CN203874980U - Low-loss ultrasonic machining transducer - Google Patents

Low-loss ultrasonic machining transducer Download PDF

Info

Publication number
CN203874980U
CN203874980U CN201420257514.0U CN201420257514U CN203874980U CN 203874980 U CN203874980 U CN 203874980U CN 201420257514 U CN201420257514 U CN 201420257514U CN 203874980 U CN203874980 U CN 203874980U
Authority
CN
China
Prior art keywords
ultrasonic
low
loss
transducer
ultrasonic transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201420257514.0U
Other languages
Chinese (zh)
Inventor
张增英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201420257514.0U priority Critical patent/CN203874980U/en
Application granted granted Critical
Publication of CN203874980U publication Critical patent/CN203874980U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model discloses a low-loss ultrasonic machining transducer comprising a rear cover plate, a PZT (Pb-based zirconate titanate) chip, a front cover plate and a variable amplitude bar. A mounting link portion is arranged at the tail end of the variable amplitude bar. The front and rear end faces of the mounting link portion are provided with a lower groove and an upper groove, respectively, and namely, a Z-shaped structure is formed. The low-loss ultrasonic machining transducer is ingenious and reasonable in structural design, the cross section of the mounting link portion is Z shaped, the mounting link portion can be well combined with the outside of a machine, combining effect is good, ultrasonic energy is effectively prevented from diffusing, the ultrasonic energy can be effectively transmitted to material to be machined, a transmission path of the ultrasonic energy is guaranteed, transmission efficiency of the ultrasonic energy is greatly increased, rotating performance of a spindle of the machine can also be ensured, machining effect is guaranteed accordingly, the transducer is applicable to effective machining of hard and brittle materials, such as sapphire, ferrite and zirconia, and the transducer is good in operational stability, long in service life and easy to widely apply and use.

Description

Low-loss Ultrasonic machining transducer
Technical field
The utility model relates to transducer technology field, particularly a kind of low-loss Ultrasonic machining transducer.
Background technology
More current special material application are more and more extensive, such as glass, sapphire, carborundum, composite etc.These materials, because mechanical property is very firmly crisp, cause adopting traditional processing technology cannot meet the requirement of the machining accuracy of these materials.Current industry has adopted the auxiliary mode of ultrasonic energy, in conjunction with the High Rotation Speed of existing lathe, for machinability, the machining accuracy of this class hard brittle material and the life-span of improving process tool.In ultrasonic secondary process, ultrasonic energy is the most key parameter of processing technology, and it plays excitation material atomic energy, reduces the effects such as cutting force.Transducer (Transducer) is the core executing agency that ultrasonic energy is provided in Ultrasonic machining, and its operation principle is vibrated for utilizing piezoelectric inverse effect that electrical signal of the frequency is converted to high frequency ultrasound, and ultrasonic energy is transferred to rapidoprint.The carrier that transducer transmits as ultrasonic energy, its service behaviour directly affects surface accuracy, working (machining) efficiency, the cutter life of rapidoprint.For guaranteeing machining accuracy and the efficiency of material, need accurately to control ultrasonic energy transmission and the vibration mode of transducer.
In addition, on machine tool chief axis, increase ultrasonic wave module, if the vibration characteristics of transducer be mustn't go to effective control, will have influence on the main shaft of lathe, especially can have influence on the bearing of main shaft, will the revolving property of main shaft and life-span be produced to negative effect.
Utility model content
For above-mentioned deficiency, the purpose of this utility model is, provides a kind of structural design ingenious, reasonable, can guarantee that ultrasonic vibrational energy, effectively to the transmission of bistrique instrument, effectively promotes the low-loss Ultrasonic machining transducer of processing effect and long service life.
The technical scheme that the utility model adopted is for achieving the above object: a kind of low-loss Ultrasonic machining transducer, it comprises back shroud, PZT wafer, front shroud and ultrasonic transformer, the front end of described ultrasonic transformer is and dwindles gradually shape, and end face is provided with for the pilot hole of bistrique instrument is installed, the tail end lateral surface radial protrusion of this ultrasonic transformer forms one connection part is installed, this installation connection part is provided with low groove towards one end of described pilot hole basifacial, top, other end is provided with upper groove, be that integral body is zigzag structure, described back shroud, PZT wafer and front shroud are stacked successively, and by attaching parts, be arranged on the tail end of described ultrasonic transformer.
As further improvement of the utility model, described back shroud, PZT wafer, front shroud and ultrasonic transformer are all concentric with benchmark axle center.Reduce the impact of non axial vibration, to guarantee to do single axially-movable, not only greatly improve ultrasonic energy transmission efficiency, guarantee crudy, and revolving property that can lifting spindle and extend its service life.
As further improvement of the utility model, the length of described back shroud is 2~6mm.The length of described PZT wafer is 1~5mm.The length of described ultrasonic transformer is 20~50mm, and described front shroud length is 10~12mm.Reasonable in design, fiting effect is good.
As further improvement of the utility model, the outer surface of described back shroud, PZT wafer, front shroud and ultrasonic transformer is matsurface, can effectively reduce the loss of ultrasonic energy and the generation of parasitic mode.
The beneficial effects of the utility model are: structural design of the present utility model is ingenious, rationally, the cross-sectional profiles that connection part is installed is zigzag, can combine with machine exterior preferably, and in conjunction with effective, effectively avoided ultrasonic energy to external diffusion, guaranteed that ultrasonic energy is effectively delivered to machined material, thereby guarantee the bang path of ultrasonic energy, not only greatly promote ultrasonic energy transmission efficiency, and can guarantee again the verticity of machine tool chief axis, and then assurance processing effect, in addition, overall structure of the present utility model is simple, compact, good operating stability, long service life, be easy to extensively promote the use of, can be to sapphire, ferrite, the hard brittle materials such as zirconia are effectively processed.
Below in conjunction with accompanying drawing and embodiment, the utility model is further illustrated.
Accompanying drawing explanation
Fig. 1 is perspective view one of the present utility model.
Fig. 2 is perspective view two of the present utility model.
Fig. 3 is the sectional structure schematic diagram of ultrasonic transformer in the utility model.
The specific embodiment
Embodiment: see Fig. 1, Fig. 2 and Fig. 3, a kind of low-loss Ultrasonic machining transducer that the utility model provides, it comprises back shroud 1, PZT wafer 2, front shroud 3 and ultrasonic transformer 4, the front end of described ultrasonic transformer 4 is and dwindles gradually shape, and end face is provided with for the pilot hole of bistrique instrument 5 is installed, the tail end lateral surface radial protrusion of this ultrasonic transformer 4 forms one connection part 41 is installed, referring to Fig. 3, this installation connection part 41 is provided with low groove 42 towards one end of described pilot hole basifacial, top, other end is provided with upper groove 43, be that integral body is zigzag structure, described back shroud 1, PZT wafer 2 and front shroud 3 are stacked successively, and by attaching parts 6, be arranged on the tail end of described ultrasonic transformer 4.Concrete, described attaching parts 6 are screw, and this screw comprises head 61 and the bar portion 62 being connected with this head 61, and described back shroud 1, PZT wafer 2 and protecgulum are run through successively in this bar portion 62, and screw in the breech face of described ultrasonic transformer 4.Wherein the breech face of protecgulum and described ultrasonic transformer 4 fits.
Bistrique instrument 5 is plugged on the pilot hole of ultrasonic transformer 4, and is fixedly connected by pressure cap 7 and ultrasonic transformer 4.PZT wafer 2 is connected with drive unit; When the described drive unit tranmitting frequency signal of telecommunication produces ultrasonic vibration, in the present embodiment, when the described drive unit tranmitting frequency signal of telecommunication produces ultrasonic vibration frequency, this ultrasonic vibration calibration is 20-60KHz, the drive unit tranmitting frequency signal of telecommunication produces ultrasonic vibration, drives described ultrasonic transformer 4 work, thereby drives described bistrique instrument 5 work, thereby ultrasonic energy is acted on machined material, realize the object of processing.
About the selection of piezoelectric and ultrasonic transformer 4 materials, in order to reduce the impact of non axial vibration, improve efficient ultrasonic energy transmission efficiency, piezoelectric selects to have the thickness electromechanical coupling coefficient K of the high order of magnitude 1, the dielectric constant K of the low order of magnitude 33 t, the radially electromechanical coupling factor K of the low order of magnitude 31pZT wafer 2.For ultrasonic transformer 4, select to have stainless steel or the titanium alloy material of low-yield dissipation.
The size design of described PZT wafer 2, described front shroud 3 and described back shroud 1 is followed following formula:
wherein, k s, k b, k ffor wave number;
, and for the acoustic impedance of ultrasonic wave at front shroud 3, back shroud 1 and PZT wafer 2.
The length of described back shroud 1 is 2~6mm; The length of described PZT wafer 2 is 1~5mm; Preferably, in the present embodiment, the length of described back shroud 1 is 3mm, and the length of described PZT wafer 2 is 3mm.
Between described front shroud 3 and described ultrasonic transformer 4, be provided with retainer ring, described front shroud 3 length are 10~12mm.
The size design of described ultrasonic transformer 4 is followed following formula:
wherein, k' and k are the wave number of transducing bar and mounting portion; δ 1, and δ 2, and δ 3 and δ 4 are the proportionality constant of system rod member; L is each level length of project organization.
The length of described ultrasonic transformer 4 is 20~50mm; Described back shroud 1, PZT wafer 2, front shroud 3 and ultrasonic transformer 4 are all concentric with benchmark axle center, and the center of each parts is all on same straight line.Described in during assembling, PZT wafer 2 need to reach 0.04 with the axiality of described ultrasonic transformer 4, to guarantee that system does single axially-movable.
In the present embodiment, preferably, the outer surface of described back shroud 1, PZT wafer 2, front shroud 3 and ultrasonic transformer 4 is matsurface, the roughness of wherein said back shroud 1, PZT wafer 2 and front shroud 3 is 0.4 μ m, the roughness on described ultrasonic transformer 4 surfaces is 0.8 μ m, can reduce as much as possible the loss of ultrasonic energy and the generation of parasitic mode like this.
During use, because the installation connection part 41 of this low-loss Ultrasonic machining transducer is provided with low groove 42 and upper groove 43, cross-sectional profiles is zigzag, can combine with machine exterior preferably, and in conjunction with effective, the outside transmission of ultrasonic energy effectively, thereby the bang path that guarantees ultrasonic energy, not only greatly promotes ultrasonic energy transmission efficiency, and can guarantee again the verticity of machine tool chief axis, and then assurance processing effect, there is good service behaviour.
The announcement of book and instruction according to the above description, the utility model those skilled in the art can also change and revise above-mentioned embodiment.Therefore, the utility model is not limited to the specific embodiment disclosed and described above, to modifications and changes more of the present utility model, also should fall in the protection domain of claim of the present utility model.In addition,, although used some specific terms in this description, these terms just for convenience of description, do not form any restriction to the utility model, adopt other transducer same or analogous with it, all in the utility model protection domain.

Claims (8)

1. a low-loss Ultrasonic machining transducer, it is characterized in that: it comprises front shroud, back shroud, PZT wafer and ultrasonic transformer, the front end of described ultrasonic transformer is and dwindles gradually shape, and end face is provided with for the pilot hole of bistrique instrument is installed, the tail end lateral surface radial protrusion of this ultrasonic transformer forms one connection part is installed, this installation connection part is provided with low groove towards one end of described pilot hole basifacial, top, other end is provided with upper groove, described back shroud, PZT wafer and front shroud are stacked successively, and by attaching parts, are arranged on the tail end of described ultrasonic transformer.
2. low-loss Ultrasonic machining transducer according to claim 1, is characterized in that, described back shroud, PZT wafer, front shroud and ultrasonic transformer are all concentric with benchmark axle center.
3. low-loss Ultrasonic machining transducer according to claim 1 and 2, is characterized in that, the length of described back shroud is 2~6mm.
4. low-loss Ultrasonic machining transducer according to claim 1 and 2, is characterized in that, the length of described PZT wafer is 1~5mm.
5. low-loss Ultrasonic machining transducer according to claim 1 and 2, is characterized in that, the length of described ultrasonic transformer is 20~50mm.
6. low-loss Ultrasonic machining transducer according to claim 1 and 2, is characterized in that, described front shroud length is 10~12mm.
7. low-loss Ultrasonic machining transducer according to claim 1, is characterized in that, the outer surface of described back shroud, PZT wafer, front shroud and ultrasonic transformer is matsurface.
8. low-loss Ultrasonic machining transducer according to claim 1, it is characterized in that, described attaching parts are screw, and this screw comprises head and the bar portion being connected with this head, described back shroud, PZT wafer and protecgulum are run through successively in this bar portion, and screw in the breech face of described ultrasonic transformer.
CN201420257514.0U 2014-05-20 2014-05-20 Low-loss ultrasonic machining transducer Active CN203874980U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420257514.0U CN203874980U (en) 2014-05-20 2014-05-20 Low-loss ultrasonic machining transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420257514.0U CN203874980U (en) 2014-05-20 2014-05-20 Low-loss ultrasonic machining transducer

Publications (1)

Publication Number Publication Date
CN203874980U true CN203874980U (en) 2014-10-15

Family

ID=51675523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420257514.0U Active CN203874980U (en) 2014-05-20 2014-05-20 Low-loss ultrasonic machining transducer

Country Status (1)

Country Link
CN (1) CN203874980U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475318A (en) * 2014-11-19 2015-04-01 东莞市优超精密技术有限公司 Low-impedance ultrasonic machining energy converter
CN106994628A (en) * 2017-04-20 2017-08-01 嘉泰数控科技股份公司 The shaping methods of thin-walled zirconium oxide workpiece
CN107442390A (en) * 2017-08-15 2017-12-08 浙江工商大学 A kind of new type ultrasonic amplitude rod devices
CN109351581A (en) * 2018-11-16 2019-02-19 广州汇专工具有限公司 It is a kind of to have the function of vibration isolation, the flanged structure energy converter for ultrasonic unit
CN111542403A (en) * 2017-11-10 2020-08-14 超声超音波有限公司 Ultrasonic transducer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475318A (en) * 2014-11-19 2015-04-01 东莞市优超精密技术有限公司 Low-impedance ultrasonic machining energy converter
CN106994628A (en) * 2017-04-20 2017-08-01 嘉泰数控科技股份公司 The shaping methods of thin-walled zirconium oxide workpiece
CN106994628B (en) * 2017-04-20 2019-05-10 嘉泰数控科技股份公司 The shaping methods of thin-walled zirconium oxide workpiece
CN107442390A (en) * 2017-08-15 2017-12-08 浙江工商大学 A kind of new type ultrasonic amplitude rod devices
CN111542403A (en) * 2017-11-10 2020-08-14 超声超音波有限公司 Ultrasonic transducer
CN111542403B (en) * 2017-11-10 2022-08-23 超声超音波有限公司 Ultrasonic transducer
CN109351581A (en) * 2018-11-16 2019-02-19 广州汇专工具有限公司 It is a kind of to have the function of vibration isolation, the flanged structure energy converter for ultrasonic unit
CN109351581B (en) * 2018-11-16 2023-07-18 汇专科技集团股份有限公司 Flange structure transducer with vibration isolation function for ultrasonic device

Similar Documents

Publication Publication Date Title
CN203874980U (en) Low-loss ultrasonic machining transducer
CN204366634U (en) Transducer vibrations isolation handle of a knife
CN104475318A (en) Low-impedance ultrasonic machining energy converter
CN105478332A (en) Longitudinal-torsional resonance ultrasonic vibration device
CN103128605B (en) Ultrasonic machining knife handle
CN105922453A (en) HSK ultrasonic knife handle
JPWO2008047789A1 (en) Disc-shaped cutting tool and cutting device
CN110052870B (en) Ultrasonic knife handle
CN205651537U (en) ISO25 ultrasonic knife handle
CN107116019A (en) Bifrequency ultrasonic vibrating machining transducer and its mode of operation
CN105881758A (en) BT30 ultrasonic knife handle
CN102452131A (en) Design of main shaft of rotary ultrasonic machine
CN105522211A (en) Longitudinal excitation type ultrasonic vibration milling cutter handle device
CN110976259B (en) Double-excitation ultrasonic elliptical vibration cutting device
CN104044063A (en) Ultrasonic rotor for electric spindle
CN105881757A (en) BT40 ultrasonic knife handle
CN204035001U (en) A kind of high-speed electric main shaft general rotary ultrasonic transducer assembly
CN107639239A (en) A kind of ultrasonic activation auxiliary truning fixture of free form surface ultrasonic transformer
CN109894684A (en) A kind of ultrasonic wave added cutting vibration system
CN203945253U (en) Ultrasonic wave rotor for electric main shaft
CN105268620B (en) A kind of two-way Hybrid transducer vibrating device
CN205889592U (en) BT30 ultrasonic knife handle
CN109909533A (en) A kind of intelligence longitudinal-torsional composite ultrasonic milling attachment
CN113560611B (en) Bidirectional wave ultrasonic automatic tool changing electric spindle
CN116533135A (en) Cylindrical roller ultrasonic grinding device based on piezoelectric composite wave

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant