CN204200374U - 组合动力轴对称变几何进气道、发动机及飞机 - Google Patents

组合动力轴对称变几何进气道、发动机及飞机 Download PDF

Info

Publication number
CN204200374U
CN204200374U CN201420557862.XU CN201420557862U CN204200374U CN 204200374 U CN204200374 U CN 204200374U CN 201420557862 U CN201420557862 U CN 201420557862U CN 204200374 U CN204200374 U CN 204200374U
Authority
CN
China
Prior art keywords
intake duct
cone
boundary layer
half cone
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201420557862.XU
Other languages
English (en)
Inventor
袁化成
王亚岗
刘君
章欣涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201420557862.XU priority Critical patent/CN204200374U/zh
Application granted granted Critical
Publication of CN204200374U publication Critical patent/CN204200374U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本实用新型公开了一种组合动力轴对称变几何进气道、发动机及飞机,包括外罩、中心杆、连接支撑,中心杆与外罩通过连接支撑连接,还包括中心锥,中心锥包括相互独立的两部分:前半锥和后半锥,且前半锥与后半锥的结合处为中心锥的半径最大处,中心杆内置驱动装置,可分别驱动前半锥和后半锥沿中心杆的轴线方向移动,前半锥与后半锥之间的缝隙为附面层吸除槽,附面层吸除槽为周向360度的槽口,中心锥的内部以及连接支撑的内部均为空心。本实用新型的进气道附面层吸除槽的尺寸是不固定的,它能够随着来流条件的改变而自由调节,并且进气道附面层吸除量在不同来流条件下始终处于最优状态,从而降低了对进气道气动性能的影响。

Description

组合动力轴对称变几何进气道、发动机及飞机
技术领域
本实用新型涉及一种组合动力轴对称变几何进气道及其控制方法,特别是涉及一种基于组合动力轴对称变几何进气道几何调节规律下的附面层吸除装置及其控制方法,属于进气道气动领域。
背景技术
由于气体粘性的作用,靠近物体表面处的流动薄层内,气流流动速度很低,沿物面法线方向的速度梯度很大的一层区域叫做附面层。在附面层中,粘性力作用不可忽略。进气道内附面层的存在极大影响了进气道的气动性能,一方面,其降低了进气道的非粘性流通面积,研究表明,在来流马赫数2.65下,轴对称进气道中心锥上喉道处的附面层厚度约占高度的20%;另一方面,超声速进气道内激波系结构复杂,激波与附面层相互作用,使反射激波后的附面层增厚,增加了进气道的畸变,严重时可能导致附面层分离,使进气道性能下降,分离严重时,进气道将无法正常稳定工作。综上所述,进气道设计时,应对附面层的发展进行适当的控制。
对进气道附面层进行控制,不仅可以扩大进气道的稳定工作范围,还可以提高进气道的某些气动性能(如总压恢复),因此,如何消除或减弱进气道内附面层带来的负面影响成为进气道设计中的一个研究重点。附面层控制主要可分为被动控制与主动控制两种,方法主要有:附面层吸除、吹除,或用涡流发生器。研究表明,附面层吸除效果较好,且可适应不同的工况,附面层吸除的原理就是利用进气道内表面当地静压与外界环境静压之差,通过隔道或抽吸装置将低能的附面层气流排到外界环境或有效加以利用的一种技术。
实践证明,通过合理的附面层流量吸除,能够较好地改善进气道的综合性能,对于提高飞行器的整体性能来说意义重大,因此,国内外大部分进气道均配备附面层吸除装置。如美国SR-71轴对称变几何进气道中心锥壁面开设了附面层抽吸孔,日本的ATREX轴对称变几何进气道也在中心体及唇罩上设置了抽吸多孔板以排走附面层。
从已有资料分析发现,附面层吸除量存在最优状态,若吸除量过小,没有达到最理想的效果;若吸除量过大,则部分主流也随之损失,不仅对总压恢复的提高无益,还使得进气道流量损失过大,对发动机推力造成不利影响。对于组合发动机而言,其工作马赫数范围十分宽广。由于来流条件的变化导致雷诺数不同,从而附面层发展状态也有所差异,至吸除位置处的附面层相对厚度也不同。不同来流条件下均有对应的最佳吸除量,而对一般的进气道而言,不同来流马赫数下最佳吸除量所对应的附面层吸除槽尺寸也不同,因此,若要在不同状态下均能达到最佳的附面层吸除效果,则要求吸除槽尺寸能够随来流条件的改变而调节。目前国内外进气道上附面层吸除装置的尺寸均是固定的,并不能实现上述效果。
实用新型内容
本实用新型所要解决的技术问题是:提供一种组合动力轴对称变几何进气道,该进气道中心锥壁面设置的附面层吸除槽的尺寸能够随着来流马赫数的不同自由调节,使不同来流条件下进气道均有较优的气动性能。
本实用新型为解决上述技术问题采用以下技术方案:
一种组合动力轴对称变几何进气道,包括外罩、中心杆、连接支撑,所述中心杆与外罩通过连接支撑连接,还包括中心锥,所述中心锥包括相互独立的两部分:前半锥和后半锥,且前半锥与后半锥的结合处为中心锥的半径最大处,所述中心杆内置驱动装置,可分别驱动前半锥和后半锥沿中心杆的轴线方向移动,前半锥与后半锥之间的缝隙为附面层吸除槽,所述附面层吸除槽为周向360度的槽口,所述中心锥的内部以及连接支撑的内部均为空心,连接支撑与后半锥连接,并且中心锥内部与连接支撑内部连通后通向所述外罩的外部。
优选的,所述附面层吸除槽与中心杆指向来流方向的夹角为13.2度。
优选的,所述附面层吸除槽的宽度范围为2.3-4.5mm。
一种发动机,包括进气道,所述进气道为上述组合动力轴对称变几何进气道。
一种飞机,包括发动机,所述发动机为上述发动机。
本实用新型采用以上技术方案与现有技术相比,具有以下技术效果:
1、本实用新型的进气道附面层吸除槽的尺寸是不固定的,它能够随着来流条件的改变而自由调节。
2、本实用新型的进气道附面层吸除量在不同来流条件下始终处于最优状态,从而降低了对进气道气动性能的影响。
附图说明
图1是本实用新型组合动力轴对称变几何进气道的整体架构图。
图2是本实用新型组合动力轴对称变几何进气道中心锥的示意图。
图3是本实用新型组合动力轴对称变几何进气道中心锥附面层吸除槽的示意图。
图4是图3中区域I的局部放大图。
图5是不同来流条件下轴对称变几何进气道气动性能随附面层吸除槽尺寸变化的曲线图。
其中:1为前半锥,2为外罩,3为中心杆,4为后半锥,5为连接支撑,6为附面层吸除槽。
具体实施方式
下面详细描述本实用新型的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本实用新型,而不能解释为对本实用新型的限制。
本实用新型针对组合动力变几何进气道工作范围广,来流参数变化剧烈而导致进气道附面层最佳吸除量变化幅度较大的问题,提出了一种基于组合动力轴对称变几何进气道几何调节规律下的附面层吸除装置及控制方法,结合组合动力轴对称变几何进气道本身变几何调节规律,实现不同来流条件下进气道附面层吸除槽尺寸的调节。
本实用新型的工作原理如下:组合动力轴对称变几何进气道在不同的马赫数时需要通过调整中心锥的轴向位置以保证进气道稳定高效地工作。组合发动机工作在较高马赫数时,为确保进气道压缩性能,进气道中心锥的后半锥位于最靠近连接支撑的一端,能够使进气道拥有较大的内收缩比,中心锥的前半锥位于合适位置使外压激波交汇于唇口;随着来流马赫数的减小,为确保进气道能够正常起动工作,中心锥的后半锥前移以增大喉道面积。而根据总体性能要求,低马赫数下进气道所需流量较小,故中心锥的前半锥前移以改变外压激波与唇罩的相对位置,从而增大唇口处超声速溢流,减小进气道捕获流量。
来流马赫数减小的过程中,进气道工作高度也逐渐降低,根据格兰维尔提出的平板湍流附面层厚度经验公式,其中:δ为附面层动量厚度,x为附面层发展距离,为当地雷诺数,ρ为密度,Ue为气流速度,μ为动力粘性系数。随着来流速度的降低,飞行高度也下降,当地雷诺数反而增大,因此进气道附面层厚度减小。但此时进气道对来流压缩的减小,附面层吸除槽处的压差也变小,所需吸除槽尺寸反而变大。
结合中心锥的调节规律,可实现进气道在不同来流条件下中心锥附面层吸除槽尺寸的控制。其尺寸调节规律如下:根据上述平板湍流附面层厚度经验公式可知,对于特定的进气道而言,随着来流马赫数的增大,进气道附面层厚度也随之增大,但进气道飞行高度也随之升高,加之对来流压缩的增大,附面层吸除槽处的压差也增大,所需吸除槽尺寸反而减小。本进气道在来流马赫数减小时,中心锥的前半锥需要相对于后半锥前移以溢除多余的流量,此过程中,位于前半锥与后半锥之间的附面层吸除槽尺寸也随之增大,与上文所描述的需要相符。
如图1所示,本实用新型组合动力轴对称变几何进气道由外罩、中心锥、中心杆、连接支撑构成,中心锥包括前半锥和后半锥,图中1为前半锥,2为外罩,3为中心杆,4为后半锥,5为连接支撑,6为附面层吸除槽。前半锥可沿中心杆相对后半锥前后移动,其压缩面的具体形式由相应的型号设计任务或飞行任务给定;中心杆内部设置驱动装置,可驱使前半锥和后半锥各自前后运动;后半锥可沿进气道轴向运动,移动时可改变进气道喉道面积,进气道喉道面积指进气道沿程各截面中面积最小的截面的面积;连接支撑连接中心锥和外罩,支撑内部为空心,用于排出吸除的附面层低能流;附面层吸除槽位于前半锥和后半锥两部分结合处,在解决前后部分连接问题的同时巧妙地作为附面层吸除装置排除中心锥近壁面的低能流。
如图2所示,为本实用新型组合动力轴对称变几何进气道中心锥的示意图,分别标出了中心锥位于最低和最高马赫数斜激波的位置,当进气道工作在巡航状态时,中心锥的后半锥位于最靠近连接支撑的一端,中心锥的前半锥处于合适位置使得外压激波交汇于唇口。当来流马赫数减小时,中心锥的后半锥前移调节进气道内收缩比,中心锥的前半锥前移以增大唇罩处超声速溢流,满足进气道流量要求。自由来流经过图中进气道两道斜激波的压缩后压力升高,而中心锥内部气体经连接支撑与外界相通,因此中心锥内部气体的压力较低,自由来流与中心锥内部气体之间形成压差,在压差的作用下将附面层的低能流从附面层吸除槽吸到中心锥内部,并通过连接支撑排到进气道外。
如图3所示,为本实用新型组合动力轴对称变几何进气道中心锥附面层吸除槽的示意图,图4为图3中区域I的局部放大图。
不同来流条件下,变几何进气道喉道截面总压恢复系数σ随附面层吸除槽尺寸Lbleed/H0的变化曲线如图5所示。其中,虚线代表来流马赫数为3.0时,喉道截面总压恢复系数σ,随附面层吸除槽尺寸Lbleed/H0的变化曲线;实线代表来流马赫数为2.5时,喉道截面总压恢复系数σ,随附面层吸除槽尺寸Lbleed/H0的变化曲线。进气道总压恢复系数是进气道重要的性能参数之一,总压恢复系数越高表示进气道性能越好,进气道附面层吸除,一方面是为了防止进气道进入不稳定的工作状态;另一方面可以提高进气道的总压恢复系数。从图5可以看出,来流马赫数越高,进气道在附面层吸除状态下性能最优点所对应的吸除槽尺寸越小,给前面提到的附面层吸除槽尺寸随来流马赫数的调节规律提供了依据。
以上实施例仅为说明本实用新型的技术思想,不能以此限定本实用新型的保护范围,凡是按照本实用新型提出的技术思想,在技术方案基础上所做的任何改动,均落入本实用新型保护范围之内。

Claims (5)

1.一种组合动力轴对称变几何进气道,包括外罩、中心杆、连接支撑,所述中心杆与外罩通过连接支撑连接,其特征在于:还包括中心锥,所述中心锥包括相互独立的两部分:前半锥和后半锥,且前半锥与后半锥的结合处为中心锥的半径最大处,所述中心杆内置驱动装置,可分别驱动前半锥和后半锥沿中心杆的轴线方向移动,前半锥与后半锥之间的缝隙为附面层吸除槽,所述附面层吸除槽为周向360度的槽口,所述中心锥的内部以及连接支撑的内部均为空心,连接支撑与后半锥连接,并且中心锥内部与连接支撑内部连通后通向所述外罩的外部。
2.如权利要求1所述组合动力轴对称变几何进气道,其特征在于:所述附面层吸除槽与中心杆指向来流方向的夹角为13.2度。
3.如权利要求1所述组合动力轴对称变几何进气道,其特征在于:所述附面层吸除槽的宽度范围为2.3-4.5mm。
4.一种发动机,包括进气道,其特征在于:所述进气道为如权利要求1所述组合动力轴对称变几何进气道。
5.一种飞机,包括发动机,其特征在于:所述发动机为如权利要求4所述发动机。
CN201420557862.XU 2014-09-25 2014-09-25 组合动力轴对称变几何进气道、发动机及飞机 Active CN204200374U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420557862.XU CN204200374U (zh) 2014-09-25 2014-09-25 组合动力轴对称变几何进气道、发动机及飞机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420557862.XU CN204200374U (zh) 2014-09-25 2014-09-25 组合动力轴对称变几何进气道、发动机及飞机

Publications (1)

Publication Number Publication Date
CN204200374U true CN204200374U (zh) 2015-03-11

Family

ID=52658338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420557862.XU Active CN204200374U (zh) 2014-09-25 2014-09-25 组合动力轴对称变几何进气道、发动机及飞机

Country Status (1)

Country Link
CN (1) CN204200374U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481700A (zh) * 2014-09-25 2015-04-01 南京航空航天大学 组合动力轴对称变几何进气道、发动机及进气道控制方法
CN109110138A (zh) * 2017-06-26 2019-01-01 通用电气公司 用于飞行器的推进系统和用于操作其的方法
CN110953072A (zh) * 2019-11-19 2020-04-03 西安航天动力研究所 高流量捕获能力变几何轴对称进气道

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481700A (zh) * 2014-09-25 2015-04-01 南京航空航天大学 组合动力轴对称变几何进气道、发动机及进气道控制方法
CN109110138A (zh) * 2017-06-26 2019-01-01 通用电气公司 用于飞行器的推进系统和用于操作其的方法
CN110953072A (zh) * 2019-11-19 2020-04-03 西安航天动力研究所 高流量捕获能力变几何轴对称进气道

Similar Documents

Publication Publication Date Title
CN104481700B (zh) 组合动力轴对称变几何进气道、发动机及进气道控制方法
CN107089340B (zh) 与前体一体化的下颔式超声速或高超声速进气道及设计方法
CN104863715B (zh) 一种矩形进口二元高超声速变几何进气道、其设计方法以及工作方法
CN104806357B (zh) 矩形进口二元高超声速变几何进气道、其设计方法以及工作方法
CN204200374U (zh) 组合动力轴对称变几何进气道、发动机及飞机
CN106151113B (zh) 一种自循环多级轴流压气机
CN103790735B (zh) 一种火箭基组合循环发动机变结构尾喷管
CN108001669B (zh) 一种基于零质量射流控制的前缘缝翼噪声抑制方法
CN204627749U (zh) 矩形进口二元高超声速变几何进气道
CN107933895B (zh) 一种用于超临界翼型减阻增升的微吹结构和方法
CN105221264A (zh) 基于密切锥导乘波理论的鼓包进气道设计方法
CN102596717A (zh) 特别是用于飞机的流动体
CN106628120A (zh) 一种高效气动涵道体
CN106014684A (zh) 一种改善tbcc用sern的组合流动控制方法及结构
CN102817716B (zh) 一种应用于超声速固冲发动机的二元混压进气道
CN105173064B (zh) 切向狭缝吹气控制跨声速抖振的方法及吹气装置
CN107701314B (zh) 一种利用柔性壁面提升进气道起动性能的流动控制方法
CN108661947A (zh) 采用康达喷气的轴流压气机叶片及应用其的轴流压气机
CN104859844A (zh) 襟翼零质量流/射流流动控制系统
RU2670664C9 (ru) Асимметричный воздухозаборник для трехконтурного двигателя сверхзвукового самолета
CN206012970U (zh) 一种超音速进气道内流槽式吹吸气流动控制装置
CN101448701B (zh) 具有诱导阻力减小装置的航空器
CN107054673A (zh) 一种自维持合成双射流激励器及超声速流动控制方法
JP5445586B2 (ja) 翼構造および整流装置
CN113357080B (zh) 一种风电叶片吹气环量控制系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant