CN203745623U - 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器 - Google Patents

一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器 Download PDF

Info

Publication number
CN203745623U
CN203745623U CN201420026993.5U CN201420026993U CN203745623U CN 203745623 U CN203745623 U CN 203745623U CN 201420026993 U CN201420026993 U CN 201420026993U CN 203745623 U CN203745623 U CN 203745623U
Authority
CN
China
Prior art keywords
giant magnetostrictive
optical fiber
magnetostrictive material
fiber bragg
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420026993.5U
Other languages
English (en)
Inventor
李川
肖元强
曹敏
陈富云
赵成均
赵振刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201420026993.5U priority Critical patent/CN203745623U/zh
Application granted granted Critical
Publication of CN203745623U publication Critical patent/CN203745623U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

本实用新型涉及一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,属于光电子测量器件技术领域。本实用新型包括聚四氟乙烯外壳、光纤Bragg光栅、光纤固定凸点、聚四氟乙烯套管、外接光纤、超磁致伸缩材料Ⅰ、超磁致伸缩材料Ⅱ、超磁致伸缩材料Ⅲ;其中超磁致伸缩材料Ⅰ、超磁致伸缩材料Ⅱ、超磁致伸缩材料Ⅲ分别位于聚四氟乙烯外壳内的三个正交边线上且三个超磁致伸缩材料的表面两端分别有两个光纤固定凸点,超磁致伸缩材料Ⅱ与聚四氟乙烯外壳采用弹性环氧胶连接,两个光纤固定凸点中间为光纤Bragg光栅。本实用新型具有较强的抗电磁干扰能力和耐腐蚀能力;结构简单,便于操作。

Description

一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器
技术领域
本实用新型涉及一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,属于光电子测量器件技术领域。
背景技术
磁场传感器是传感器领域的一个重要组成部分,已经广泛地应用在工业、农业、国防、生物、医学、宇航等许多领域。当前的磁场传感器主要是基于霍尔器件、磁敏电阻、磁通门、核磁共振等,但传统传感器存在着不能电绝缘等频率响应窄等弱点。光纤磁场传感器有着电绝缘、全光通信等优势,能够在恶劣的环境中稳定工作。超磁致伸缩材料是一种在磁场中会发生体积、长度变化的定向结晶材料,Tb0.3Dy0.7Fe1.92材料具有以下几个显著特性:响应频率范围宽(DC~20kHz);且机械响应速度快(微秒级);较高的居里温度(150℃) ;静态和动态下具有良好的稳定性等。
光纤Bragg光栅具有体积小、波长选择性好、不受非线性效应影响、极化不敏感、易于与光纤系统连接、便于使用和维护等特点,是波长调制的元件。采用光纤Bragg光栅作为传感元件,Tb0.3Dy0.7Fe1.92作为敏感元件,可以在一个较宽的温度范围内(-40℃~150℃)快速响应磁场的变化,并通过解调仪解调出反射光的波长来测量磁场强度。通过笛卡尔空间坐标系上的三个这样的传感臂,可以实时监测空间磁场强度的大小和方向。
通过采用光纤Bragg光栅空间磁场强度传感器对空间磁场强度进行实时在线监测时,需要考虑光纤Bragg光栅空间磁场强度传感器的构成,及如何安装来实现测量时对光纤的保护问题。
发明内容
本实用新型提供了一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,以用于解决对空间磁场强度的实时在线监测时光纤Bragg光栅空间磁场强度传感器的结构、安装问题。
本实用新型的技术方案是:一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,包括聚四氟乙烯外壳1、光纤Bragg光栅2、光纤固定凸点3、聚四氟乙烯套管4、外接光纤5、超磁致伸缩材料Ⅰ7、超磁致伸缩材料Ⅱ8、超磁致伸缩材料Ⅲ9;其中超磁致伸缩材料Ⅰ7、超磁致伸缩材料Ⅱ8、超磁致伸缩材料Ⅲ9分别位于聚四氟乙烯外壳1内的三个正交边线上且3个超磁致伸缩材料的表面两端分别有两个光纤固定凸点3,超磁致伸缩材料Ⅱ8与聚四氟乙烯外壳1采用弹性环氧胶连接,两个光纤固定凸点3中间为光纤Bragg光栅2,光纤Bragg光栅2通过有聚四氟乙烯套管4保护的小孔引出并于外接光纤5相连。
还包括四个平衡螺母底座6和一个万向水泡10;其中平衡螺母底座6位于聚四氟乙烯外壳1底部的四个角上,万向水泡10位于聚四氟乙烯外壳1的上表面正中间。
本实用新型的数学模型分析如下:
光纤Bragg光栅均匀轴向应变引起的波长移位为:
                                                   (1)
式中,为光纤Bragg光栅的中心波长,为波长移位量,P e =0.22为有效弹-光系数,为轴向应变量。
超磁致伸缩材料(如:Tb0.3Dy0.7Fe1.92)沿轴向方向的磁致伸缩与磁化强度的关系为:
                                                     (2)
式中,为施加压应力的材料磁致伸缩,为未加应力的饱和磁致伸缩,MM s 分别为材料的磁化强度和饱和磁化强度。
超磁致伸缩材料(如:Tb0.3Dy0.7Fe1.92)为立方体结构的稀土-铁材料,磁化的过程是磁畴转动的过程,所以磁化强度M为:
                                                    (3)式中,为真空磁导率,K 1为磁晶各向异性常数,H e 为作用在材料上的有效磁场,考虑到外磁场H d 、磁畴间的相互作用和应力诱发的各向异性磁场,有效磁场为:
                                                (4)式中,为一常系数,具体值与磁畴间的相互作用有关。
由热力学原理可以知道:
                                                  (5)式中,为施加的压应力。
由(2)、(5)可知:
                                                   (6)
因为预应力=0,所以=0。所以可得到:
                                                     (7)   
将(7)带入(3)式得:
                                           (8)  
将(8)带入(2)得到:
                                  (9)
因为光纤Bragg光栅贴在Tb0.3Dy0.7Fe1.92的表面,所以Tb0.3Dy0.7Fe1.92沿轴向的形变量等于光纤Bragg光栅沿轴向应变量,把式(9)带入式(1)可得光纤波长移位量
                         (10)
式(10)表明了外磁场强度H d 与光纤Bragg光栅的Bragg波长移位之间的数学模型,通过测量光纤Bragg光栅的Bragg波长移位可以计算出外磁场的磁场强度。
由于空间磁场被分解在了空间坐标系的x轴、y轴和z轴上,设测量到的三个坐标轴上的磁场大小分别为H x H y H z ,则空间磁场H为:
H=H x +H y +H z                                                      (11)
式(11)表面了空间磁场的大小和方向是空间坐标系三个坐标轴上所测量的磁场大小的矢量和。
本实用新型的有益效果是:
1、把空间磁场强度分解到笛卡尔坐标系的三个坐标轴上,通过超磁致伸缩材料把磁场强度转换为光纤Bragg光栅波长的调制,光纤Bragg光栅波长位移与被测磁场强度在一定范围内具有近似线性关系。
2、调整传感器的旋转底座可以使传感器的位置保持水平,从而提高了磁场强度测量的精度。
3、超磁致伸缩材料采用定向结晶的Tb0.3Dy0.7Fe1.92,其居里温度高,能够在常温下使用;材料对磁场的响应时间短,可以跟踪测量交变磁场。
3、光纤Bragg光栅采用两段固定的方式,使光纤能够最大限度感应材料的形变,光纤Bragg光栅是电绝缘材料,具有很强的抗电磁干扰能力(EMI)。
4、采用聚四氟乙烯材料作为传感器的外壳,不会对被测磁场产生影响。
5、光纤Bragg光栅信号靠光缆传输信号,能适应强电磁环境,对电绝缘,能很好的保护二次设备,及测量人员的安全。
6、结构简单,便于操作。
附图说明
图1为本实用新型的结构示意图;
图2为本实用新型的三维结构图;
图中各标号:1为聚四氟乙烯外壳、2为光纤Bragg光栅、3为光纤固定凸点、4为聚四氟乙烯套管、5为外接光纤、6为平衡螺母底座、7为超磁致伸缩材料Ⅰ、8为超磁致伸缩材料Ⅱ、9为超磁致伸缩材料Ⅲ、10为万向水泡。
具体实施方式
实施例1:如图1-2所示,一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,包括聚四氟乙烯外壳1、光纤Bragg光栅2、光纤固定凸点3、聚四氟乙烯套管4、外接光纤5、超磁致伸缩材料Ⅰ7、超磁致伸缩材料Ⅱ8、超磁致伸缩材料Ⅲ9;其中超磁致伸缩材料Ⅰ7、超磁致伸缩材料Ⅱ8、超磁致伸缩材料Ⅲ9分别位于聚四氟乙烯外壳1内的三个正交边线上且3个超磁致伸缩材料的表面两端分别有两个光纤固定凸点3,超磁致伸缩材料Ⅱ8与聚四氟乙烯外壳1采用弹性环氧胶连接,两个光纤固定凸点3中间为光纤Bragg光栅2,光纤Bragg光栅2通过有聚四氟乙烯套管4保护的小孔引出并于外接光纤5相连。
还包括四个平衡螺母底座6和一个万向水泡10;其中平衡螺母底座6位于聚四氟乙烯外壳1底部的四个角上,万向水泡10位于聚四氟乙烯外壳1的上表面正中间。  
实施例2:如图1-2所示,一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,包括聚四氟乙烯外壳1、光纤Bragg光栅2、光纤固定凸点3、聚四氟乙烯套管4、外接光纤5、超磁致伸缩材料Ⅰ7、超磁致伸缩材料Ⅱ8、超磁致伸缩材料Ⅲ9;其中超磁致伸缩材料Ⅰ7、超磁致伸缩材料Ⅱ8、超磁致伸缩材料Ⅲ9分别位于聚四氟乙烯外壳1内的三个正交边线上且3个超磁致伸缩材料的表面两端分别有两个光纤固定凸点3,超磁致伸缩材料Ⅱ8与聚四氟乙烯外壳1采用弹性环氧胶连接,两个光纤固定凸点3中间为光纤Bragg光栅2,光纤Bragg光栅2通过有聚四氟乙烯套管4保护的小孔引出并于外接光纤5相连。
实施例3:如图1-2所示,一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,包括聚四氟乙烯外壳1、光纤Bragg光栅2、光纤固定凸点3、聚四氟乙烯套管4、外接光纤5、超磁致伸缩材料Ⅰ7、超磁致伸缩材料Ⅱ8、超磁致伸缩材料Ⅲ9;其中超磁致伸缩材料Ⅰ7、超磁致伸缩材料Ⅱ8、超磁致伸缩材料Ⅲ9分别位于聚四氟乙烯外壳1内的三个正交边线上且3个超磁致伸缩材料的表面两端分别有两个光纤固定凸点3,超磁致伸缩材料Ⅱ8与聚四氟乙烯外壳1采用弹性环氧胶连接,两个光纤固定凸点3中间为光纤Bragg光栅2,光纤Bragg光栅2通过有聚四氟乙烯套管4保护的小孔引出并于外接光纤5相连。
还包括四个平衡螺母底座6和一个万向水泡10;其中平衡螺母底座6位于聚四氟乙烯外壳1底部的四个角上,万向水泡10位于聚四氟乙烯外壳1的上表面正中间。
其具体参数为:
1、聚四氟乙烯外壳的尺寸参数为50mm×50mm×2mm;Tb0.3Dy0.7Fe1.92的尺寸参数为30 mm×4 mm×4 mm。
2、Tb0.3Dy0.7Fe1.92磁致伸缩材料,磁致伸缩系数为1500ppm~2000ppm,杨氏模量为(2.5~10)×1010N/m2,抗压强度为700MPa ,热膨胀系数为12×10-6/℃,居里温度为380℃,饱和磁化强度M s 为4500Oe,磁晶各向异性常数K 1为0.75,常数为1,真空磁导率为 4π×10-7N/A2 。
3、光纤Bragg光栅的技术参数为:中心波长===1544.000nm,有效弹-光系数P e  =0.22。
4、测量传感光栅有效长度取20mm。
5、按附图配置实验。
6、用光纤光栅分析仪解调光纤Bragg光栅的中心波长。
7、用光纤光栅分析仪获取光纤Bragg光栅的中心波长从而测量空间磁场的强度。
8、将各已知量带入公式,磁场强度H d 与光纤Bragg光栅中心波长位移的关系为一个二次函数,单个传感臂上的磁场强度在350 Oe ~4000 Oe范围内时有较好的线性度。
9、在磁场强度在350 Oe ~4000 Oe范围内时,单个光纤Bragg光栅的Bragg波长移位对被测磁场强度的灵敏度为:,式中,H 2 H 1 分别为被测磁场强度范围的最大值和最小值,分别为磁场强度为H 2 H 1 时所对应的光纤Bragg光栅的中心波长;理论计算得到在350 Oe ~4000 Oe的磁场测量范围内时,单个传感臂的灵敏度为0.26pm/Oe,当光纤Bragg光栅解调仪的波长分辨力为1 pm时(指每变化1 pm时),该传感器的单个传感臂对磁场分辨力为 3.84 Oe。
10、根据公式H=H x +H y +H z ,可知传感器测量空间磁场强度的范围为1800 Oe~6900 Oe,传感器的灵敏度为0.45pm/Oe。
上面结合附图对本实用新型的具体实施方式作了详细说明,但是本实用新型并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本实用新型宗旨的前提下作出各种变化。

Claims (2)

1.一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,其特征在于:包括聚四氟乙烯外壳(1)、光纤Bragg光栅(2)、光纤固定凸点(3)、聚四氟乙烯套管(4)、外接光纤(5)、超磁致伸缩材料Ⅰ(7)、超磁致伸缩材料Ⅱ(8)、超磁致伸缩材料Ⅲ(9);其中超磁致伸缩材料Ⅰ(7)、超磁致伸缩材料Ⅱ(8)、超磁致伸缩材料Ⅲ(9)分别位于聚四氟乙烯外壳(1)内的三个正交边线上且3个超磁致伸缩材料的表面两端分别有两个光纤固定凸点(3),超磁致伸缩材料Ⅱ(8)与聚四氟乙烯外壳(1)采用弹性环氧胶连接,两个光纤固定凸点(3)中间为光纤Bragg光栅(2),光纤Bragg光栅(2)通过有聚四氟乙烯套管(4)保护的小孔引出并于外接光纤(5)相连。
2.根据权利要求1所述的基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器,其特征在于:还包括四个平衡螺母底座(6)和一个万向水泡(10);其中平衡螺母底座(6)位于聚四氟乙烯外壳(1)底部的四个角上,万向水泡(10)位于聚四氟乙烯外壳(1)的上表面正中间。
CN201420026993.5U 2014-01-16 2014-01-16 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器 Expired - Fee Related CN203745623U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420026993.5U CN203745623U (zh) 2014-01-16 2014-01-16 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420026993.5U CN203745623U (zh) 2014-01-16 2014-01-16 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器

Publications (1)

Publication Number Publication Date
CN203745623U true CN203745623U (zh) 2014-07-30

Family

ID=51345407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420026993.5U Expired - Fee Related CN203745623U (zh) 2014-01-16 2014-01-16 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器

Country Status (1)

Country Link
CN (1) CN203745623U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760504A (zh) * 2014-01-16 2014-04-30 昆明理工大学 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器及其使用方法
CN115469135A (zh) * 2022-10-17 2022-12-13 云南电网有限责任公司电力科学研究院 光纤光栅电流传感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760504A (zh) * 2014-01-16 2014-04-30 昆明理工大学 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器及其使用方法
CN103760504B (zh) * 2014-01-16 2016-06-08 昆明理工大学 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器及其使用方法
CN115469135A (zh) * 2022-10-17 2022-12-13 云南电网有限责任公司电力科学研究院 光纤光栅电流传感器

Similar Documents

Publication Publication Date Title
CN103760504B (zh) 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器及其使用方法
CN110389308A (zh) 磁致伸缩/压电复合灵敏度倍增的磁力梯度探头
CN101509962B (zh) 一种磁感应强度的测量方法及装置
CN103149404B (zh) 外卡式光学电流互感器及其抗外磁场干扰方法和温漂抑制方法
CN106225961B (zh) 一种用于机器人的触觉传感器
CN103344317B (zh) 非接触式光纤光栅振动传感器和振动测量装置及方法
CN107884062B (zh) 一种具有自温补特性的三维微振光纤光栅传感器
CN102981136A (zh) 基于电压调制的光纤电流互感器动态性能标定方法
CN106802398A (zh) 一种基于光纤光栅的转子位置检测装置
CN106772133A (zh) 一种基于微纳光纤的空间磁场传感器及其制作方法
Asfour et al. A high dynamic range GMI current sensor
CN104697677A (zh) 一种压磁式应力传感器
CN203745623U (zh) 一种基于超磁致伸缩材料的光纤Bragg光栅空间磁场强度传感器
Han et al. Trampoline-shaped micro electric-field sensor for AC/DC high electric field measurement
CN108303660B (zh) 一种推拉式垂直灵敏磁传感器
Liu et al. A large bandwidth optical fiber magnetic field sensor based on Sagnac interferometer
Liu et al. The state-of-art and prospect of contactless torque measurement methods
Liu et al. A novel strain measurement system in strong electromagnetic field
US4866384A (en) Relative phase magnetic field direction indicating devices useful as compasses
CN104034463A (zh) 一种高线性度分段激磁式扭矩传感器
CN204575225U (zh) 一种压磁式应力传感器
CN204086507U (zh) 基于磁致伸缩材料的弱磁场单向光纤光栅传感器
Li et al. Turbine rotor dynamic balance vibration measurement based on the non-contact optical fiber grating sensing
CN207585757U (zh) 一种具有自温补特性的三维微振光纤光栅传感器
Tan et al. Study on non-contact Fiber Bragg grating vibration sensor

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140730

Termination date: 20150116

EXPY Termination of patent right or utility model