CN204045925U - 一种深紫外激光产生与传输装置 - Google Patents

一种深紫外激光产生与传输装置 Download PDF

Info

Publication number
CN204045925U
CN204045925U CN201420289044.6U CN201420289044U CN204045925U CN 204045925 U CN204045925 U CN 204045925U CN 201420289044 U CN201420289044 U CN 201420289044U CN 204045925 U CN204045925 U CN 204045925U
Authority
CN
China
Prior art keywords
deep ultraviolet
ultraviolet laser
produces
transmitting device
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN201420289044.6U
Other languages
English (en)
Inventor
许祖彦
徐志
彭钦军
王志敏
杨峰
张丰丰
张申金
宗楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201420289044.6U priority Critical patent/CN204045925U/zh
Application granted granted Critical
Publication of CN204045925U publication Critical patent/CN204045925U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

本实用新型公开了一种深紫外激光产生与传输的装置,包括密封腔体、真空系统、深紫外激光产生系统和深紫外激光传输系统;所述深紫外激光产生系统和深紫外激光传输系统均位于所述密封腔体内。本实用新型所公开的深紫外激光产生与传输的装置具有良好的完备性、可行性和小型性,简单可操作性与实用性。

Description

一种深紫外激光产生与传输装置
技术领域
本实用新型涉及全固态深紫外激光领域,特别涉及一种深紫外激光产生与传输装置。
背景技术
深紫外光源,一般指波长介于40nm到200nm之间的电磁辐射波段,由于其波长短、单光子能量高,因而在高分辨率成像、光谱应用、微细加工及激光光刻等诸多领域具有重要的应用价值,是激光领域最重要的发展方向之一。
全固态激光器具有结构紧凑、体积小、效率高、光束质量好、稳定性好、寿命长,波长连续调谐宽、重复频率可调,容易实用化等优点。利用全固态激光器以上优势,采用非线性晶体变频技术,可产生高光束质量,短脉冲,窄线宽深紫外激光。但由于深紫外波段在空气中吸收严重,在空气环境中不能有效地产生与传输,不利于深紫外激光的研究与推广应用;传统的激光功率计电路底板为覆铜板结构,放气较大,对深紫外激光功率吸收,减小深紫外激光输出功率,还导致深紫外激光功率测量不精确;此外,深紫外波段为人眼不可见波段,不方便光路调节。
实用新型内容
(一)要解决的技术问题
本实用新型所要解决的技术问题是:如何提供一种深紫外激光产生与传输的装置,针对深紫外激光在空气中吸收严重,深紫外激光功率测量不精确,并对人眼不可见,不方便调节的技术缺陷,解决深紫外激光不利于产生和传输,不能有效推广应用的技术问题。
(二)技术方案
为了解决上述技术问题,本实用新型提供了一种深紫外激光产生与传输装置,所述深紫外激光产生与传输装置包括:密封腔体系统和真空系统,其特征在于,所述深紫外激光产生与传输装置还包括深紫外激光产生系统和深紫外激光传输系统;所述深紫外激光产生系统和深紫外激光传输系统均位于所述密封腔体内;
所述密封腔体系统包括腔体,观察窗口、紫外激光输入窗口、紫外激光输出窗口、气体进口、气体出口和深紫外激光输出窗口;
所述真空系统包括真空产生系统,真空测量系统,和真空填充系统;所述真空填充系统中填充气体为对深紫外波段吸收小的高纯气体,或无填充气体的真空系统;
所述深紫外激光产生系统包括深紫外倍频晶体器件,深紫外倍频晶体角度调节器件;
所述深紫外激光传输系统包括深紫外光学元件及深紫外激光荧光显示元件。
优选地,所述深紫外激光荧光显示元件是玻璃,荧光粉等在深紫外波段有显示功能的材料。
优选地,真空放气小深紫外激光功率计为陶瓷功率计,即功率计的光热感应部分采用石墨,电路底板部分采用放气小的陶瓷材料。
优选地,所述高纯气体为纯度99.9%以上的N2、He、Ne或Ar等在深紫外波段吸收小的气体。
优选地,所述深紫外激光荧光显示元件,为利用所述有显示功能的材料制作的移动元件,所述移动元件在深紫外光路中移动进/出深紫外激光光路。
优选地,所述深紫外激光荧光显示元件,为利用所述有显示功能的材料制作的小孔光阑,所述小孔光阑固定在光路中。
优选地,所述深紫外激光功率计为在真空放气小深紫外激光功率计,所述深紫外激光功率计前端面安装有利用所述深紫外显示元件制作的小孔光阑。
优选地,所述密封腔体为组合腔体,组合腔体为独立腔体或联通腔体,所述深紫外激光产生系统与所述深紫外激光传输系统可以位于所述组合腔体中。
优选地,所述材料为在真空放气小的材料;所述腔体为气密性好的腔体。
(三)有益效果
本实用新型所提供的一种深紫外激光产生与传输的装置有如下优点:
一、利用深紫外波段荧光显示元件,使深紫外激光光路可预见,可调控,使整个深紫外激光光路容易调节,操作可行。
二、采用在真空放气小的深紫外激光功率计,在真空下放气小,测量精度高,测量功率不稳定性小。功率计前端面有深紫外荧光显示元件光阑,可以观察深紫外激光在功率计端面的荧光,调节深紫外激光通过光阑中心的小孔,入射功率计中心,保证深紫外激光功率测量精确。
三、采用深紫外激光产生传输环境的密封腔体系统结构,真空系统,深紫外激光产生,传输系统装置,深紫外激光测量系统,使整个系统良好的完备性。
四、采用所述高纯气体填充密封腔,可以保持腔体内处于深紫外吸收小的气体环境,减小对深紫外激光的吸收,还可以带走非线性晶体器件的热量,稳定非线性晶体的温度,保证较稳定的深紫外激光输出功率。
五、采用真空系统,能提供较高的腔内真空环境,较少的残余杂质气体,提高深紫外激光输出效率。
附图说明
图1为本实用新型一种深紫外激光产生与传输装置的装置结构简图示意图;
图2为根据本实用新型一种深紫外激光产生与传输装置的实施例一中的圆形腔体深紫外激光产生与传输装置的结构示意图;
图3为根据本实用新型一种深紫外激光产生与传输装置的实施例二中的矩形腔体深紫外激光产生与传输装置的结构示意图;
图4为根据本实用新型一种深紫外激光产生与传输装置的实施例三中的圆形-方形组合腔体深紫外激光产生与传输装置的结构示意图;
图5为本实用新型一种深紫外激光产生与传输装置的装置结构中的真空系统结构示意图;
图6为本实用新型一种深紫外激光产生与传输装置的装置结构中的测量系统中深紫外产生,分光,测量结构示意图;
图7为本实用新型一种深紫外激光产生与传输装置的装置结构中的测量系统中输出测量结构示意图;
图8为本实用新型一种深紫外激光产生与传输装置的装置结构中的深紫外激光产生系统结构示意图;
图9为本实用新型一种深紫外激光产生与传输装置的装置结构中的深紫外激光传输系统结构示意图;
1-密封腔体,1-1腔体、1-2—腔体盖、1-3—观察窗口、1-4—气体进口、1-5—紫外激光输入窗口、1-6—紫外激光输出窗口、1-7—气体出口、1-8—深紫外激光输出窗口;
2-真空系统、2-1机械泵、2-2分子泵、2-3电阻规、2-4电离规、2-5复合真空计、2-6压力表;
3-激光功率测量系统、3-1深紫外激光功率计、3-2紫外分光器,3-3剩余激光收集器;
3‐1—深紫外激光功率计、3-2—紫外分光器、3-3—剩余紫外激光收集器;
4-深紫外激光产生系统、4-1深紫外倍频晶体调节器、4-2深紫外倍频晶体器件;
5-深紫外传输系统、5-1深紫外45°高反镜、5-2透镜、5-3玻璃小孔光阑、5-4移动玻璃。
具体实施方式
下面结合说明书附图和实施例,对本实用新型的具体实施方式作进一步详细描述。以下实施例仅用于说明本实用新型,但不用来限制本实用新型的范围。
实施例一:
如图1所示,本实施例记载了一种深紫外激光产生与传输的装置,包括密封腔体1、真空系统2、深紫外激光产生系统4和深紫外激光传输系统5;所述深紫外激光产生系统4和深紫外激光传输系统5均位于所述密封腔体内。
所述密封腔体1包括:腔体1-1、腔体盖1-2、观察窗口1-3、气体进口1-4、紫外激光输入窗口1-5、紫外激光输出窗口1-6、气体出口1-7和深紫外激光输出窗口1-8。腔体1-1分别与观察窗口1-3、气体进口1-4、紫外激光输入窗口1-5、紫外激光输出窗口1-6、气体出口1-7和深紫外激光输出窗口1-8连接。
如图2所示,本实施例中的腔体1-1为单个不锈钢圆柱形腔体,不锈钢底板下有螺丝底座,可上下旋转,调节底板水平;腔体1‐1与腔体盖1‐2用橡胶圈密封,并在橡胶圈表面涂覆一层真空脂,用卡钳固定密封。
所述真空系统2包括真空产生系统,真空泵;真空测量系统,真空计和真空填充系统,压力表,高纯气体。
本实施例的压力表2‐6与腔体1‐1壁通过法兰连接;真空泵为机械泵2‐1和分子泵2‐2的组合泵,机械泵2‐1和分子泵2‐2分别与腔体1‐1壁通过法兰连接;真空计为电阻规2‐3和电离规2‐4的组合规,复合真空计2‐5,电阻规2‐3和电离规2‐4分别与腔体1‐1壁通过法兰连接。所述高纯气体为对深紫外波段吸收小的高纯气体,可为N2、He、Ne或Ar等气体。
深紫外激光产生系统4包括深紫外倍频晶体调节器4-1,深紫外倍频晶体器件4-2。在实施例中,深紫外倍频晶体调节器4-1为四维调控器,包括x,y,z方向三维高精度调控,调控精度高于0.1mm,高精度一维旋转调节,调节精度高于0.1°。
如图8所示。深紫外倍频晶体器件为能产生深紫外激光的晶体器件,本实施例中深紫外倍频晶体器件4-2为KBBF-PCD耦合器件,所述KBBF-PCD耦合器件为第一耦合棱镜-KBBF晶体-第二耦合棱镜,第一耦合棱镜为SiO2直角棱镜,一锐角为68.6°,入射面镀紫外高透膜系,SiO2材料在紫外波段具有较小吸收系数,较高的损伤阈值,并具有与非线性晶体相近的折射率,SiO2直角棱镜的镀膜面作为直接倍频器件入射面,第二耦合棱镜为CaF2直角棱镜,一锐角为68.6°,CaF2材料在真空紫外波段具有较小吸收系数,合适的损伤阈值,CaF2直角棱镜作为直接倍频器件KBBF-PCD输出棱镜。直接倍频器件中不同位置光学质量存在差异,可能有瑕疵,会严重影响倍频输出功率,KBBF-PCD耦合器件固定在四维调控器上,通过四维调控器调节泵浦光在晶体中合适的入射方位,提高倍频转换效率与深紫外激光输出功率。
深紫外激光传输系统5包括深紫外45°高反射镜5-1、深紫外激光显示元件—玻璃小孔光阑5-3和移动玻璃5-4。
深紫外45°高反射镜5-1的数量不限。如图9所示,本实施例为3个,且为深紫外45°高反射镜5-1,通过电动控制反射镜的角度。
玻璃小孔光阑5-3中间有圆形小孔,小孔直径为0.5m~10mm。能使深紫外激光在玻璃小孔光阑5-3上产生荧光,调节深紫外激光,使其经过玻璃小孔光阑中心,保证深紫外激光按预先设计光路传输。其中玻璃小孔光阑5-3的数量不限,如图9所示,本实施例中的数量为4个,也可为其他数量。
移动玻璃5-4用于观察深紫外激光产生的荧光,调节深紫外激光光路。其数量不限,如图9所示,本实施例移动玻璃5-4为1个。玻璃小孔光阑和移动玻璃为在深紫外波段具有荧光产生能力材料,如石英等。
深紫外激光传输系统5还可以包括一个透镜5-2,用于准直发散的深紫外激光。具体位置可根据深紫外激光发散角及透镜参数计算,通过电动位移台调节。如图9所示,本实施例中的透镜5-2设置在沿深紫外激光传输方向的第二个深紫外高反镜后;也可设置在第三个深紫外45°高反射镜后。
深紫外45°高反射镜5-1安置于电动镜架上,通过电动镜架调控反射镜的角度。用红色激光从密封腔外入射深紫外45°高反射镜5-1,粗略调节深紫外45°高反射镜5-1与透镜5-2的位置,并在高反射镜5-1前后按预先设计光路安置玻璃小孔光阑5-3,然后盖好密封腔,并使密封腔体内保持气体流通,输出深紫外激光,观察深紫外激光在玻璃小孔光阑上5-3的荧光,结合移动玻璃5-4,通过电动镜架,电动位移台精密调节深紫外激光光路,使深紫外激光准直后从深紫外激光输出窗口1-8输出。
此为包括激光功率测量系统3,所述激光功率测量系统3包括深紫外激光功率计3-1、紫外分光器3-2和剩余激光收集器3-3,所述剩余激光收集器3-3位于紫外激光输出窗口1-6外,如图6所示,图6为深紫外激光产生功率测量系统;安装在深紫外激光产生系统4后面,如图1所述;此外还包括深紫外激光输出功率测量系统,如图7所示,安装在深紫外传输系统5后面,如图1所示。
深紫外激光功率计3-1,采用真空的深紫外激光功率计。激光功率计前端面安装有所述玻璃小孔光阑5-3。深紫外激光产生功率测量系统中激光功率计设置于所述深紫外倍频晶体调节器4-1后,用于测量倍频产生的深紫外激光功率与转换效率;深紫外激光输出功率测量系统中激光功率计设置于所述深紫外激光输出窗口1-8前面,用于测量输出的深紫外激光功率与传输效率,测量深紫外激光功率时,将功率计移进深紫外激光光路,测量完毕,将其移出深紫外激光光路。采用在真空放气小的深紫外激光功率计,在真空环境放气小,灵敏度高,精度高,功率测量稳定。
所述紫外分光器3-2为紫外45°高反射镜,镀紫外45°高反膜系。在紫外激光光路上,紫外分光器3-2设置于深紫外倍频晶体调节器4-1后,用于将剩余紫外激光通过紫外激光输出窗口1-6导出腔体,并收集在所述剩余紫外激光收集器3-3中。
实施例二:
如图3所示,本实施例记载的一种深紫外激光产生与传输的装置,其结构与实施例一记载的技术方案基本相似,区别在于:腔体1-1为矩形腔体。矩形腔体具有结构紧凑,体积小,设计灵活,使用方便等优点。
实施例三:
如图4所示,本实施例记载的一种深紫外激光产生与传输的装置,其结构与实施例一记载的技术方案基本相似,区别在于:腔体1-1为组合腔体。可为圆-矩、圆-圆或矩-矩形组合腔体。
本实施例记载的装置,将深紫外激光产生,传输分为两个腔体中,两腔体用波纹管连接,两腔体之间,可以用玻璃窗口隔开,分成两个各自独立的密封腔环境,也可以不用隔开,成为联通的两个腔体。
将深紫外激光产生与准直传输系统隔开,使其互不影响,紫外激光在深紫外激光产生腔体中,被紫外45°高反射镜反射,从紫外激光输出窗口输出,不影响以后深紫外激光测量与传输。在深紫外激光准直传输腔体中,可以根据实际情况灵活设计,使系统更加灵活与实用。采用该装置使整个系统模块化,每个模块小型化,使用更加灵活,易于推广应用。
本实用新型所提供的装置工作原理为:密封腔为深紫外激光产生传输提供一个方便、实用、完备的密封环境;利用可见激光,粗略安置深紫外激光传输系统中反射镜,透镜,玻璃小孔光阑的位置;利用装置中真空系统,提供一种深紫外激光产生与传输的高纯气体流通环境,通过高纯气体流通,保证深紫外激光可以产生与传输;利用深紫外激光产生系统中的深紫外非线性晶体器件,采用非线性频率转换技术产生深紫外激光;利用深紫外激光功率计,测量深紫外激光功率;通过深紫外激光传输系统,利用小孔光阑,移动玻璃,电动镜架,按设计光路调节深紫外激光光路,输出一定功率可实用的深紫外激光。
由于深紫外激光在空气中吸收严重,腔内保持高纯气体流通状态。具体为利用真空产生系统,将腔内真空度抽至0.1~0.001Pa范围,充满高纯气体至1atm~1.2atm,再次按以上步骤抽真空至0.1~0.001Pa范围,即用高纯气体将密封腔洗涮一次,带走残余气体杂质,然后保持腔内高纯气体流通状态。所述气体为对深紫外波段吸收小的高纯气体,其纯度为大于99.9%,为N2、He、Ne或Ar等气体。
用高纯气体洗涮密封腔时,可以根据实际情况洗涮1~3次,在深紫外激光传输效率低时,抽真空时间可以适当延长,再用高纯气体洗涮,使密封腔体1内残余气体杂质减至最小,提高深紫外激光的传输效率。
以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本实用新型的保护范围。

Claims (9)

1.一种深紫外激光产生与传输装置,所述深紫外激光产生与传输装置包括:密封腔体系统和真空系统,其特征在于,所述深紫外激光产生与传输装置还包括深紫外激光产生系统和深紫外激光传输系统;所述深紫外激光产生系统和深紫外激光传输系统均位于所述密封腔体内; 
所述密封腔体系统包括腔体,观察窗口、紫外激光输入窗口、紫外激光输出窗口、气体进口、气体出口和深紫外激光输出窗口; 
所述真空系统包括真空产生系统,真空测量系统,和真空填充系统;所述真空填充系统中填充气体为对深紫外波段吸收小的高纯气体,或无填充气体的真空系统; 
所述深紫外激光产生系统包括深紫外倍频晶体器件,深紫外倍频晶体角度调节器件; 
所述深紫外激光传输系统包括深紫外光学元件及深紫外激光荧光显示元件。 
2.根据权利要求1所述的一种深紫外激光产生与传输装置,其特征在于,所述深紫外激光荧光显示元件是玻璃或荧光粉在深紫外波段有显示功能的材料。 
3.根据权利要求1所述一种深紫外激光产生与传输装置,其特征在于,真空放气小深紫外激光功率计为陶瓷功率计,即功率计的光热感应部分采用石墨,电路底板部分采用放气小的陶瓷材料。 
4.根据权利要求1所述一种深紫外激光产生与传输装置,其特征在于,所述高纯气体为纯度99.9%以上的N2、He、Ne或Ar在深紫外波段吸收小的气体。 
5.根据权利要求1、2任一项所述的一种深紫外激光产生与传输装置,其特征在于,所述深紫外激光荧光显示元件,为利用所述有显示功能的材料制作的移动元件,所述移动元件在深紫外光路中移动进/ 出深紫外激光光路。 
6.根据权利要求1、2任一项所述装置,其特征在于,所述深紫外激光荧光显示元件,为利用所述有显示功能的材料制作的小孔光阑,所述小孔光阑固定在光路中。 
7.根据权利要求3所述一种深紫外激光产生与传输装置,其特征在于,所述深紫外激光功率计为在真空放气小深紫外激光功率计,所述深紫外激光功率计前端面安装有利用所述深紫外显示元件制作的小孔光阑。 
8.根据权利要求1所述一种深紫外激光产生与传输装置,其特征在于,所述密封腔体为组合腔体,组合腔体为独立腔体或联通腔体,所述深紫外激光产生系统与所述深紫外激光传输系统可以位于所述组合腔体中。 
9.根据权利要求1、2、3、5、6、7、8任一项所述一种深紫外激光产生与传输装置,其特征在于,所述腔体为气密性好的腔体。 
CN201420289044.6U 2014-05-30 2014-05-30 一种深紫外激光产生与传输装置 Expired - Lifetime CN204045925U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420289044.6U CN204045925U (zh) 2014-05-30 2014-05-30 一种深紫外激光产生与传输装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420289044.6U CN204045925U (zh) 2014-05-30 2014-05-30 一种深紫外激光产生与传输装置

Publications (1)

Publication Number Publication Date
CN204045925U true CN204045925U (zh) 2014-12-24

Family

ID=52246553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420289044.6U Expired - Lifetime CN204045925U (zh) 2014-05-30 2014-05-30 一种深紫外激光产生与传输装置

Country Status (1)

Country Link
CN (1) CN204045925U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064949A (zh) * 2014-05-30 2014-09-24 中国科学院理化技术研究所 一种深紫外激光产生与传输装置
CN107317218A (zh) * 2017-07-21 2017-11-03 中国科学院理化技术研究所 一种短波长深紫外激光输出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064949A (zh) * 2014-05-30 2014-09-24 中国科学院理化技术研究所 一种深紫外激光产生与传输装置
CN107317218A (zh) * 2017-07-21 2017-11-03 中国科学院理化技术研究所 一种短波长深紫外激光输出装置
CN107317218B (zh) * 2017-07-21 2019-12-17 中国科学院理化技术研究所 一种短波长深紫外激光输出装置

Similar Documents

Publication Publication Date Title
Fabricant et al. Binospec: a wide-field imaging spectrograph for the MMT
CN104064949A (zh) 一种深紫外激光产生与传输装置
Li et al. Application of carbon fiber composites to cosmonautic fields
CN204045925U (zh) 一种深紫外激光产生与传输装置
CN108288815B (zh) 一种环形激光谐振腔光阑装调系统及其装调方法
CN104104006A (zh) 一种直接倍频产生高功率真空紫外激光的装置及方法
CN208333816U (zh) 全口径谐波转换效率测量系统
CN110456375A (zh) 一种高精度在线测量的测距系统
CN103682952A (zh) 具有输出光路标示的不可见光激光器及其标示方法
CN103185665B (zh) 双折射元件光轴的测量方法
CN215865468U (zh) 一种基于声场可视化的声速测量装置
CN104833642A (zh) 一种光程可调的液体透光特性测量装置
CN107196181A (zh) 一种无耦合系统的C‑mount封装半导体激光泵浦低阈值微片激光器及其控制方法
CN202975377U (zh) 平行四边形棱镜
CN202092950U (zh) 光谱测量中的定标气体样品池装置
Kolleck et al. Development of a pulsed UV laser system for laser-desorption mass spectrometry on Mars
US3621273A (en) Optical second harmonic generator
CN105571770B (zh) 一种基于重力的光压标定装置及标定方法
CN201781186U (zh) 一种高偏振比输出的固体激光器
CN110535021B (zh) 一种指向不变的波长宽调谐深紫外激光系统
CN102013621B (zh) 一种可调谐的双频激光器
RU2548375C1 (ru) Модуль лазерный
CN109579982A (zh) 一种布儒斯特窗口、布儒斯特窗口角度计算方法及调节方法
CN205406953U (zh) 一种基于楔角电光晶体的剩余幅度调制稳定装置
CN103900474A (zh) 一种尺寸测量仪

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20141224