) are electrical connected;
Described ultrasonic distance measuring module (4) comprises ultrasonic wave emitting portion (401), ultrasonic wave reception unit is divided (402), described ultrasonic wave emitting portion (401) and described ultrasonic wave reception unit divide (402) to be arranged in described scanning probe sighting instrument abreast, and the ultrasonic wave transmit direction of described ultrasonic wave emitting portion (401) and described ultrasonic wave reception unit divide (402) ultrasonic wave receive direction and rifle body ballistic projections direction to be consistent;
Described infrared sensing module (5) comprises the first infrared probe (501), the second infrared probe (502), and described first infrared probe (501), described second infrared probe (502) are arranged on by the gear train of described motor (8) driven rotary respectively symmetrically; Wherein: the infra-red detection amplitude angle A of described first infrared probe (501) is identical with the infra-red detection amplitude angle B of described second infrared probe (502); The infra-red detection region S of described first infrared probe (501) 3with the infra-red detection region S of described second infrared probe (502) 4form an infrared ray blind area region S 1and an infrared ray overlap-add region S 2, described infrared ray overlap-add region S 2angle C, the distance between described first infrared probe (501) and described second infrared probe (502) is H 1, described infrared ray blind area region S 1with infrared ray overlap-add region S 2coaxial line, described infrared ray blind area region S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Described motor (8) carries out symmetry adjustment to change described infrared ray overlap-add region S to described first infrared probe (501) be arranged in gear train, described second infrared probe (502) 2angle C; Described infrared ray overlap-add region S 2angle C scope be 21 °-29 °; Distance H between described first infrared probe (501) and described second infrared probe (502) 1for 2.1-2.9cm;
The ultrasonic wave transmit direction of described ultrasonic wave emitting portion (401) and described ultrasonic wave reception unit divide the axis being parallel of (402) ultrasonic wave receive direction and described infrared ray blind area region S1 and infrared ray overlap-add region S2 to arrange; Described gun sight warns module (2) for optical flicker warning circuit; Described controller (1) is dsp controller, or ARM controller, or AVR controller.
CN201420768555.6U 2014-07-16 2014-07-16 The tommy gun of configuration infrared scan detection sighting instrument Expired - Fee Related CN204346252U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420768555.6U CN204346252U (en) 2014-07-16 2014-07-16 The tommy gun of configuration infrared scan detection sighting instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420768555.6U CN204346252U (en) 2014-07-16 2014-07-16 The tommy gun of configuration infrared scan detection sighting instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201420391292.1U Division CN204043506U (en) 2014-07-16 2014-07-16 The tommy gun of configuration infrared scan detection sighting instrument

Publications (1)

Publication Number Publication Date
CN204346252U true CN204346252U (en) 2015-05-20

Family

ID=53229514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420768555.6U Expired - Fee Related CN204346252U (en) 2014-07-16 2014-07-16 The tommy gun of configuration infrared scan detection sighting instrument

Country Status (1)

Country Link
CN (1) CN204346252U (en)

Similar Documents

Publication Publication Date Title
CN204346247U (en) There is the rifle of auxiliary mark scanning sighting device
CN204329754U (en) Rifle targeted scans detection instrument
CN204329738U (en) The tommy gun of configuration infrared scan detection sight device
CN204329765U (en) Configure the tommy gun of infrared sub-scanning sight device
CN204329752U (en) Rifle auxiliary mark scanning sighting device
CN204329745U (en) There is the rifle of Infrared Targets scanning and detecting instrument
CN204329775U (en) Rifle scanning probe aims at equipment
CN204329770U (en) There is the rifle of auxiliary mark scanning sighting instrument
CN204329776U (en) Rifle sub-scanning sight device
CN105258563A (en) Target scanning and detecting device used for rifle
CN204027445U (en) Rifle scanning probe sighting instrument
CN204329774U (en) The infrared ultrasonic sub-scanning sighting instrument of assault rifle
CN204329761U (en) The tommy gun of auxiliary band infrared excess sound wave mixing sub-scanning sight device
CN204346252U (en) The tommy gun of configuration infrared scan detection sighting instrument
CN204346250U (en) Configure the tommy gun of infrared sub-scanning sighting device
CN204346249U (en) There is the rifle of targeted scans survey meter
CN204329731U (en) Rifle targeted scans detection instrument
CN204329732U (en) Rifle auxiliary mark scans sighting device
CN204346259U (en) Be equipped with the firearms of sub-scanning sight device
CN204043506U (en) The tommy gun of configuration infrared scan detection sighting instrument
CN204100908U (en) Rifle scanning probe sighting instrument
CN204346256U (en) The tommy gun of auxiliary band infrared excess sound wave mixing sub-scanning sighting device
CN204043499U (en) Rifle targeted scans detection instrument
CN204043508U (en) Configure the tommy gun of infrared sub-scanning sighting device
CN204064122U (en) There is the rifle of targeted scans survey meter

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150520

Termination date: 20160716