CN204064120U - Rifle auxiliary mark scans sighting device - Google Patents

Rifle auxiliary mark scans sighting device Download PDF

Info

Publication number
CN204064120U
CN204064120U CN201420381852.5U CN201420381852U CN204064120U CN 204064120 U CN204064120 U CN 204064120U CN 201420381852 U CN201420381852 U CN 201420381852U CN 204064120 U CN204064120 U CN 204064120U
Authority
CN
China
Prior art keywords
infrared
infrared probe
module
motor
sighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420381852.5U
Other languages
Chinese (zh)
Inventor
王晓韬
耿志伟
田守雨
朱坤学
孙昭华
刘扬
李兴海
李永春
李响
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIAONING ADVANCED SPECIAL SCHOOL OF POLICE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201420381852.5U priority Critical patent/CN204064120U/en
Application granted granted Critical
Publication of CN204064120U publication Critical patent/CN204064120U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The utility model discloses a kind of rifle auxiliary mark and scan sighting device, belong to tactics investigation equipment technical field.Sighting device comprises controller (1), gun sight warns module (2), power module (3), ultrasonic distance measuring module (4), infrared sensing module (5), the first motor control module (6), the second motor control module (7), the first motor (8), the second motor (9) in rifle auxiliary mark scanning of the present utility model; Described controller (1) module (2) of warning with described ultrasonic distance measuring module (4), infrared sensing module (5), gun sight is respectively electrical connected, and described power module (3) is respectively described controller (1), described ultrasonic distance measuring module (4), described infrared sensing module (5), described gun sight are warned, and module (2) provides electric energy.The utility model compared with prior art has that structure is simple, dependable performance, stability are high, fighting efficiency high.

Description

Rifle auxiliary mark scans sighting device
Technical field
The utility model belongs to tactics investigation equipment technical field, in particular, belongs to a kind of and utilizes infrared technology and the collaborative equipment carried out investigations of ultrasonic technology mixing.
Background technology
Armed policeman, special policeman soldier and field army soldier need when dealing with contingencies to carry out actual combat ball firing usually, usually in combat environment, contact is between ourselves and the enemy a complicated process, the pattern of bayoneting in World War II has been different from today that automation weapon is popularized, fight between ourselves and the enemy, normally contactless fight mode between ourselves and the enemy, battlefield surroundings is ever-changing to be made can to make full use of environment between ourselves and the enemy and artificiality effectively pretends.In course of battle, how to identify the camouflage of enemy and ensure that shooting course does not accidentally injure innocent people and one's own side personnel, be armed policeman, special policeman soldier and field army soldier must faced by a great problem.
When 2014 on March 1, evening 9 20 points, the armed railway station, Kunming of rushing in of Kunming a gang of ruffian cuts everyone in their way, after crime, more than 10 police car is rushed towards scene and is arrested suspect, and in order to avoid using, gun hurt the not guilty masses, public security special policeman just shoots 4 ruffians then and there dead after after arriving in ruffian being attracted to the region be far from the crowd.This plays the attack of terrorism and causes altogether and caused that the not guilty masses 29 people is dead, 143 people are injured.How emergency action is carried out to similar accident, with avoid the unnecessary injures and deaths of the not guilty masses become armed policeman and special policeman soldier must faced by actual combat problem, lacking necessary technical equipment in prior art is also the key factor that restriction armed policeman and special policeman soldier dispose similar incidents.Armed policeman, special policeman soldier and field army soldier carry out fire tactics training daily also needs in addition, how to utilize the skills of actual combat of limited resource raising soldiers and tactics technical ability to be the great difficult problems restricting training guidance personnel always.How to give full play to the effect of auxiliary technique and tactics means, to improve a great problem that armed policeman, the fighting quality of special policeman soldier and field army soldier and technical ability are restriction the art as far as possible always.
Summary of the invention
The utility model, in order to effectively solve above technical problem, gives a kind of rifle auxiliary mark and scans sighting device.
A kind of rifle auxiliary mark of the present utility model scans sighting device, it is characterized in that: comprise controller, gun sight warns module, power module, ultrasonic distance measuring module, infrared sensing module, the first motor control module, the second motor control module, the first motor, the second motor; Wherein:
Warn with described ultrasonic distance measuring module, described infrared sensing module, described gun sight respectively module, described first motor control module, described second motor control module of described controller is electrical connected; Described first motor control module and described first motor are electrical connected, and described second motor control module and described second motor are electrical connected;
Described ultrasonic distance measuring module comprises ultrasonic wave emitting portion, ultrasonic wave reception unit is divided, and described ultrasonic wave emitting portion and described ultrasonic wave reception unit are divided and be arranged on abreast on rifle body and be consistent with rifle body ballistic projections direction;
Described infrared sensing module comprises the first infrared probe, the second infrared probe, described first infrared probe and described second infrared probe are arranged symmetrically, and described first infrared probe, described second infrared probe are arranged on the rotating shaft of described first motor, described second motor respectively; Wherein: the infra-red detection amplitude angle A of described first infrared probe is identical with the infra-red detection amplitude angle B of described second infrared probe; The infra-red detection region S of described first infrared probe 3with the infra-red detection region S of described second infrared probe 4form an infrared ray blind area region S 1and an infrared ray overlap-add region S 2, described infrared ray overlap-add region S 2angle C, the distance between described first infrared probe and described second infrared probe is H 1, described infrared ray blind area region S 1with infrared ray overlap-add region S 2coaxial line, described infrared ray blind area region S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Described first motor, described second motor carry out symmetry adjustment to change described infrared ray overlap-add region S to described first infrared probe, described second infrared probe respectively 2angle C; Described infrared ray overlap-add region S 2angle C scope be 5 °-25 °; Distance H between described first infrared probe and described second infrared probe 1for 3-6cm.
Sighting device is scanned, preferably: described gun sight warns module (2) for optical flicker warning circuit according to above-described rifle auxiliary mark.
Sighting device is scanned, preferably: described controller can be dsp controller according to above-described rifle auxiliary mark.
Sighting device is scanned, preferably: described controller can be ARM controller according to above-described rifle auxiliary mark.
Sighting device is scanned, preferably: described controller can be AVR controller according to above-described rifle auxiliary mark.
Sighting device is scanned, preferably: described ultrasonic wave emitting portion, described ultrasonic wave reception unit are divided and described infrared ray blind area region S according to above-described rifle auxiliary mark 1with infrared ray overlap-add region S 2axis being parallel arrange.
The utility model compared with prior art has that structure is simple, dependable performance, stability are high, fighting efficiency high.
Accompanying drawing explanation
Accompanying drawing 1 is the schematic diagram one that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body;
Accompanying drawing 2 is schematic diagrames two that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body;
Accompanying drawing 3 is structural representations of the utility model rifle auxiliary mark scanning sighting device;
Accompanying drawing 4 is structural representations of the utility model infrared detection;
Accompanying drawing 5 is the structural representations being provided with infrared probe motor in the utility model rifle auxiliary mark scanning sighting device;
Accompanying drawing 6 is electrical block diagrams of the utility model ultrasonic wave emitting portion;
Accompanying drawing 7 is electrical block diagrams that the utility model ultrasonic wave reception unit is divided;
Accompanying drawing 8 is structural representations one of rifle body in prior art;
Accompanying drawing 9 is structural representations two of rifle body in prior art;
Accompanying drawing 10A is that the utility model gun sight is warned the alarm indication schematic diagram one of module;
Accompanying drawing 10B is that the utility model gun sight is warned the alarm indication schematic diagram two of module.
Detailed description of the invention
Preferred embodiment 1
Fig. 1 is the schematic diagram one that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body, Fig. 2 is the schematic diagram two that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body, sub-scanning sighting device is arranged under the muzzle of rifle body, direction and the rifle body ballistic projections direction of infrared ray and ultrasound examination are consistent, and the gun sight above rifle body is the same with the mounting means of gun gun sight in prior art.The mounting means of the utility model sub-scanning sighting device on assault rifle and the mounting means of bayonet on rifle body similar, the utility model sub-scanning sighting device can be stably arranged on above rifle body.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body, and electrical signal line does not all show in fig. 1 and 2.Optical flare stand by lamp is arranged in aiming, with the soldier's Timeliness coverage alarm signal with gun sight gun easy to use.
Fig. 3 is the structural representation of the utility model rifle auxiliary mark scanning sighting device, and rifle auxiliary mark of the present utility model scanning sighting device comprises controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, power module 3, first motor control module 6, second motor control module 7, first motor 8, second motor 9;
Controller 1 module 2, first motor control module 6, second motor control module 7 of warning with ultrasonic distance measuring module 4, infrared sensing module 5, gun sight is respectively electrical connected; First motor control module 6 and the first motor 8 are electrical connected, and the second motor control module 7 and the second motor 9 are electrical connected; Power module 3 is respectively controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight are warned, and module 2, first motor control module 6, second motor control module 7, first motor 8, second motor 9 provides electric energy; Power module 3 also can be respectively ultrasonic distance measuring module 4 by controller 1, infrared sensing module 5, gun sight are warned, and module 2 provides electric energy; Ultrasonic distance measuring module 4 is connected to ultrasonic wave emitting portion 401, ultrasonic wave reception unit divides 402, and ultrasonic wave emitting portion 401 and ultrasonic wave reception unit are divided 402 to be symmetricly set on rifle body and be consistent with rifle body ballistic projections direction; Infrared sensing module 5 is connected to the front end that the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged on rifle body sighting device symmetrically; Controller 1 is dsp controller.
Distance between the gun user of service that ultrasonic distance measuring module 4 detects and the hidden hostile element in front, infrared sensing module 5 detects according to the first infrared probe 501, second infrared probe 502 the hostile personal information being in hidden state or active state.Controller 1 judges whether to exist hidden personnel that naked eyes should not differentiate according to the testing result of the testing result of ultrasonic distance measuring module 4 and infrared sensing module 5, automatically or not easily discovers personnel; If determine really there are hidden personnel or not easily discover personnel, then controller 1 controls gun sight module 2 of warning and sends optics alarm signal.
Gun sight warns module 2 for optical flicker warning circuit, gun sight module 2 of warning will detect that front has the signal of people can be shown to armed armed policeman, special policeman soldier and field army soldier in the mode of blinking red lamp in real time, makes armed policeman, special policeman soldier and field army soldier carry out confirming to determine whether really shoot further to the enemy's situation in front according to the warn prompting of module 2 of gun sight.The warning red light of flicker is arranged on the sighting device body shown in Fig. 1 or Fig. 2, usual gun user is the armed triggering pulling of the right hand, like this can so that armed armed policeman, special policeman soldier and field army soldier see the alarm signal of sighting device body in time.
The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1and with infrared ray overlap-add region S 2coaxially, region, blind area S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 to be arranged between the first infrared probe 501 and the second infrared probe 502, and ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 and first distances between infrared probe 501 and the second infrared probe 502 good close to ensureing that the utility model rifle auxiliary mark scans the Detection results of sighting device.
Fig. 4 is the structural representation of the utility model infrared detection; Extraordinary aiming Detection results can be obtained when first infrared probe 501 and the second infrared probe 502 are set together symmetrically as can be seen from Figure.The infra-red detection amplitude angle of the first infrared probe 501 is A, and the infra-red detection amplitude angle of the second infrared probe 502 is B, and the distance between the first infrared probe 501 and the second infrared probe 502 is H 1, H 1scope can be 3-6cm; Distance H between first infrared probe 501 and the second infrared probe 502 1preferred 3cm.The infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is region, a blind area S 1, the infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is the infrared ray overlap-add region S of an overlap 2, wherein region, blind area S 1axis coverage be H 2, infrared ray overlap-add region S 2axis coverage be H 3, region, blind area S 1and with infrared ray overlap-add region S 2coaxial line, i.e. H 2and H 3coaxial line, region, blind area S 1and with infrared ray overlap-add region S 2axis and ballistic projections direction is consistent, i.e. H 2and H 3be consistent with ballistic projections direction.
First infrared probe 501 and the second infrared probe 502 all can adopt pyroelectric infrared sensor to detect be in hidden state personnel radiate the infrared signal of radiation, the detector front end formed at the first infrared probe 501 and the second infrared probe 502 forms blind area region S 1with an infrared ray overlap-add region S 2, S 2angle C scope be 5 °-25 °.When having movable personnel or hidden personnel before lens, what the infrared ray that human body sends just constantly alternately changed enters infrared ray overlap-add region S 2, so just obtain with dynamic infrared signal feedback pulse signal, and then can judge whether to there are hidden personnel.The infrared ray centre wavelength of human body radiation is 9 ~ 10um, the window that one is equipped with filter glass has been offered at transducer tip, this optical filter is 7 ~ 10um by the wave-length coverage of light, just in time be suitable for the detection of human infrared radiation, and the infrared ray of other wavelength is absorbed by optical filter.Under the effect of controller 1, the first motor 8, second motor 9 carries out symmetry adjustment to change described infrared ray overlap-add region S to the first infrared probe 501, second infrared probe 502 respectively 2angle C, and then automatically can obtain preferably infrared scan effect.
Infrared sensing module 5 is electrical connected with the first infrared probe 501, second infrared probe 502 respectively, and the first infrared probe 501 and the second infrared probe 502 are arranged on the sighting device body of rifle body symmetrically; The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1distance rifle body has certain distance.Ultrasonic distance measuring module 4 divides 402 to be electrical connected with ultrasonic wave emitting portion 401, ultrasonic wave reception unit respectively, and the sighting device body that described ultrasonic wave emitting portion 401 and described ultrasonic wave reception unit divide 402 to be arranged on rifle body is consistent with rifle body ballistic projections direction.When rifle body is in level, the first infrared probe 501 and the second infrared probe 502 are also all in same plane, all consistent with the distance of muzzle.
First infrared probe 501, second infrared probe 502 of infrared sensing module 5 divides 402 to be arranged in closer distance range with the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit as far as possible, the front end that the first infrared probe 501, second infrared probe 502 of infrared sensing module 5 and the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit divide 402 to be all arranged on sighting device shown in Fig. 1 and Fig. 2.
Fig. 5 is the structural representation being provided with infrared probe motor in the utility model rifle auxiliary mark scanning sighting device, infrared sensing module 5 comprises the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged symmetrically, and the first infrared probe 501, second infrared probe 502 is arranged on the rotating shaft of the first motor 8, second motor 9 respectively; Under the control of controller 1, the first motor 8, second motor 9 carries out symmetry adjustment to the first infrared probe 501, second infrared probe 502 respectively, changes the position between the first infrared probe 501, second infrared probe 502.
Fig. 6 is the electrical block diagram of the utility model ultrasonic wave emitting portion 401; Ultrasonic wave emission sensor LS1 and and door U8 between have phase inverter U3, phase inverter U4, phase inverter U5, phase inverter U6, phase inverter U7, phase inverter U4 and phase inverter U5 is in parallel, phase inverter U6 and phase inverter U7 is in parallel, be connected with two self-oscillation circuit respectively with two inputs of door U8, difference two Schmidt trigger U1 and U2 in two self-oscillation circuit.
Fig. 7 is the electrical block diagram that the utility model ultrasonic wave reception unit divides 402; 5V direct current is the fuse F1 of 500mA and diode D1 through resistance to stream and forms 5V digital voltage source VDD through two-stage capacitor filtering C1 and C2, and digital voltage source VDD provides power supply for 2 NE5532P power amplifiers.Ultrasonic wave receiving sensor LS1 10K resistance in parallel R3 changes the ultrasonic signal received into input signal, and input signal amplifies through first order amplifier NE5532P, second level amplifier NE5532P is input to ultrasonic distance measuring module 4 after amplifying, input signal is exaggerated altogether 400 times after two-stage is amplified.
Figure 10 A is that the utility model gun sight is warned the alarm indication schematic diagram one of module; Figure 10 B is four arrows that the utility model gun sight is warned in the alarm indication schematic diagram two of module, gun sight is photoelectricity flash signal.The utility model gun sight module 2 of warning is arranged in the gun sight of rifle body, shown by Figure 10 A be to mix situation when auxiliary sighting device does not detect any information with ultrasonic wave at infrared ray, gun sight module 2 of warning do not send alerting signal of warning; Shown by Figure 10 B is to mix with ultrasonic wave at infrared ray that auxiliary sighting device detects situation when there is hidden hostile personal information, gun sight is warned, and module 2 sends alerting signal of warning, by the flicker of gun sight four arrows, soldier can know that the sighted direction of gun exists hidden hostile personnel, therefore soldier will enhancing your vigilance property.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body.
Preferred embodiment 2
Fig. 1 is the schematic diagram one that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body, Fig. 2 is the schematic diagram two that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body, sub-scanning sighting device is arranged under the muzzle of rifle body, direction and the rifle body ballistic projections direction of infrared ray and ultrasound examination are consistent, and the gun sight above rifle body is the same with the mounting means of gun gun sight in prior art.The mounting means of the utility model sub-scanning sighting device on assault rifle and the mounting means of bayonet on rifle body similar, the utility model sub-scanning sighting device can be stably arranged on above rifle body.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body, and electrical signal line does not all show in fig. 1 and 2.Optical flare stand by lamp is arranged in aiming, with the soldier's Timeliness coverage alarm signal with gun sight gun easy to use.
Fig. 3 is the structural representation of the utility model rifle auxiliary mark scanning sighting device, and rifle auxiliary mark of the present utility model scanning sighting device comprises controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, power module 3, first motor control module 6, second motor control module 7, first motor 8, second motor 9;
Controller 1 module 2, first motor control module 6, second motor control module 7 of warning with ultrasonic distance measuring module 4, infrared sensing module 5, gun sight is respectively electrical connected; First motor control module 6 and the first motor 8 are electrical connected, and the second motor control module 7 and the second motor 9 are electrical connected; Power module 3 is respectively controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight are warned, and module 2, first motor control module 6, second motor control module 7, first motor 8, second motor 9 provides electric energy; Power module 3 also can be respectively ultrasonic distance measuring module 4 by controller 1, infrared sensing module 5, gun sight are warned, and module 2 provides electric energy; Ultrasonic distance measuring module 4 is connected to ultrasonic wave emitting portion 401, ultrasonic wave reception unit divides 402, and ultrasonic wave emitting portion 401 and ultrasonic wave reception unit are divided 402 to be symmetricly set on rifle body and be consistent with rifle body ballistic projections direction; Infrared sensing module 5 is connected to the front end that the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged on rifle body sighting device symmetrically; Controller 1 is ARM controller.
Distance between the gun user of service that ultrasonic distance measuring module 4 detects and the hidden hostile element in front, infrared sensing module 5 detects according to the first infrared probe 501, second infrared probe 502 the hostile personal information being in hidden state or active state.Controller 1 judges whether to exist hidden personnel that naked eyes should not differentiate according to the testing result of the testing result of ultrasonic distance measuring module 4 and infrared sensing module 5, automatically or not easily discovers personnel; If determine really there are hidden personnel or not easily discover personnel, then controller 1 controls gun sight module 2 of warning and sends optics alarm signal.
Gun sight warns module 2 for optical flicker warning circuit, gun sight module 2 of warning will detect that front has the signal of people can be shown to armed armed policeman, special policeman soldier and field army soldier in the mode of blinking red lamp in real time, makes armed policeman, special policeman soldier and field army soldier carry out confirming to determine whether really shoot further to the enemy's situation in front according to the warn prompting of module 2 of gun sight.The warning red light of flicker is arranged on the sighting device body shown in Fig. 1 or Fig. 2, usual gun user is the armed triggering pulling of the right hand, like this can so that armed armed policeman, special policeman soldier and field army soldier see the alarm signal of sighting device body in time.
The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1and with infrared ray overlap-add region S 2coaxially, region, blind area S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 to be arranged between the first infrared probe 501 and the second infrared probe 502, and ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 and first distances between infrared probe 501 and the second infrared probe 502 good close to ensureing that the utility model rifle auxiliary mark scans the Detection results of sighting device.
Fig. 4 is the structural representation of the utility model infrared detection; Extraordinary aiming Detection results can be obtained when first infrared probe 501 and the second infrared probe 502 are set together symmetrically as can be seen from Figure.The infra-red detection amplitude angle of the first infrared probe 501 is A, and the infra-red detection amplitude angle of the second infrared probe 502 is B, and the distance between the first infrared probe 501 and the second infrared probe 502 is H 1, H 1scope can be 3-6cm; Distance H between first infrared probe 501 and the second infrared probe 502 1preferred 3cm.The infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is region, a blind area S 1, the infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is the infrared ray overlap-add region S of an overlap 2, wherein region, blind area S 1axis coverage be H 2, infrared ray overlap-add region S 2axis coverage be H 3, region, blind area S 1and with infrared ray overlap-add region S 2coaxial line, i.e. H 2and H 3coaxial line, region, blind area S 1and with infrared ray overlap-add region S 2axis and ballistic projections direction is consistent, i.e. H 2and H 3be consistent with ballistic projections direction.
First infrared probe 501 and the second infrared probe 502 all can adopt pyroelectric infrared sensor to detect be in hidden state personnel radiate the infrared signal of radiation, the detector front end formed at the first infrared probe 501 and the second infrared probe 502 forms blind area region S 1with an infrared ray overlap-add region S 2, S 2angle C scope be 5 °-25 °.When having movable personnel or hidden personnel before lens, what the infrared ray that human body sends just constantly alternately changed enters infrared ray overlap-add region S 2, so just obtain with dynamic infrared signal feedback pulse signal, and then can judge whether to there are hidden personnel.The infrared ray centre wavelength of human body radiation is 9 ~ 10um, the window that one is equipped with filter glass has been offered at transducer tip, this optical filter is 7 ~ 10um by the wave-length coverage of light, just in time be suitable for the detection of human infrared radiation, and the infrared ray of other wavelength is absorbed by optical filter.Under the effect of controller 1, the first motor 8, second motor 9 carries out symmetry adjustment to change described infrared ray overlap-add region S to the first infrared probe 501, second infrared probe 502 respectively 2angle C, and then automatically can obtain preferably infrared scan effect.
Infrared sensing module 5 is electrical connected with the first infrared probe 501, second infrared probe 502 respectively, and the first infrared probe 501 and the second infrared probe 502 are arranged on the sighting device body of rifle body symmetrically; The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1distance rifle body has certain distance.Ultrasonic distance measuring module 4 divides 402 to be electrical connected with ultrasonic wave emitting portion 401, ultrasonic wave reception unit respectively, and the sighting device body that described ultrasonic wave emitting portion 401 and described ultrasonic wave reception unit divide 402 to be arranged on rifle body is consistent with rifle body ballistic projections direction.When rifle body is in level, the first infrared probe 501 and the second infrared probe 502 are also all in same plane, all consistent with the distance of muzzle.
First infrared probe 501, second infrared probe 502 of infrared sensing module 5 divides 402 to be arranged in closer distance range with the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit as far as possible, the front end that the first infrared probe 501, second infrared probe 502 of infrared sensing module 5 and the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit divide 402 to be all arranged on sighting device shown in Fig. 1 and Fig. 2.
Fig. 5 is the structural representation being provided with infrared probe motor in the utility model rifle auxiliary mark scanning sighting device, infrared sensing module 5 comprises the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged symmetrically, and the first infrared probe 501, second infrared probe 502 is arranged on the rotating shaft of the first motor 8, second motor 9 respectively; Under the control of controller 1, the first motor 8, second motor 9 carries out symmetry adjustment to the first infrared probe 501, second infrared probe 502 respectively, changes the position between the first infrared probe 501, second infrared probe 502.
Fig. 6 is the electrical block diagram of the utility model ultrasonic wave emitting portion 401; Ultrasonic wave emission sensor LS1 and and door U8 between have phase inverter U3, phase inverter U4, phase inverter U5, phase inverter U6, phase inverter U7, phase inverter U4 and phase inverter U5 is in parallel, phase inverter U6 and phase inverter U7 is in parallel, be connected with two self-oscillation circuit respectively with two inputs of door U8, difference two Schmidt trigger U1 and U2 in two self-oscillation circuit.
Fig. 7 is the electrical block diagram that the utility model ultrasonic wave reception unit divides 402; 5V direct current is the fuse F1 of 500mA and diode D1 through resistance to stream and forms 5V digital voltage source VDD through two-stage capacitor filtering C1 and C2, and digital voltage source VDD provides power supply for 2 NE5532P power amplifiers.Ultrasonic wave receiving sensor LS1 10K resistance in parallel R3 changes the ultrasonic signal received into input signal, and input signal amplifies through first order amplifier NE5532P, second level amplifier NE5532P is input to ultrasonic distance measuring module 4 after amplifying, input signal is exaggerated altogether 400 times after two-stage is amplified.
Figure 10 A is that the utility model gun sight is warned the alarm indication schematic diagram one of module; Figure 10 B is four arrows that the utility model gun sight is warned in the alarm indication schematic diagram two of module, gun sight is photoelectricity flash signal.The utility model gun sight module 2 of warning is arranged in the gun sight of rifle body, shown by Figure 10 A be to mix situation when auxiliary sighting device does not detect any information with ultrasonic wave at infrared ray, gun sight module 2 of warning do not send alerting signal of warning; Shown by Figure 10 B is to mix with ultrasonic wave at infrared ray that auxiliary sighting device detects situation when there is hidden hostile personal information, gun sight is warned, and module 2 sends alerting signal of warning, by the flicker of gun sight four arrows, soldier can know that the sighted direction of gun exists hidden hostile personnel, therefore soldier will enhancing your vigilance property.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body.
Preferred embodiment 3
Fig. 1 is the schematic diagram one that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body, Fig. 2 is the schematic diagram two that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body, sub-scanning sighting device is arranged under the muzzle of rifle body, direction and the rifle body ballistic projections direction of infrared ray and ultrasound examination are consistent, and the gun sight above rifle body is the same with the mounting means of gun gun sight in prior art.The mounting means of the utility model sub-scanning sighting device on assault rifle and the mounting means of bayonet on rifle body similar, the utility model sub-scanning sighting device can be stably arranged on above rifle body.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body, and electrical signal line does not all show in fig. 1 and 2.Optical flare stand by lamp is arranged in aiming, with the soldier's Timeliness coverage alarm signal with gun sight gun easy to use.
Fig. 3 is the structural representation of the utility model rifle auxiliary mark scanning sighting device, and rifle auxiliary mark of the present utility model scanning sighting device comprises controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, power module 3, first motor control module 6, second motor control module 7, first motor 8, second motor 9;
Controller 1 module 2, first motor control module 6, second motor control module 7 of warning with ultrasonic distance measuring module 4, infrared sensing module 5, gun sight is respectively electrical connected; First motor control module 6 and the first motor 8 are electrical connected, and the second motor control module 7 and the second motor 9 are electrical connected; Power module 3 is respectively controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight are warned, and module 2, first motor control module 6, second motor control module 7, first motor 8, second motor 9 provides electric energy; Power module 3 also can be respectively ultrasonic distance measuring module 4 by controller 1, infrared sensing module 5, gun sight are warned, and module 2 provides electric energy; Ultrasonic distance measuring module 4 is connected to ultrasonic wave emitting portion 401, ultrasonic wave reception unit divides 402, and ultrasonic wave emitting portion 401 and ultrasonic wave reception unit are divided 402 to be symmetricly set on rifle body and be consistent with rifle body ballistic projections direction; Infrared sensing module 5 is connected to the front end that the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged on rifle body sighting device symmetrically; Controller 1 is AVR controller.
Distance between the gun user of service that ultrasonic distance measuring module 4 detects and the hidden hostile element in front, infrared sensing module 5 detects according to the first infrared probe 501, second infrared probe 502 the hostile personal information being in hidden state or active state.Controller 1 judges whether to exist hidden personnel that naked eyes should not differentiate according to the testing result of the testing result of ultrasonic distance measuring module 4 and infrared sensing module 5, automatically or not easily discovers personnel; If determine really there are hidden personnel or not easily discover personnel, then controller 1 controls gun sight module 2 of warning and sends optics alarm signal.
Gun sight warns module 2 for optical flicker warning circuit, gun sight module 2 of warning will detect that front has the signal of people can be shown to armed armed policeman, special policeman soldier and field army soldier in the mode of blinking red lamp in real time, makes armed policeman, special policeman soldier and field army soldier carry out confirming to determine whether really shoot further to the enemy's situation in front according to the warn prompting of module 2 of gun sight.The warning red light of flicker is arranged on the sighting device body shown in Fig. 1 or Fig. 2, usual gun user is the armed triggering pulling of the right hand, like this can so that armed armed policeman, special policeman soldier and field army soldier see the alarm signal of sighting device body in time.
The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1and with infrared ray overlap-add region S 2coaxially, region, blind area S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 to be arranged between the first infrared probe 501 and the second infrared probe 502, and ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 and first distances between infrared probe 501 and the second infrared probe 502 good close to ensureing that the utility model rifle auxiliary mark scans the Detection results of sighting device.
Fig. 4 is the structural representation of the utility model infrared detection; Extraordinary aiming Detection results can be obtained when first infrared probe 501 and the second infrared probe 502 are set together symmetrically as can be seen from Figure.The infra-red detection amplitude angle of the first infrared probe 501 is A, and the infra-red detection amplitude angle of the second infrared probe 502 is B, and the distance between the first infrared probe 501 and the second infrared probe 502 is H 1, H 1scope can be 3-6cm; Distance H between first infrared probe 501 and the second infrared probe 502 1preferred 3cm.The infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is region, a blind area S 1, the infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is the infrared ray overlap-add region S of an overlap 2, wherein region, blind area S 1axis coverage be H 2, infrared ray overlap-add region S 2axis coverage be H 3, region, blind area S 1and with infrared ray overlap-add region S 2coaxial line, i.e. H 2and H 3coaxial line, region, blind area S 1and with infrared ray overlap-add region S 2axis and ballistic projections direction is consistent, i.e. H 2and H 3be consistent with ballistic projections direction.
First infrared probe 501 and the second infrared probe 502 all can adopt pyroelectric infrared sensor to detect be in hidden state personnel radiate the infrared signal of radiation, the detector front end formed at the first infrared probe 501 and the second infrared probe 502 forms blind area region S 1with an infrared ray overlap-add region S 2, S 2angle C scope be 5 °-25 °.When having movable personnel or hidden personnel before lens, what the infrared ray that human body sends just constantly alternately changed enters infrared ray overlap-add region S 2, so just obtain with dynamic infrared signal feedback pulse signal, and then can judge whether to there are hidden personnel.The infrared ray centre wavelength of human body radiation is 9 ~ 10um, the window that one is equipped with filter glass has been offered at transducer tip, this optical filter is 7 ~ 10um by the wave-length coverage of light, just in time be suitable for the detection of human infrared radiation, and the infrared ray of other wavelength is absorbed by optical filter.Under the effect of controller 1, the first motor 8, second motor 9 carries out symmetry adjustment to change described infrared ray overlap-add region S to the first infrared probe 501, second infrared probe 502 respectively 2angle C, and then automatically can obtain preferably infrared scan effect.
Infrared sensing module 5 is electrical connected with the first infrared probe 501, second infrared probe 502 respectively, and the first infrared probe 501 and the second infrared probe 502 are arranged on the sighting device body of rifle body symmetrically; The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1distance rifle body has certain distance.Ultrasonic distance measuring module 4 divides 402 to be electrical connected with ultrasonic wave emitting portion 401, ultrasonic wave reception unit respectively, and the sighting device body that described ultrasonic wave emitting portion 401 and described ultrasonic wave reception unit divide 402 to be arranged on rifle body is consistent with rifle body ballistic projections direction.When rifle body is in level, the first infrared probe 501 and the second infrared probe 502 are also all in same plane, all consistent with the distance of muzzle.
First infrared probe 501, second infrared probe 502 of infrared sensing module 5 divides 402 to be arranged in closer distance range with the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit as far as possible, the front end that the first infrared probe 501, second infrared probe 502 of infrared sensing module 5 and the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit divide 402 to be all arranged on sighting device shown in Fig. 1 and Fig. 2.
Fig. 5 is the structural representation being provided with infrared probe motor in the utility model rifle auxiliary mark scanning sighting device, infrared sensing module 5 comprises the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged symmetrically, and the first infrared probe 501, second infrared probe 502 is arranged on the rotating shaft of the first motor 8, second motor 9 respectively; Under the control of controller 1, the first motor 8, second motor 9 carries out symmetry adjustment to the first infrared probe 501, second infrared probe 502 respectively, changes the position between the first infrared probe 501, second infrared probe 502.
Fig. 6 is the electrical block diagram of the utility model ultrasonic wave emitting portion 401; Ultrasonic wave emission sensor LS1 and and door U8 between have phase inverter U3, phase inverter U4, phase inverter U5, phase inverter U6, phase inverter U7, phase inverter U4 and phase inverter U5 is in parallel, phase inverter U6 and phase inverter U7 is in parallel, be connected with two self-oscillation circuit respectively with two inputs of door U8, difference two Schmidt trigger U1 and U2 in two self-oscillation circuit.
Fig. 7 is the electrical block diagram that the utility model ultrasonic wave reception unit divides 402; 5V direct current is the fuse F1 of 500mA and diode D1 through resistance to stream and forms 5V digital voltage source VDD through two-stage capacitor filtering C1 and C2, and digital voltage source VDD provides power supply for 2 NE5532P power amplifiers.Ultrasonic wave receiving sensor LS1 10K resistance in parallel R3 changes the ultrasonic signal received into input signal, and input signal amplifies through first order amplifier NE5532P, second level amplifier NE5532P is input to ultrasonic distance measuring module 4 after amplifying, input signal is exaggerated altogether 400 times after two-stage is amplified.
Figure 10 A is that the utility model gun sight is warned the alarm indication schematic diagram one of module; Figure 10 B is four arrows that the utility model gun sight is warned in the alarm indication schematic diagram two of module, gun sight is photoelectricity flash signal.The utility model gun sight module 2 of warning is arranged in the gun sight of rifle body, shown by Figure 10 A be to mix situation when auxiliary sighting device does not detect any information with ultrasonic wave at infrared ray, gun sight module 2 of warning do not send alerting signal of warning; Shown by Figure 10 B is to mix with ultrasonic wave at infrared ray that auxiliary sighting device detects situation when there is hidden hostile personal information, gun sight is warned, and module 2 sends alerting signal of warning, by the flicker of gun sight four arrows, soldier can know that the sighted direction of gun exists hidden hostile personnel, therefore soldier will enhancing your vigilance property.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body.
Preferred embodiment 4
Fig. 1 is the schematic diagram one that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body, Fig. 2 is the schematic diagram two that the utility model rifle auxiliary mark scanning sighting device is arranged on rifle body, sub-scanning sighting device is arranged under the muzzle of rifle body, direction and the rifle body ballistic projections direction of infrared ray and ultrasound examination are consistent, and the gun sight above rifle body is the same with the mounting means of gun gun sight in prior art.The mounting means of the utility model sub-scanning sighting device on assault rifle and the mounting means of bayonet on rifle body similar, the utility model sub-scanning sighting device can be stably arranged on above rifle body.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body, and electrical signal line does not all show in fig. 1 and 2.Optical flare stand by lamp is arranged in aiming, with the soldier's Timeliness coverage alarm signal with gun sight gun easy to use.
Fig. 3 is the structural representation of the utility model rifle auxiliary mark scanning sighting device, and rifle auxiliary mark of the present utility model scanning sighting device comprises controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight warn module 2, power module 3, first motor control module 6, second motor control module 7, first motor 8, second motor 9;
Controller 1 module 2, first motor control module 6, second motor control module 7 of warning with ultrasonic distance measuring module 4, infrared sensing module 5, gun sight is respectively electrical connected; First motor control module 6 and the first motor 8 are electrical connected, and the second motor control module 7 and the second motor 9 are electrical connected; Power module 3 is respectively controller 1, ultrasonic distance measuring module 4, infrared sensing module 5, gun sight are warned, and module 2, first motor control module 6, second motor control module 7, first motor 8, second motor 9 provides electric energy; Power module 3 also can be respectively ultrasonic distance measuring module 4 by controller 1, infrared sensing module 5, gun sight are warned, and module 2 provides electric energy; Ultrasonic distance measuring module 4 is connected to ultrasonic wave emitting portion 401, ultrasonic wave reception unit divides 402, and ultrasonic wave emitting portion 401 and ultrasonic wave reception unit are divided 402 to be symmetricly set on rifle body and be consistent with rifle body ballistic projections direction; Infrared sensing module 5 is connected to the front end that the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged on rifle body sighting device symmetrically; Controller 1 is 51MCU controller.
Distance between the gun user of service that ultrasonic distance measuring module 4 detects and the hidden hostile element in front, infrared sensing module 5 detects according to the first infrared probe 501, second infrared probe 502 the hostile personal information being in hidden state or active state.Controller 1 judges whether to exist hidden personnel that naked eyes should not differentiate according to the testing result of the testing result of ultrasonic distance measuring module 4 and infrared sensing module 5, automatically or not easily discovers personnel; If determine really there are hidden personnel or not easily discover personnel, then controller 1 controls gun sight module 2 of warning and sends optics alarm signal.
Gun sight warns module 2 for optical flicker warning circuit, gun sight module 2 of warning will detect that front has the signal of people can be shown to armed armed policeman, special policeman soldier and field army soldier in the mode of blinking red lamp in real time, makes armed policeman, special policeman soldier and field army soldier carry out confirming to determine whether really shoot further to the enemy's situation in front according to the warn prompting of module 2 of gun sight.The warning red light of flicker is arranged on the sighting device body shown in Fig. 1 or Fig. 2, usual gun user is the armed triggering pulling of the right hand, like this can so that armed armed policeman, special policeman soldier and field army soldier see the alarm signal of sighting device body in time.
The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1and with infrared ray overlap-add region S 2coaxially, region, blind area S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 to be arranged between the first infrared probe 501 and the second infrared probe 502, and ultrasonic wave emitting portion 401, ultrasonic wave reception unit divide 402 and first distances between infrared probe 501 and the second infrared probe 502 good close to ensureing that the utility model rifle auxiliary mark scans the Detection results of sighting device.
Fig. 4 is the structural representation of the utility model infrared detection; Extraordinary aiming Detection results can be obtained when first infrared probe 501 and the second infrared probe 502 are set together symmetrically as can be seen from Figure.The infra-red detection amplitude angle of the first infrared probe 501 is A, and the infra-red detection amplitude angle of the second infrared probe 502 is B, and the distance between the first infrared probe 501 and the second infrared probe 502 is H 1, H 1scope can be 3-6cm; Distance H between first infrared probe 501 and the second infrared probe 502 1preferred 3cm.The infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is region, a blind area S 1, the infra-red detection amplitude S of the first infrared probe 501 3with the infra-red detection amplitude S of the second infrared probe 502 4there is the infrared ray overlap-add region S of an overlap 2, wherein region, blind area S 1axis coverage be H 2, infrared ray overlap-add region S 2axis coverage be H 3, region, blind area S 1and with infrared ray overlap-add region S 2coaxial line, i.e. H 2and H 3coaxial line, region, blind area S 1and with infrared ray overlap-add region S 2axis and ballistic projections direction is consistent, i.e. H 2and H 3be consistent with ballistic projections direction.
First infrared probe 501 and the second infrared probe 502 all can adopt pyroelectric infrared sensor to detect be in hidden state personnel radiate the infrared signal of radiation, the detector front end formed at the first infrared probe 501 and the second infrared probe 502 forms blind area region S 1with an infrared ray overlap-add region S 2, S 2angle C scope be 5 °-25 °.When having movable personnel or hidden personnel before lens, what the infrared ray that human body sends just constantly alternately changed enters infrared ray overlap-add region S 2, so just obtain with dynamic infrared signal feedback pulse signal, and then can judge whether to there are hidden personnel.The infrared ray centre wavelength of human body radiation is 9 ~ 10um, the window that one is equipped with filter glass has been offered at transducer tip, this optical filter is 7 ~ 10um by the wave-length coverage of light, just in time be suitable for the detection of human infrared radiation, and the infrared ray of other wavelength is absorbed by optical filter.Under the effect of controller 1, the first motor 8, second motor 9 carries out symmetry adjustment to change described infrared ray overlap-add region S to the first infrared probe 501, second infrared probe 502 respectively 2angle C, and then automatically can obtain preferably infrared scan effect.
Infrared sensing module 5 is electrical connected with the first infrared probe 501, second infrared probe 502 respectively, and the first infrared probe 501 and the second infrared probe 502 are arranged on the sighting device body of rifle body symmetrically; The infra-red detection amplitude angle A of the first infrared probe 501 is identical with the infra-red detection amplitude angle B of the second infrared probe 502; The infra-red detection region S of the first infrared probe 501 3with the infra-red detection region S of the second infrared probe 502 4form region, a blind area S 1and an infrared ray overlap-add region S 2, region, blind area S 1distance rifle body has certain distance.Ultrasonic distance measuring module 4 divides 402 to be electrical connected with ultrasonic wave emitting portion 401, ultrasonic wave reception unit respectively, and the sighting device body that described ultrasonic wave emitting portion 401 and described ultrasonic wave reception unit divide 402 to be arranged on rifle body is consistent with rifle body ballistic projections direction.When rifle body is in level, the first infrared probe 501 and the second infrared probe 502 are also all in same plane, all consistent with the distance of muzzle.
First infrared probe 501, second infrared probe 502 of infrared sensing module 5 divides 402 to be arranged in closer distance range with the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit as far as possible, the front end that the first infrared probe 501, second infrared probe 502 of infrared sensing module 5 and the ultrasonic wave emitting portion 401 of ultrasonic distance measuring module 4, ultrasonic wave reception unit divide 402 to be all arranged on sighting device shown in Fig. 1 and Fig. 2.
Fig. 5 is the structural representation being provided with infrared probe motor in the utility model rifle auxiliary mark scanning sighting device, infrared sensing module 5 comprises the first infrared probe 501, second infrared probe 502, first infrared probe 501 and the second infrared probe 502 are arranged symmetrically, and the first infrared probe 501, second infrared probe 502 is arranged on the rotating shaft of the first motor 8, second motor 9 respectively; Under the control of controller 1, the first motor 8, second motor 9 carries out symmetry adjustment to the first infrared probe 501, second infrared probe 502 respectively, changes the position between the first infrared probe 501, second infrared probe 502.
Fig. 6 is the electrical block diagram of the utility model ultrasonic wave emitting portion 401; Ultrasonic wave emission sensor LS1 and and door U8 between have phase inverter U3, phase inverter U4, phase inverter U5, phase inverter U6, phase inverter U7, phase inverter U4 and phase inverter U5 is in parallel, phase inverter U6 and phase inverter U7 is in parallel, be connected with two self-oscillation circuit respectively with two inputs of door U8, difference two Schmidt trigger U1 and U2 in two self-oscillation circuit.
Fig. 7 is the electrical block diagram that the utility model ultrasonic wave reception unit divides 402; 5V direct current is the fuse F1 of 500mA and diode D1 through resistance to stream and forms 5V digital voltage source VDD through two-stage capacitor filtering C1 and C2, and digital voltage source VDD provides power supply for 2 NE5532P power amplifiers.Ultrasonic wave receiving sensor LS1 10K resistance in parallel R3 changes the ultrasonic signal received into input signal, and input signal amplifies through first order amplifier NE5532P, second level amplifier NE5532P is input to ultrasonic distance measuring module 4 after amplifying, input signal is exaggerated altogether 400 times after two-stage is amplified.
Figure 10 A is that the utility model gun sight is warned the alarm indication schematic diagram one of module; Figure 10 B is four arrows that the utility model gun sight is warned in the alarm indication schematic diagram two of module, gun sight is photoelectricity flash signal.The utility model gun sight module 2 of warning is arranged in the gun sight of rifle body, shown by Figure 10 A be to mix situation when auxiliary sighting device does not detect any information with ultrasonic wave at infrared ray, gun sight module 2 of warning do not send alerting signal of warning; Shown by Figure 10 B is to mix with ultrasonic wave at infrared ray that auxiliary sighting device detects situation when there is hidden hostile personal information, gun sight is warned, and module 2 sends alerting signal of warning, by the flicker of gun sight four arrows, soldier can know that the sighted direction of gun exists hidden hostile personnel, therefore soldier will enhancing your vigilance property.Gun sight above rifle body is mixed auxiliary sighting device with the infrared ray of rifle body front lower place with ultrasonic wave and can be connected by electrical signal line, and electrical signal line can be arranged in rifle body.

Claims (6)

1. rifle auxiliary mark scans a sighting device, it is characterized in that: comprise controller (1), gun sight warns module (2), power module (3), ultrasonic distance measuring module (4), infrared sensing module (5), the first motor control module (6), the second motor control module (7), the first motor (8), the second motor (9); Wherein:
Warn with described ultrasonic distance measuring module (4), described infrared sensing module (5), described gun sight respectively module (2), described first motor control module (6), described second motor control module (7) of described controller (1) is electrical connected; Described first motor control module (6) and described first motor (8) are electrical connected, and described second motor control module (7) and described second motor (9) are electrical connected;
Described ultrasonic distance measuring module (4) comprises ultrasonic wave emitting portion (401), ultrasonic wave reception unit is divided (402), and described ultrasonic wave emitting portion (401) and described ultrasonic wave reception unit are divided (402) to be arranged on abreast on rifle body and be consistent with rifle body ballistic projections direction;
Described infrared sensing module (5) comprises the first infrared probe (501), the second infrared probe (502), described first infrared probe (501) and described second infrared probe (502) are arranged symmetrically, and described first infrared probe (501), described second infrared probe (502) are arranged on the rotating shaft of described first motor (8), described second motor (9) respectively; Wherein: the infra-red detection amplitude angle A of described first infrared probe (501) is identical with the infra-red detection amplitude angle B of described second infrared probe (502); The infra-red detection region S of described first infrared probe (501) 3with the infra-red detection region S of described second infrared probe (502) 4form an infrared ray blind area region S 1and an infrared ray overlap-add region S 2, described infrared ray overlap-add region S 2angle C, the distance between described first infrared probe (501) and described second infrared probe (502) is H 1, described infrared ray blind area region S 1with infrared ray overlap-add region S 2coaxial line, described infrared ray blind area region S 1with infrared ray overlap-add region S 2axis and rifle body ballistic projections direction be consistent; Described first motor (8), described second motor (9) carry out symmetry adjustment to change described infrared ray overlap-add region S to described first infrared probe (501), described second infrared probe (502) respectively 2angle C; Described infrared ray overlap-add region S 2angle C scope be 5 °-25 °; Distance H between described first infrared probe (501) and described second infrared probe (502) 1for 3-6cm.
2. rifle auxiliary mark according to claim 1 scans sighting device, it is characterized in that: described gun sight warns module (2) for optical flicker warning circuit.
3. rifle auxiliary mark according to claim 1 scans sighting device, it is characterized in that: described controller (1) can be dsp controller.
4. rifle auxiliary mark according to claim 1 scans sighting device, it is characterized in that: described controller (1) can be ARM controller.
5. rifle auxiliary mark according to claim 1 scans sighting device, it is characterized in that: described controller (1) can be AVR controller.
6. rifle auxiliary mark according to claim 1 scans sighting device, it is characterized in that: described ultrasonic wave emitting portion (401), described ultrasonic wave reception unit divide (402) and described infrared ray blind area region S 1with infrared ray overlap-add region S 2axis being parallel arrange.
CN201420381852.5U 2014-07-10 2014-07-10 Rifle auxiliary mark scans sighting device Expired - Fee Related CN204064120U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420381852.5U CN204064120U (en) 2014-07-10 2014-07-10 Rifle auxiliary mark scans sighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420381852.5U CN204064120U (en) 2014-07-10 2014-07-10 Rifle auxiliary mark scans sighting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201420766467.2U Division CN204329732U (en) 2014-07-10 2014-07-10 Rifle auxiliary mark scans sighting device

Publications (1)

Publication Number Publication Date
CN204064120U true CN204064120U (en) 2014-12-31

Family

ID=52205611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420381852.5U Expired - Fee Related CN204064120U (en) 2014-07-10 2014-07-10 Rifle auxiliary mark scans sighting device

Country Status (1)

Country Link
CN (1) CN204064120U (en)

Similar Documents

Publication Publication Date Title
CN103940292B (en) Infrared ray mixes auxiliary sighting device with ultrasonic wave
CN105258563A (en) Target scanning and detecting device used for rifle
CN204027435U (en) Rifle scans sighting device with auxiliary mark
CN204027445U (en) Rifle scanning probe sighting instrument
CN204346247U (en) There is the rifle of auxiliary mark scanning sighting device
CN204329752U (en) Rifle auxiliary mark scanning sighting device
CN204027444U (en) The auxiliary infrared scan sighting device of tommy gun
CN204064120U (en) Rifle auxiliary mark scans sighting device
CN204100909U (en) Rifle sub-scanning sighting device
CN204064121U (en) There is the rifle of auxiliary mark scanning sighting device
CN204027439U (en) Rifle sub-scanning sighting device
CN204043499U (en) Rifle targeted scans detection instrument
CN204100908U (en) Rifle scanning probe sighting instrument
CN204043508U (en) Configure the tommy gun of infrared sub-scanning sighting device
CN204027442U (en) Rifle targeted scans detection instrument
CN204043506U (en) The tommy gun of configuration infrared scan detection sighting instrument
CN204064122U (en) There is the rifle of targeted scans survey meter
CN204100904U (en) Assault rifle infrared ray and ultrasonic assistant scan sighting device
CN204100907U (en) Assault rifle infrared ray and ultrasonic assistant scan sighting instrument
CN204027437U (en) Assault rifle infrared ray and ultrasonic assistant scan sighting instrument
CN204100916U (en) With the assault rifle of infrared ultrasonic sub-scanning sighting device
CN204329732U (en) Rifle auxiliary mark scans sighting device
CN204085319U (en) Gun aim at assisted scanners
CN204043501U (en) Gun aim at assisted scanners
CN204100905U (en) Rifle scanning probe sighting device

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: LIAONING POLICE ACADEMY

Free format text: FORMER OWNER: LI XINGHAI

Effective date: 20141216

C41 Transfer of patent application or patent right or utility model
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Li Xiang

Inventor after: Li Yongchun

Inventor after: Sun Zhaohua

Inventor after: Li Xinghai

Inventor after: Geng Zhiwei

Inventor after: Guo Qingguo

Inventor before: Wang Xiaotao

Inventor before: Geng Zhiwei

Inventor before: Tian Shouyu

Inventor before: Zhu Kunxue

Inventor before: Sun Zhaohua

Inventor before: Liu Yang

Inventor before: Li Xinghai

Inventor before: Li Yongchun

Inventor before: Li Xiang

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WANG XIAOTAO GENG ZHIWEI TIAN SHOUYU ZHU KUNXUE SUN ZHAOHUA LIU YANG LI XINGHAI LI YONGCHUN LI XIANG TO: LI XIANG LI YONGCHUN SUN ZHAOHUA LI XINGHAI GENG ZHIWEI GUO QINGGUO

TR01 Transfer of patent right

Effective date of registration: 20141216

Address after: Ganjingzi District of Dalian City, Liaoning province 116000 Ying Ping Road No. 260

Patentee after: Liaoning Advanced Special School of Police

Address before: Ping Road No. 260 Liaoning police camp in Ganjingzi District of Dalian City, Liaoning province 116000

Patentee before: Li Xinghai

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141231

Termination date: 20150710

EXPY Termination of patent right or utility model