CN204142381U - Temperature measuring circuit - Google Patents

Temperature measuring circuit Download PDF

Info

Publication number
CN204142381U
CN204142381U CN201420638771.9U CN201420638771U CN204142381U CN 204142381 U CN204142381 U CN 204142381U CN 201420638771 U CN201420638771 U CN 201420638771U CN 204142381 U CN204142381 U CN 204142381U
Authority
CN
China
Prior art keywords
voltage
temperature
source
temperature measurement
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201420638771.9U
Other languages
Chinese (zh)
Inventor
张辉
李鹏
吴艳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Beiling Co Ltd
Original Assignee
Shanghai Beiling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Beiling Co Ltd filed Critical Shanghai Beiling Co Ltd
Priority to CN201420638771.9U priority Critical patent/CN204142381U/en
Application granted granted Critical
Publication of CN204142381U publication Critical patent/CN204142381U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本实用新型提供了一种温度测量电路,包括温度感应电路,其输出表征温度变化的第一和第二电压,所述温度感应电路包括:偏置电流源,其包括分别输出第一和第二电流的第一和第二输出端;第一和第二MOS管,均配置为栅极和漏极相连接且接地,所述第一MOS管的源极接所述第一输出端,所述第二MOS管的源极接所述第二输出端,其中,所述第一电压为所述第一和第二MOS管的栅源电压的差值,所述第二电压为所述第一或第二MOS管的栅源电压。本实用新型的温度测量电路适用于片上集成,且具有低功耗高精度的特点,可应用于低电源电压的芯片电路系统。

The utility model provides a temperature measuring circuit, which includes a temperature sensing circuit, which outputs first and second voltages representing temperature changes, and the temperature sensing circuit includes: a bias current source, which includes outputting first and second voltages respectively The first and second output ends of the current; the first and second MOS transistors are configured such that the gate and drain are connected and grounded, the source of the first MOS transistor is connected to the first output end, and the The source of the second MOS transistor is connected to the second output terminal, wherein the first voltage is the difference between the gate-source voltages of the first and second MOS transistors, and the second voltage is the first Or the gate-source voltage of the second MOS transistor. The temperature measuring circuit of the utility model is suitable for on-chip integration, has the characteristics of low power consumption and high precision, and can be applied to chip circuit systems with low power supply voltage.

Description

温度测量电路temperature measurement circuit

技术领域technical field

本实用新型涉及一种温度测量电路。The utility model relates to a temperature measuring circuit.

背景技术Background technique

目前,环境监测、医疗器件和高精度电子器件的市场发展,对温度测量方案提出了低功耗、高精度、易集成的要求。为得到精确的温度值,常用的方案是使用高精密测温仪器,但这种方法不易集成,仅适用于实验室测量等场合,不能够适用于利用RFID标签采集环境温度等新兴领域。At present, the market development of environmental monitoring, medical devices and high-precision electronic devices has put forward requirements for temperature measurement solutions with low power consumption, high precision and easy integration. In order to obtain accurate temperature values, a common solution is to use high-precision temperature measuring instruments, but this method is not easy to integrate, and is only suitable for laboratory measurement and other occasions, and cannot be applied to emerging fields such as using RFID tags to collect ambient temperature.

现有技术,例如专利文献CN102435336A中,公开了适用于片上集成的温度测量电路,均是利用常规的感温元件三极管进行温度测量,但其要求的电源电压较高,不利用系统功耗。另外,现有技术中温度测量电路的模数转换精度太低,不能满足目前市场的需求。The prior art, such as patent document CN102435336A, discloses a temperature measurement circuit suitable for on-chip integration, which uses a conventional temperature sensing element triode for temperature measurement, but requires a high power supply voltage and does not use system power consumption. In addition, the analog-to-digital conversion precision of the temperature measurement circuit in the prior art is too low to meet the current market demand.

实用新型内容Utility model content

为此,本实用新型提供了一种温度测量电路,包括温度感应电路,其输出表征温度变化的第一和第二电压,所述温度感应电路包括:偏置电流源,其包括分别输出第一和第二电流的第一和第二输出端;第一和第二MOS管,均配置为栅极和漏极相连接且接地,所述第一MOS管的源极接所述第一输出端,所述第二MOS管的源极接所述第二输出端,其中,所述第一电压为所述第一或第二MOS管的栅源电压,所述第二电压为所述第一和第二MOS管的栅源电压的差值。To this end, the utility model provides a temperature measurement circuit, including a temperature sensing circuit, which outputs first and second voltages representing temperature changes, and the temperature sensing circuit includes: a bias current source, which includes outputting first and second voltages respectively and the first and second output ends of the second current; the first and second MOS transistors are configured such that the gate and the drain are connected and grounded, and the source of the first MOS transistor is connected to the first output end , the source of the second MOS transistor is connected to the second output terminal, wherein the first voltage is the gate-source voltage of the first or second MOS transistor, and the second voltage is the first and the difference between the gate-source voltage of the second MOS transistor.

进一步地,所述温度测量电路还包括模数转换电路,用于将表示所述第一电压和第二电压的比值的模拟量转化为比特流,所述模数转换电路包括SAR ADC和Sigma-Delta调制器,其中,所述SAR ADC转化所述模拟量的整数部分,所述Sigma-Delta调制器转化所述模拟量的小数部分。Further, the temperature measurement circuit also includes an analog-to-digital conversion circuit for converting the analog quantity representing the ratio of the first voltage to the second voltage into a bit stream, and the analog-to-digital conversion circuit includes a SAR ADC and a Sigma- Delta modulator, wherein, the SAR ADC converts the integer part of the analog quantity, and the Sigma-Delta modulator converts the fractional part of the analog quantity.

进一步地,所述温度测量电路还包括数字处理电路,对所述比特流进行滤波和抽取处理以得到所测量的温度值并存储该温度值。Further, the temperature measurement circuit further includes a digital processing circuit, which filters and extracts the bit stream to obtain the measured temperature value and stores the temperature value.

优选地,所述第一和第二MOS管均为PMOS管。Preferably, both the first and second MOS transistors are PMOS transistors.

优选地,所述第一电流为所述第二电流的5~10倍。Preferably, the first current is 5-10 times of the second current.

优选地,所述数字处理电路包括sinc3数字滤波器以进行所述滤波和抽取处理。Preferably, said digital processing circuit includes a sinc 3 digital filter for said filtering and decimation processing.

本实用新型的温度测量电路适用于片上集成,并且利用二极管连接型MOS管的特性产生与温度相关的电压信号,其具有低功耗的特点,可应用于低电源电压的芯片电路系统;利用SAR ADC与Sigma-Delta调制器相结合进行模数转换,使其能够达到目前市场需求水平。The temperature measurement circuit of the utility model is suitable for on-chip integration, and uses the characteristics of the diode-connected MOS tube to generate a temperature-related voltage signal. It has the characteristics of low power consumption and can be applied to chip circuit systems with low power supply voltage; using SAR The combination of ADC and Sigma-Delta modulator for analog-to-digital conversion enables it to reach the level required by the current market.

附图说明Description of drawings

图1为本实用新型的温度测量电路的组成框图;Fig. 1 is the composition block diagram of the temperature measurement circuit of the present utility model;

图2为本实用新型的温度测量电路的一个实施方式的示意图。FIG. 2 is a schematic diagram of an embodiment of the temperature measurement circuit of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本实用新型的温度测量电路作进一步的详细描述,但不作为对本实用新型的限定。The temperature measurement circuit of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments, but this is not intended to limit the present invention.

参照图1,为本实用新型的温度测量电路的组成框图。在该架构中,温度测量电路包括温度感应电路100、模数转换电路200和数字处理电路300。Referring to Fig. 1, it is a block diagram of the temperature measurement circuit of the present invention. In this architecture, the temperature measurement circuit includes a temperature sensing circuit 100 , an analog-to-digital conversion circuit 200 and a digital processing circuit 300 .

其中,温度感应电路100用于输出表征温度变化的第一电压V1和第二电压V2。该温度感应电路100包括偏置电流源110,其具有输出第一电流I1的第一输出端,和输出第二电流I2的第二输出端。温度感应电路100还包括第一MOS管M1和第二MOS管M2,均配置为二极管连接型,即两个MOS管M1和M2的栅极和漏极相连接且接地,并且,第一MOS管M1的源极接第一输出端,即接收第一电流I1,第二MOS管M2的源极接第二输出端,即接收第二电流I2。温度感应电路100输出的第一电压V1为第一MOS管M1的栅源电压VGS1或第二MOS管M2的栅源电压VGS2,其输出的第二电压V2为M1和M2的栅源电压的差值,即如图2所示的ΔVGSWherein, the temperature sensing circuit 100 is used for outputting a first voltage V 1 and a second voltage V 2 representing temperature changes. The temperature sensing circuit 100 includes a bias current source 110 having a first output terminal outputting a first current I 1 and a second output terminal outputting a second current I 2 . The temperature sensing circuit 100 also includes a first MOS transistor M 1 and a second MOS transistor M 2 , both of which are configured as a diode-connected type, that is, the gates and drains of the two MOS transistors M 1 and M 2 are connected and grounded, and, The source of the first MOS transistor M 1 is connected to the first output terminal, that is, receives the first current I 1 , and the source of the second MOS transistor M 2 is connected to the second output terminal, that is, receives the second current I 2 . The first voltage V 1 output by the temperature sensing circuit 100 is the gate-source voltage V GS1 of the first MOS transistor M 1 or the gate-source voltage V GS2 of the second MOS transistor M 2 , and the second voltage V 2 output by it is M 1 and The difference between the gate-source voltage of M 2 is ΔV GS shown in FIG. 2 .

如图2所示,第一MOS管M1和第二MOS管M2优选为PMOS管,第一电流I1为第二电流I2的m倍,优选为5~10倍。由此,温度感应电路100用偏置在不同电流密度下的二极管连接型的PMOS管,来感应外界的温度,可得到第一电压V1,即负温度系数电压VGS(VGS1或VGS2),通过改变第一电流I1和第二电流I2的电流比,可以调节第二电压V2,即正温度系数电压ΔVGS,再通过后续电路就可以进行温度测量。As shown in FIG. 2 , the first MOS transistor M 1 and the second MOS transistor M 2 are preferably PMOS transistors, and the first current I 1 is m times, preferably 5-10 times, the second current I 2 . Thus, the temperature sensing circuit 100 uses diode-connected PMOS transistors biased at different current densities to sense the external temperature, and can obtain the first voltage V 1 , that is, the negative temperature coefficient voltage V GS (V GS1 or V GS2 ), by changing the current ratio between the first current I 1 and the second current I 2 , the second voltage V 2 , that is, the positive temperature coefficient voltage ΔV GS , can be adjusted, and the temperature can be measured through subsequent circuits.

由于常温下MOS管的栅源电压VGS约等于0.3V,而常规的感温元件三极管的基极-发射极电压VBE约等于0.7V,可见,MOS管的VGS比三极管的VBE低很多,因此其可以工作在更低的电源电压下。与现有技术相比,该温度感应电路100利用MOS管进行感温,在简化电路设计的同时,降低了系统的功耗。同时,由于其可以工作在更低的电源电压下,因此,其应用范围更广。Since the gate-source voltage V GS of the MOS tube is approximately equal to 0.3V at normal temperature, and the base-emitter voltage V BE of the conventional temperature sensing element triode is approximately equal to 0.7V, it can be seen that the V GS of the MOS tube is lower than the V BE of the triode Many, so it can work at lower supply voltages. Compared with the prior art, the temperature sensing circuit 100 uses MOS transistors to sense temperature, which reduces the power consumption of the system while simplifying the circuit design. At the same time, since it can work at a lower power supply voltage, its application range is wider.

由温度感应电路100输出的第一电压V1(即负温度系数电压VGS)和第二电压V2(即正温度系数电压ΔVGS)得到所测量的温度值的原理描述如下。由正温度系数电压ΔVGS和负温度系数电压VGS,可组合成零温度系数电压VREF。而零温度系数电压VREF=VGS+α·ΔVGS,其中,α为常数,取值14~18。The principle of obtaining the measured temperature value from the first voltage V 1 (ie, the negative temperature coefficient voltage V GS ) and the second voltage V 2 (ie, the positive temperature coefficient voltage ΔV GS ) outputted by the temperature sensing circuit 100 is described as follows. The positive temperature coefficient voltage ΔV GS and the negative temperature coefficient voltage V GS can be combined into a zero temperature coefficient voltage V REF . And the zero temperature coefficient voltage V REF =V GS +α·ΔV GS , where α is a constant value of 14˜18.

然后,根据如下公式(1)可得到与温度正相关的系数r:Then, according to the following formula (1), the coefficient r positively correlated with temperature can be obtained:

r = α · ΔV GS α · ΔV GS + V GS = α α + V GS ΔV GS ,   公式(1) r = α · ΔV GS α · ΔV GS + V GS = α α + V GS ΔV GS , Formula 1)

其中,α为一常数,取值为14~18,为温度感应电路100输出的第一电压V1(即负温度系数电压VGS)与第二电压V2(即正温度系数电压ΔVGS)的比值。Among them, α is a constant, the value is 14~18, is the ratio of the first voltage V 1 (ie, the negative temperature coefficient voltage V GS ) output by the temperature sensing circuit 100 to the second voltage V 2 (ie, the positive temperature coefficient voltage ΔV GS ).

最后,根据两个点确定一条直线的原理,可求出与温度正相关的系数r到温度值Temp的映射关系,即:Finally, according to the principle of determining a straight line based on two points, the mapping relationship between the coefficient r positively correlated with temperature and the temperature value Temp can be obtained, namely:

Temp=A*r-B,  公式(2)Temp=A*r-B, Formula (2)

其中,A=580~620,B=260~280。Among them, A=580-620, B=260-280.

为了提高对第一电压V1与第二电压V2的比值的数字化的精度,本实用新型的温度测量电路还包括模数转换电路200,用于将包含温度信息的电压信号的模拟量转化为数据位宽为1比特的比特流。其中,包含温度信息的电压信号的模拟量为第一电压V1和第二电压V2的比值,即负温度系数电压VGS和正温度系数电压ΔVGS的比值 In order to improve the digitization accuracy of the ratio of the first voltage V1 to the second voltage V2 , the temperature measurement circuit of the present invention further includes an analog-to-digital conversion circuit 200, which is used to convert the analog quantity of the voltage signal containing temperature information into A bit stream with a data bit width of 1 bit. Wherein, the analog quantity of the voltage signal containing temperature information is the ratio of the first voltage V1 to the second voltage V2 , that is, the ratio of the negative temperature coefficient voltage V GS to the positive temperature coefficient voltage ΔV GS

在对模拟量进行数字化时,将整数部分和小数部分分别进行转换。可将模拟量进行分解,即:in the analog When digitizing, the integer part and the fractional part are converted separately. The analog quantity can be decomposed, namely:

V GS ΔV GS = n + μ ,   公式(3) V GS ΔV GS = no + μ , Formula (3)

其中n为整数部分,μ为小数部分。Where n is the integer part and μ is the fractional part.

模数转换电路200包括SAR(逐次逼近寄存器型)ADC(模拟数字转换器)210和Sigma-Delta调制器220,其中,所述SAR ADC 210转化模拟量的整数部分n,所述Sigma-Delta调制器220转化所述模拟量的小数部分μ。The analog-to-digital conversion circuit 200 includes a SAR (Successive Approximation Register) ADC (Analog-Digital Converter) 210 and a Sigma-Delta modulator 220, wherein the SAR ADC 210 converts the integer part n of the analog quantity, and the Sigma-Delta modulation The device 220 converts the fractional part μ of the analog quantity.

参照图2,描述模数转换电路200的模数转换过程。Referring to FIG. 2 , the analog-to-digital conversion process of the analog-to-digital conversion circuit 200 is described.

首先,用SAR ADC(优选为5比特的SAR ADC)210完成粗转换,将VGS与整数倍的ΔVGS作比较,从而得到整数部分n,并存储在寄存器中。Firstly, use SAR ADC (preferably 5-bit SAR ADC) 210 to perform rough conversion, and compare V GS with an integer multiple of ΔV GS to obtain an integer part n and store it in a register.

接着,Sigma-Delta调制器220完成精转换,即当比较器输出第一状态(例如输出为1)时,Sigma-Delta调制器220积分VGS-(n+1)·ΔVGS,当比较器输出第二状态(例如输出为0)时,积分VGS-n·ΔVGS。工作一段时间后,根据电荷守恒原理,即:Next, the Sigma-Delta modulator 220 completes the fine conversion, that is, when the comparator outputs the first state (for example, the output is 1), the Sigma-Delta modulator 220 integrates V GS -(n+1)·ΔV GS , when the comparator When the second state is output (for example, the output is 0), V GS −n·ΔV GS is integrated. After working for a period of time, according to the principle of charge conservation, that is:

(1-μ)·(VGS-n·ΔVGS)+u·(VGS-(n+1)·ΔVGS)=0,  公式(4)(1-μ)·(V GS −n·ΔV GS )+u·(V GS −(n+1)·ΔV GS )=0, formula (4)

根据如下公式(5)可以得到小数部分的值:According to the following formula (5), the value of the fractional part can be obtained:

μ = V GS ΔV GS - n ,   公式(5) μ = V GS ΔV GS - no , Formula (5)

其中,整数部分n已由SAR ADC 210转换得到。Wherein, the integer part n has been converted by the SAR ADC 210.

由此,模数转换电路200得到了的整数部分n和小数部分μ的数字化的值,即得到了将其输出到数字处理电路300。数字处理电路300包括sinc3数字滤波器,用于将模数转换电路200输出的1比特的比特流进行抽取和滤波处理,变为数字信号,该数字信号的位宽可以根据精度需要选择,例如,可选择数据位宽为12比特。该12比特的数据除以4096即可以得到公式(1)和(2)中与温度正相关的系数r,从而得到所要测量的温度值Temp。得到的该温度值Temp可以存储在存储器中,且可以被外部实体通过数字通讯接口直接读取。Thus, the analog-to-digital conversion circuit 200 obtains The digitized value of the integer part n and the fractional part μ, that is, we get It is output to the digital processing circuit 300 . The digital processing circuit 300 includes a sinc 3 digital filter, which is used to extract and filter the 1-bit bit stream output by the analog-to-digital conversion circuit 200 to become a digital signal. The bit width of the digital signal can be selected according to the accuracy requirements, for example , the optional data bit width is 12 bits. Dividing the 12-bit data by 4096 can obtain the coefficient r positively correlated with temperature in formulas (1) and (2), thereby obtaining the temperature value Temp to be measured. The obtained temperature value Temp can be stored in a memory, and can be directly read by an external entity through a digital communication interface.

本实用新型的温度测量电路的模数转换电路200,采用SAR ADC210与Sigma-Delta调制器220相结合的架构,构成高速且高精度的模数转换器。由于将整数和小数部分分别进行量化,在保证量化高精度的同时,对Sigma-Delta调制器220的精度要求降低(例如,不需要采用如专利文献CN102435336A所公开的双精度Sigma-Delta调制器,也能达到高于该文献的数字化精度)。由于对Sigma-Delta调制器220的精度要求降低,即其过采样率不需要太高,因此其工作时间大大缩短,从而降低了系统的平均功耗;同时对运放输出摆幅和采样电容的需求也降低,可进一步地降低系统功耗。The analog-to-digital conversion circuit 200 of the temperature measurement circuit of the present utility model adopts a structure combining a SAR ADC210 and a Sigma-Delta modulator 220 to form a high-speed and high-precision analog-to-digital converter. Since the integer and the fractional part are quantized separately, while ensuring the high precision of quantization, the accuracy requirement of the Sigma-Delta modulator 220 is reduced (for example, it is not necessary to adopt the double-precision Sigma-Delta modulator as disclosed in the patent document CN102435336A, can also achieve digitization accuracy higher than that of the literature). Since the accuracy requirement of the Sigma-Delta modulator 220 is reduced, that is, its oversampling rate does not need to be too high, its working time is greatly shortened, thereby reducing the average power consumption of the system; at the same time, the output swing of the operational amplifier and the sampling capacitor Requirements are also reduced, further reducing system power consumption.

本实用新型的温度测量电路适用于片上集成,并且利用二极管连接型MOS管的特性产生与温度相关的电压信号,其具有低功耗的特点,可应用于低电源电压的芯片电路系统;利用SAR ADC与Sigma-Delta调制器相结合进行模数转换,使其能够达到目前市场需求水平。The temperature measurement circuit of the utility model is suitable for on-chip integration, and uses the characteristics of the diode-connected MOS tube to generate a temperature-related voltage signal. It has the characteristics of low power consumption and can be applied to chip circuit systems with low power supply voltage; using SAR The combination of ADC and Sigma-Delta modulator for analog-to-digital conversion enables it to reach the level required by the current market.

以上具体实施方式仅为本实用新型的示例性实施方式,不能用于限定本实用新型,本实用新型的保护范围由权利要求书限定。本领域技术人员可以在本实用新型的实质和保护范围内,对本实用新型做出各种修改或等同替换,这些修改或等同替换也应视为落在本实用新型的保护范围内。The above specific implementations are only exemplary implementations of the utility model, and cannot be used to limit the utility model, and the protection scope of the utility model is defined by the claims. Those skilled in the art can make various modifications or equivalent replacements to the present invention within the spirit and protection scope of the present invention, and these modifications or equivalent replacements should also be deemed to fall within the protection scope of the present invention.

Claims (6)

1.一种温度测量电路,包括温度感应电路,其输出表征温度变化的第一和第二电压,所述温度感应电路包括:1. A temperature measurement circuit comprising a temperature sensing circuit which outputs first and second voltages representing temperature variations, said temperature sensing circuit comprising: 偏置电流源,其包括分别输出第一和第二电流的第一和第二输出端;a bias current source comprising first and second output terminals outputting first and second currents, respectively; 第一和第二MOS管,均配置为栅极和漏极相连接且接地,所述第一MOS管的源极接所述第一输出端,所述第二MOS管的源极接所述第二输出端,其中,The first and second MOS transistors are both configured such that the gate and the drain are connected and grounded, the source of the first MOS transistor is connected to the first output terminal, and the source of the second MOS transistor is connected to the The second output, where, 所述第一电压为所述第一或第二MOS管的栅源电压,所述第二电压为所述第一和第二MOS管的栅源电压的差值。The first voltage is a gate-source voltage of the first or second MOS transistor, and the second voltage is a difference between the gate-source voltages of the first and second MOS transistors. 2.根据权利要求1所述的温度测量电路,其特征在于,所述温度测量电路还包括模数转换电路,用于将表示所述第一电压和第二电压的比值的模拟量转化为比特流,所述模数转换电路包括SAR ADC和Sigma-Delta调制器,其中,所述SAR ADC转化所述模拟量的整数部分,所述Sigma-Delta调制器转化所述模拟量的小数部分。2. The temperature measurement circuit according to claim 1, characterized in that, the temperature measurement circuit further comprises an analog-to-digital conversion circuit for converting the analog quantity representing the ratio of the first voltage to the second voltage into bit The analog-to-digital conversion circuit includes a SAR ADC and a Sigma-Delta modulator, wherein the SAR ADC converts the integer part of the analog quantity, and the Sigma-Delta modulator converts the fractional part of the analog quantity. 3.根据权利要求2所述的温度测量电路,其特征在于,所述温度测量电路还包括数字处理电路,对所述比特流进行滤波和抽取处理以得到所测量的温度值并存储该温度值。3. The temperature measurement circuit according to claim 2, characterized in that, the temperature measurement circuit also includes a digital processing circuit, which filters and extracts the bit stream to obtain the measured temperature value and stores the temperature value . 4.根据权利要求1所述的温度测量电路,其特征在于,所述第一和第二MOS管均为PMOS管。4. The temperature measurement circuit according to claim 1, wherein the first and second MOS transistors are both PMOS transistors. 5.根据权利要求1所述的温度测量电路,其特征在于,所述第一电流为所述第二电流的5~10倍。5. The temperature measuring circuit according to claim 1, wherein the first current is 5-10 times of the second current. 6.根据权利要求3所述的温度测量电路,其特征在于,所述数字处理电路包括sin c3数字滤波器以进行所述滤波和抽取处理。6. The temperature measurement circuit according to claim 3, wherein the digital processing circuit includes a sin c 3 digital filter to perform the filtering and decimation processing.
CN201420638771.9U 2014-10-29 2014-10-29 Temperature measuring circuit Expired - Lifetime CN204142381U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420638771.9U CN204142381U (en) 2014-10-29 2014-10-29 Temperature measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420638771.9U CN204142381U (en) 2014-10-29 2014-10-29 Temperature measuring circuit

Publications (1)

Publication Number Publication Date
CN204142381U true CN204142381U (en) 2015-02-04

Family

ID=52419061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420638771.9U Expired - Lifetime CN204142381U (en) 2014-10-29 2014-10-29 Temperature measuring circuit

Country Status (1)

Country Link
CN (1) CN204142381U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639168A (en) * 2015-02-15 2015-05-20 芯原微电子(上海)有限公司 Sigma-Delta type analog-to-digital converter analog front end circuit
CN105606239A (en) * 2014-10-29 2016-05-25 上海贝岭股份有限公司 Temperature measurement circuit
CN107923800A (en) * 2015-09-25 2018-04-17 英特尔公司 Heat sensor including non-inverting input
CN108981940A (en) * 2018-10-08 2018-12-11 长江存储科技有限责任公司 A kind of temperature sensor
CN109459156A (en) * 2018-09-13 2019-03-12 中国地震局地壳应力研究所 Ultradeep well High Precision Temperature Measuring Instruments
CN110307912A (en) * 2018-03-20 2019-10-08 合肥格易集成电路有限公司 A kind of temperature sensing circuit and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606239A (en) * 2014-10-29 2016-05-25 上海贝岭股份有限公司 Temperature measurement circuit
CN104639168A (en) * 2015-02-15 2015-05-20 芯原微电子(上海)有限公司 Sigma-Delta type analog-to-digital converter analog front end circuit
CN104639168B (en) * 2015-02-15 2017-11-10 芯原微电子(上海)有限公司 Sigma Delta type analog-to-digital converter analog front circuits
CN107923800A (en) * 2015-09-25 2018-04-17 英特尔公司 Heat sensor including non-inverting input
US10866145B2 (en) 2015-09-25 2020-12-15 Intel IP Corporation Thermal sensor including pulse-width modulation output
CN110307912A (en) * 2018-03-20 2019-10-08 合肥格易集成电路有限公司 A kind of temperature sensing circuit and method
CN109459156A (en) * 2018-09-13 2019-03-12 中国地震局地壳应力研究所 Ultradeep well High Precision Temperature Measuring Instruments
CN108981940A (en) * 2018-10-08 2018-12-11 长江存储科技有限责任公司 A kind of temperature sensor

Similar Documents

Publication Publication Date Title
CN204142381U (en) Temperature measuring circuit
CN105606239A (en) Temperature measurement circuit
CN102338669B (en) Low Voltage Low Power CMOS Temperature Sensor
CN107506278B (en) Digital temperature sensor circuit
CN204831597U (en) Integrated temperature sensor circuit on piece
CN113280936B (en) Controlled curvature correction in high-accuracy thermal sensors
CN112513598B (en) Method and circuit for temperature sensing, temperature sensor and electrical appliance
CN103399201A (en) Universal detection chip system for weak signals of sensor
US11867572B2 (en) Method for implementing Vptat multiplier in high accuracy thermal sensor
CN102385409A (en) VGS/R type reference source that provides both voltage and current references with zero temperature coefficient
CN103441764A (en) Current frequency converting circuit
CN115096459A (en) Integrated temperature sensor
TWI596890B (en) Signal processing circuit
CN107255529A (en) A kind of temperature sensors of high precision
CN211554775U (en) High-precision converter for converting current into voltage
CN113008410B (en) Temperature sensor for integrated circuit
CN110456144A (en) A nA level current measurement system for testing equipment
CN101917193A (en) An analog-to-digital converter for a digitally controlled switch DC-DC converter
Pertijs et al. A sigma-delta modulator with bitstream-controlled dynamic element matching
CN117309171A (en) Low-power consumption low-cost digital CMOS temperature sensor
De Smedt et al. A 40nm-CMOS, 18 μW, temperature and supply voltage independent sensor interface for RFID tags
CN203965060U (en) A kind of temperature sensor circuit based on reference source
CN114594416A (en) Millivolt-level voltage frequency conversion circuit applied to voltage source remote calibration system
CN102706473B (en) Temperature detecting circuit applied to radio frequency receiver
CN112880845B (en) Variable range temperature sensor

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20150204

CX01 Expiry of patent term