CN203740127U - 变体无人战斗机 - Google Patents
变体无人战斗机 Download PDFInfo
- Publication number
- CN203740127U CN203740127U CN201420151078.9U CN201420151078U CN203740127U CN 203740127 U CN203740127 U CN 203740127U CN 201420151078 U CN201420151078 U CN 201420151078U CN 203740127 U CN203740127 U CN 203740127U
- Authority
- CN
- China
- Prior art keywords
- wing
- sweepforward
- low
- air duct
- aerial vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本实用新型公开了一种变体无人战斗机,采用折叠机翼的变体方式改变机翼掠向、展弦比和翼型,提高气动外形在宽飞行包线内的适应能力;发动机巧妙结合涡喷发动机和冲压发动机,解决此类发动机流道共用少、死重多、超声速燃烧难实现等问题;在气动外形方面,将乘波体机头与机身、鸭翼与边条、机翼前缘缺口与前掠折叠外翼相结合互补,保证了无人战斗机在宽速度区间、多飞行姿态下的高性能。在发动机方面,将风扇转子设置在低压压气机和高压压气机之间并减速传动、燃气预冷等设计结合利用,大幅提升发动机的整体性能;本实用新型将流场推力矢量技术与二元矢量喷管相叠加,获得了±40°的喷流偏转角,大幅提升了无人战斗机的机动能力和可控性。
Description
技术领域
本实用新型涉及一种无人战斗机。
背景技术
近年来,围绕着未来战斗机发展的各种可能性,人们进行了广泛的探索。主要方向之一有:更快的飞行速度,更高的飞行高度和无人化控制。要求其能够兼顾在各种高度、各种姿态下的飞行性能。更加注重超远程打击能力,突出超高速飞行,并进一步强化现代战斗机在中低空的亚声速机动性和超声速机动性。
实用新型内容
本实用新型所要解决的技术问题是提供一种能够根据飞行环境、飞行剖面以及作战任务等需要,自主地改变气动构型,优化飞行性能的变体无人战斗机。
为解决上述技术问题,本实用新型的技术方案是:变体无人战斗机,在低速模态或高速模态下工作或相互转换,包括机头和机身,所示机头的后部两侧有鸭翼,所述机身的两侧固定设有后掠内翼,所述后掠内翼的翼梢设有前掠折叠外翼,所述机身的后部上方设有一对全动式垂直尾翼,所述机身内安装有两台组合发动机,所述组合发动机的进气口位于所述机身的底部前端,所述机身的尾部对应于所述组合发动机安装有两矢量喷口。
所述机头设计为乘波体机头。
所述后掠内翼的翼型为超临界翼型;所述前掠折叠外翼的翼型为“∧”形弹翼;在低速模态下,所述前掠折叠外翼沿所述后掠内翼的翼梢展开;在高速模态下,所述前掠折叠外翼翻转并贴合在所述后掠内翼的底面,所述前掠折叠外翼的翼型变为低速模态翼型的倒置;所述鸭翼后部的机身上设有向两侧延展的边条。
所述组合发动机包括涡喷发动机和冲压发动机。
所述冲压发动机包括设有外涵道进气口的外涵道,所述外涵道的前端为外涵进气道,所述外涵道进气口位于所述机身下部和所述乘波体机头末端;所述机身上设有氧化剂燃料箱和还原剂燃料箱;所述外涵进气道的内表面设有燃料喷注口。
所述涡喷发动机安装在所述外涵道内,包括设有内涵道进气口的内涵进气道,所述内涵进气道内安装有低压压气机,所述内涵道进气口位于所述外涵进气道内,所述内涵道进气口为分瓣且可以完全关闭的锥形罩壳,所述锥形罩壳关闭后外形为一个尖部向前的锥体;所述内涵进气道后设有风扇转子,所述风扇转子包括风扇叶片、风扇叶柄和转子体,所述风扇叶片位于所述外涵道内;位于所述风扇转子后的所述外涵道内设有主内涵道,所述主内涵道内安装有高压压气机,所述高压压气机后的所述主内涵道内设有预压室,所述预压室之后设有内涵燃烧室,所述内涵燃烧室内设有燃料喷注口;所述内涵燃烧室后设有一级高压涡轮,所述高压涡轮与所述高压压气机通过高压转子轴固定连接;所述高压涡轮后设有两级低压涡轮,所述低压涡轮转向与高压涡轮相反;所述低压涡轮与低压压气机通过低压转子轴固定连接,所述风扇转子通过风扇变速装置与所述低压转子轴连接;所述高压转子轴为空心轴且套装在所述低压转子轴外,所述风扇转子安装在所述低压转子轴上。
所述低压涡轮后的所述主内涵道设有主内涵道排气口,所述主内涵道排气口设有可调大小且能够完全关闭的排气调节片;所述主内涵道排气口位于所述外涵道内;所述矢量喷口和所述主内涵道排气口之间设有作为加力燃烧室的外涵道延长段。
所述主内涵道外的所述外涵道的空间设置为外涵燃烧室。
所述矢量喷口为二元矩形矢量喷口,包括两个上下可偏转±20°的导流块。
作为优选的技术方案,所述前掠折叠外翼的前端相对所述后掠内翼更靠前,所述前掠折叠外翼和所述后掠内翼之间的缝隙相对靠后,而且所述前掠折叠外翼前半段的下弧线平直向下倾斜;
作为对上述技术方案的改进,所述前掠折叠外翼的最大厚度在翼弦68%处。
作为优选的技术方案,在所述鸭翼不偏转时,所述鸭翼与所述边条构成连续气动面。
作为对上述技术方案的改进,所述鸭翼和所述边条具有4°的下反角。
作为对上述技术方案的改进,所述鸭翼的偏转轴线在所述鸭翼的翼根弦从前端起的85%处。
作为优选的技术方案,所述后掠内翼的翼梢处的前缘后掠角增大并与所述前掠折叠外翼形成一个机翼前缘缺口。
作为优选的技术方案,所述后掠内翼具有4°的下反角。
作为优选的技术方案,所述外涵道进气口设有可以上下偏转一定角度的下唇口。
作为优选的技术方案,所述还原剂燃料箱内装有液态氢或液态碳氢化合物,所述氧化剂燃料箱内装有液态氧。
作为优选的技术方案,所述机头下表面、整个所述外涵道内壁设有热交换器,所述热交换器兼做与所述燃料喷注口连接的燃料供给管路;
作为优选的技术方案,所述风扇变速装置包括转动安装在所述低压转子轴上的中心齿轮,转动安装在所述中心齿轮上的行星齿轮,所述行星齿轮外安装有齿圈,所述齿圈固定连接有转子体,所述转子体外周固定安装有所述风扇叶柄,所述转子体转动安装在所述低压转子轴上;所述中心齿轮与所述低压转子轴之间安装有离合器。
作为优选的技术方案,所述风扇叶片为可变距叶片。
作为优选的技术方案,所述高压压气机为四级轴流式整体叶盘结构。
作为优选的技术方案,所述主内涵道的进气口处设有可以调节张开大小的导流片。
作为优选的技术方案,所述预压室内设有热交换器,所述热交换器兼做与所述燃料喷注口连接的燃料供给管路;
作为优选的技术方案,所述导流块内设有一个中空的引射通道,所述引射通道设有一个作为进气口的引射入口;所述引射通道设有三个引射出口,位于所述矢量喷口扩张段起始位置设有主引射出口,位于所述矢量喷口扩张段中部和尾部分别设有中部引射出口和尾部引射出口,所述主引射出口、中部引射出口和尾部引射出口均安装有控制阀门。
作为优选的技术方案,所述引射入口为格栅式进气口。
由于采用了上述技术方案,本实用新型采用折叠机翼的变体方式改变机翼掠向、展弦比和翼型,提高气动外形在宽飞行包线内的适应能力;发动机巧妙结合涡喷发动机和冲压发动机,解决此类发动机流道共用少、死重多、超声速燃烧难实现等问题;在气动外形方面,将乘波体机头与机身、鸭翼与边条、机翼前缘缺口与前掠折叠外翼相结合互补,保证了无人战斗机在宽速度区间、多飞行姿态下的高性能。在发动机方面,将风扇转子设置在低压压气机和高压压气机之间并减速传动、燃气预冷等设计结合利用,大幅提升发动机的整体性能;本实用新型将流场推力矢量技术与二元矢量喷管相叠加,获得了±40°的喷流偏转角,大幅提升了无人战斗机的机动能力和可控性。
本实用新型能够在飞行中改变气动外形,能在不同飞行状态下性能保持最佳状态。与常规固定布局飞机相比,本实用新型飞行包线更宽,作战效能更高,它能够根据飞行环境、飞行剖面以及作战任务等需要,自主地改变气动构型,优化其飞行性能。而组合发动机整合了涡喷发动机和冲压发动机在各自适用飞行范围内的优势,使其具有可常规起降、重复使用、可靠性高、低速性能好、技术风险低等优点,具有很好的工程应用前景。
附图说明
图1是本实用新型实施例各部件的各个模态与速度对应关系的示意图;
图2是本实用新型实施例前掠折叠外翼处于展开状态下的立体图;
图3是图2的俯视图;
图4是图3的右视图;
图5是本实用新型实施例前掠折叠外翼处于折叠状态下的立体图;
图6是图5的右视图;
图7是本实用新型实施例后掠内翼的翼型示意图;
图8是本实用新型实施例前掠折叠外翼的翼型示意图;
图9是本实用新型实施例前掠折叠外翼与后掠内翼的闭合翼型示意图;
图10是前掠翼和后掠翼的气动效率随速度的变化曲线;
图11是本实用新型实施例闭合翼型的空气动压示意图,图中:N上为上翼面形成的空气动压,N下为下翼面形成的空气动压,N合为上、下翼面形成的空气动压合力,F升为N合垂直于水平面的分量,F阻为N合平行于水平面的分量;
图12是本实用新型实施例闭合翼型的激波示意图;
图13是本实用新型实施例乘波体机头的截面示意图;
图14是本实用新型实施例大迎角姿态时鸭翼与边条的空气动压示意图;
图15是图3中的I处放大图,图中示出了后掠内翼与前掠折叠外翼形成的机翼前缘缺口;
图16是本实用新型实施例组合发动机的结构原理图;
图17是本实用新型实施例组合发动机的核心机的结构原理图;
图18是本实用新型实施例风扇转子的结构原理图;
图19是本实用新型实施例风扇叶片的工作原理图;
图20是本实用新型实施例低压压气机的工作原理图一;
图21是本实用新型实施例低压压气机的工作原理图二;
图22是本实用新型实施例组合发动机在涡扇模态下的工作原理图;
图23是本实用新型实施例组合发动机在涡喷模态下的工作原理图;
图中:1-机头;2-机身;3-鸭翼;4-后掠内翼;5-前掠折叠外翼;6-垂直尾翼;7-组合发动机;8-矢量喷口;81-导流块;9-边条;10-冲压发动机;11-涡喷发动机;121-外涵道进气口;121a-下唇口;122-外涵道延长段;123-外涵进气道;124-外涵燃烧室;12-外涵道;13-燃料喷注口;141-内涵道进气口;14-内涵进气道;15-低压压气机;16-锥形罩壳;17-风扇转子;171-风扇叶片;172-风扇叶柄;173-转子体;18-主内涵道;181-主内涵道排气口;182-排气调节片;19-高压压气机;20-预压室;21-内涵燃烧室;22-高压涡轮;221-高压转子轴;23-低压涡轮;231-低压转子轴;24-机翼前缘缺口;25-热交换器;26-燃料供给管路;27-中心齿轮;28-行星齿轮;29-齿圈;30-离合器;31-导流片;35-前缘襟翼;36-襟副翼。
具体实施方式
为了对本实用新型的技术特征、目的和效果有更加清楚的理解,现对照附图说明本实用新型的具体实施方式。
变体无人战斗机的设计立足于几十年以后的未来,主要应用新技术、新概念。同时考虑其实际应用情况,满足对无人机、战斗机和高超声速飞行器的各项要求。本实用新型需要拥有不低于现代战斗机在低速机动上的优势,还有一定的亚轨道高超声速巡航能力,以在未来战争中达到先发制人和远程快速全球打击的目的。
本实用新型作为一款变体无人战斗机,其各个部件、各个模态间的统筹兼顾也是设计点之一。本实用新型的气动外形和发动机可以改变形态结构和工作方式,并因此拥有不同的工作模态。本实用新型的气动外形分为低速模态和高速模态,本实用新型的发动机分为涡扇模态和涡喷模态;本实用新型各部件的各个模态与速度的对应关系如图1所示。
如图2、图3、图4和图5所示,本实施例变体无人战斗机包括机头1和机身2,所示机头1的后部两侧有鸭翼3,所述机身2的两侧固定设有后掠内翼4,所述后掠内翼4的翼梢设有前掠折叠外翼5,所述机身2的后部上方设有一对全动式垂直尾翼6,所述机身2内安装有两台组合发动机7,所述组合发动机7的进气口位于所述机身2的底部前端,所述机身2的尾部对应于所述组合发动机7安装有两矢量喷口8。
为了兼顾高超声速、超声速、亚声速和大迎角姿态,本实施例采用折叠机翼的变体方式(简称为折叠翼)将前掠翼与后掠翼、常规翼型与“∧”形弹翼相结合,并将乘波体、鸭翼、边条、机翼缺口等进行结合设计,以优化全部飞行包线和所有飞行姿态下的飞行性能。
本实施例的气动外形分为低速模态和高速模态,两个模态之间的变换是通过折叠机翼来实现的。它的机翼分为前掠折叠外翼5和后掠内翼4两段,前掠折叠外翼5大角度前掠,后掠内翼4小角度后掠。后掠内翼4的翼型如图7所示,后掠内翼4翼型类似于拉长的超临界翼型;前掠折叠外翼5的翼型如图8所示,而前掠折叠外翼5的最大厚度在翼弦68%处,相对靠后。而且前掠折叠外翼5翼型前半段的上弧线十分平直地向上倾斜,外形类似于翻转的“∧”形弹翼。
后掠内翼4融合连接在机身2上,而后掠内翼4与前掠折叠外翼5通过铰链连接,前掠折叠外翼5可在飞行时绕后掠内翼4翼梢旋转184°,如图6所示。
本实施例由低速模态变高速模态时,前掠折叠外翼5由张开状态向内旋转184°从而与后掠内翼4相贴合,与后掠内翼4形成新的如图9所示的闭合翼型,并与鸭翼相融合,三者共同形成新的无人战斗机前缘和机翼形状,具体请参见图5。由高速模态变低速模态时程序相反。
折叠翼的铰链式变换结构是比较简单的机械结构,而且其折叠的变换方式相对其它方式的变机翼,具有便于维护、造价低、特别是占用空间小等优点。本实施例不仅结构简单而作用强大,既可以改变无人战斗机的气动布局,又可以改变无人战斗机的翼型。
折叠翼的实质是在前掠翼布局和后掠翼布局之间切换,同时改变翼展和展弦比。图12为前掠翼和后掠翼的气动效率随速度的变化曲线。
从图中可以看出,前掠翼在亚声速时的气动效率大幅高于后掠翼。而在超声速后,后掠翼逐渐开始占优势。折叠翼使本实施例在低速模态时前掠折叠外翼5前掠翼,亚声速时拥有非常高的大迎角性能和机动性。而在高速模态使本实施例变为后掠翼,大幅度降低高超声速飞行时的阻力。折叠翼通过改变机翼的掠向,从而使机翼在所有飞行包线内保持最佳气动效率。
众所周知,小展弦比、大后掠角的无人战斗机适于高速飞行,但低速飞行时性能不佳。而大展弦比、小后掠角的无人战斗机适合低速飞行,其亚声速升阻比较大,但不适合高速飞行。由于折叠翼的作用,当本实施例由低速模态变为高速模态时,其展弦比由2.49变为0.79,机翼后掠角由19.8°变为56.3°。从而使本实施例在低速飞行和高速飞行时都能够保持最好的飞行性能。
由折叠翼的变换方式知,由低速模态变为高速模态后,前掠折叠外翼5与后掠内翼4相贴合,而且前掠折叠外翼5上下翻转,其翼型变为低速模态翼型的倒置。如图5所示,由于前掠折叠外翼5相对后掠内翼4更靠前,所以此时闭合翼型的前端即为前掠折叠外翼5的前端,闭合翼型前半段的下部为前掠折叠外翼5。这使得后掠内翼4和内前掠折叠外翼5之间的缝隙相对靠后,而且翼型前半段的下弧线平直向下倾斜。
高超声速飞行时的空气动压非常大,而且机翼前端会产生斜激波。如图11所示,闭合翼型前半段的下弧线平直向下倾斜使它能够像“∧”形弹翼一样,下斜的翼面在对空气压缩产生向后的力的同时也产生向上的力,从而利用空气动压产生升力。其前部形成的斜激波能进一步强化这种压缩升力。高超声速飞行时,这种依靠空气动压提供压缩升力方式,较常规翼型拥有更高的效率。
由图11可以看出,上翼面也会产生空气动压,它导致翼型的升力减小阻力增加。上翼面空气动压的大小主要取决于闭合翼型上翼面的平直程度,而正是后掠内翼4的存在使闭合翼型的上翼面向上凸出。为了减小后掠内翼4凸出程度,本实施例将后掠内翼4翼型设计为中段较平直的超临界翼型,使闭合翼型上翼面尽量平直的同时,还可以延迟高亚声速时激波的出现,减小附面层分离的程度,增加临界马赫数和阻力发散马赫数之间的马赫数增量。因此可以获得较好的高亚声速和跨声速飞行性能。
另外,由图中可以看出,本实施例将后掠内翼4部分嵌入了翻转的前掠折叠外翼5,使后掠内翼4、前掠折叠外翼5更加紧密的贴合,也进一步优化了闭合翼型的上下翼面,使之过渡更为平滑,上翼面更为平直,提高了升阻比。其次,后掠内翼4的前缘襟翼35的调节能够使后掠内翼4、前掠折叠外翼5贴合更加紧密。而前掠折叠外翼5的前缘襟翼35则可以调节压缩斜面的倾角,从而改变空气动压的大小和方向。
对于后掠内翼4、前掠折叠外翼5之间的缝隙可能造成不利影响的问题,发明人认为其无关紧要。首先,由于后掠内翼4、前掠折叠外翼5相互嵌入,前掠折叠外翼5对这个缝隙有一定的遮挡作用。另外,机翼前端形成的斜激波对来流有偏转作用,使其流向拥有背离缝隙的分量,从而进一步削弱缝隙的影响。
折叠翼形成的闭合翼型在高超声速飞行时(高马赫数、高雷诺数)具有较高升力效率和升阻比,证明了折叠翼在翼型方面的可行性和优越性。
折叠机翼式变体设计使本实施例可以根据不同的飞行速度改变气动布局、后掠角、展弦比和翼型,较其它变体设计具有可变参数多、变换结构简单等优势。能够更好地满足本实施例对高速和低速的不同需求,保证在所有飞行包线内都能拥有最佳性能。
乘波体是一种高超声速升力体,它在设计点飞行时有激波附着在其前缘,就像整个升力体骑在激波上一样。这使它在高超声速飞行时拥有非常高的升力效率。本实施例的机头1采用乘波体设计,以保证高超声速飞行时较高的飞行性能,同时能够更好地与机身2以及组合发动机7相匹配。
本实施例乘波体机头1的设计采用了由已知的无粘可压缩超声速流场作为出发点的反设计方法,并选取速度适中的6Ma为设计点。另外,选择能够使所设计的乘波体升阻比最大的β=12作为设计乘波体的半基准圆锥激波角。本实施例经过初步设计生成乘波体原型后,将其进行优化并融入整体设计中,最终形成的乘波体机头1截面如图13所示。
本实施例乘波体机头1已经与机身2及鸭翼3完美融合,进一步减小了整机的阻力,提高了乘波体机头1的利用效率。另外,本实施例乘波体机头1的侧缘拥有一定的下反角且侧缘下表面向上拱起,改善了其下表面的压力分布并增大了下表面的高压区面积,从而帮助乘波体获得更高的升力效率,也能够给处在机身2下部的进气口提供压缩效果更好的进气。
这种将乘波体作为机头1的设计,使本实施例能够在高超声速下具有高升力、低阻力、高升阻比的优点,从而更好地适应高速飞行。由于乘波体的高升力主要体现在超声速之后,这使得超声速后本实施例机头1升力增加迅速,抑制了无人战斗机超声速后气动中心后移的现象。另外,乘波体机头1宽大的外形不仅更容易与机身2相结合,也能够增大前部机身2的内部容积,使本实施例能够安装更大直径的雷达,从而提升其整体作战性能。
如图3所示,本实施例通过特殊的鸭翼与边条的组合设计,使两者共同形成了一个气动体系。这个气动体系不仅可以保证在高速飞行时的低阻力,还可以在大迎角姿态形成强劲的涡流,改善其本身及机身2的流动状况,提升本实施例的大迎角性能。
本实施例在不偏转时,鸭翼3与边条9共面,两者融为一体并构成连续气动面。为了与边缘下反的乘波体机头1更好融合,也为了适应下反的后掠内翼4,鸭翼3及边条9拥有4°的下反角。所述鸭翼3的偏转轴线在所述鸭翼3的翼根弦从前端起的85%处,因此当鸭翼3偏转之后,鸭翼3与边条9不再接触,两者不再构成连续气动面。
本实施例的鸭翼3偏转的主要作用是提供仰俯控制力矩,以及与边条9形成有利气动耦合,改善本实施例在大迎角姿态时的气动特性。
在大迎角姿态时,鸭翼3与边条9会共同形成一个涡流,本说明书称之为鸭翼-边条涡。这个涡从鸭翼3前缘开始形成,雏形是鸭翼3的脱体涡。涡流经过边条9时会被加强,由边条9侧缘上泄的下表面高能气流吹动并汇入鸭翼-边条涡,从而大幅提高其涡流强度和控制范围。之后鸭翼-边条涡会扫过后掠内翼4翼根和翼身,减缓气流分离并提供较强涡升力。
如图14所示,由于在大迎角姿态时,鸭翼3相对机身2偏负角,因此鸭翼3与边条9会形成一个倾斜指向上表面的缝道。机身2下表面高压气流将由缝道流向上表面,造成局部压力差的减小。使机身2前部升力损失,但全机的升力并不会因此减小。鸭翼3与边条9形成的缝道将下表面高能气流引入上表面,加强了鸭翼-边条涡,延迟高能气流破裂,为后部机身2和后掠内翼4提供了较强的涡升力。鸭翼3的下洗作用和鸭翼-边条涡还能够加强对边条9和后部气动面的流动控制,减缓气流分离。在气动力上的表现为,在不损伤升力的情况下,全机气动中心后移,稳定性低头力矩增加,有利于本实施例的配平和仰俯控制。
鸭翼3的另一作用是提供仰俯控制力矩。但由于机身2后部的襟副翼36面积较大且本实施例的矢量喷口8的喷流偏转角高达±40°,两者已经能够提供非常大的仰俯控制力矩,没有必要将鸭翼3设计得太大。因此本实施例的鸭翼3相对较小,以减小制动机械的负担。
另外,当本实施例为平飞姿态或转变为高速模态时,鸭翼3将不偏转也不参与无人战斗机的配平。这时的鸭翼3作为一个固定气动面与整体气动布局融为一体,从而提高无人战斗机的升阻比。体现了兼顾高速飞行的宽飞行包线设计理念。而无人战斗机的配平工作主要由尾部的襟副翼36和矢量喷口8来完成。
鸭翼-边条系统可在大迎角姿态时,通过形成有利气动耦合,使本实施例的失速特性得到改善、升力形成平台,仰俯力矩拐点后移,失速迎角增大。而且其融合于整体气动布局的外形又可以兼顾到高速飞行。在大幅提升本实施例的机动性的同时增强其巡航飞行时的气动效率,提升了整体作战性能。
由折叠翼的变体方式可知,低速模态时前掠折叠外翼5的前掠角即为高速模态时机翼的后掠角,为了保证本实施例的高速性能,这个掠角必须较大。但低速模态时前掠折叠外翼5的大前掠角会带来两个问题:一是气动弹性发散问题,二是前掠翼翼根处存在较严重的不利气流流动状况。
第一个问题的解决并不属于空气动力学范畴,主要涉及到结构设计和材料应用方面。实际上,这个在前掠翼身上广泛存在的问题目前已有解决办法。利用复合材料结构的弯扭变形耦合效应便可以克服前掠翼气动弹性发散的缺点。通过布置不同纤维方向的铺层,可以使机翼的弯曲变形引起附加的负扭转变形,从而抵消由升力引起的前掠翼正扭转变形,得到不发散而重量轻的前掠机翼。
而第二个问题的解决,本实施例通过特殊的外形设计,利用涡系干扰来控制前掠折叠外翼5翼根处的不利流动状况。如图15所示,在后掠内翼4的翼梢处,后掠内翼4的前缘后掠角突然增大,与前掠折叠外翼5形成一个机翼前缘缺口24。在大迎角时这个缺口能够形成强烈的涡流,能够将前掠折叠外翼5翼根处堆积的分离气流卷走,从而改善前掠折叠外翼5翼根处不利的气流流动状况。而且这个缺口涡还会与前掠折叠外翼5产生的前掠折叠外翼涡形成有利干扰。由于后掠内翼4、前掠折叠外翼5掠向相反,前掠折叠外翼涡与缺口涡的旋转方向相反,其接触面的流动方向相同,两者相互增强,延迟破裂,形成较强涡升力。本说明书将此处两涡的气动耦合称为缺口涡系。
这个缺口涡系在控制后掠内翼4翼梢、前掠折叠外翼5翼根气流分离的同时,也为本实施例提供了较强的涡升力,而且解决了前掠折叠外翼5翼根处不利流动状况的问题。提高了本实施例的大迎角性能,从而提升其低速模态时的过失速机动性和持续机动能力。
机翼前缘缺口24的设计也是为了满足折叠翼的变翼型特性。由前文可知,折叠翼形成的闭合翼型拥有较高性能的必要条件之一是:前掠折叠外翼5相对后掠内翼4更靠前。这样才能在机翼闭合后使前掠折叠外翼5翼型处于后掠内翼4翼型之前,才能形成高速性能较好的闭合翼型。而如果没有这个翼缺口,后掠内翼4、前掠折叠外翼5的前缘将在它们的相接处重合,使得本实施例在高速模态时,至少在机翼翼梢处无法形成前文所述的闭合翼型,且后掠内翼4、前掠折叠外翼5缝隙直接暴露在高速来流中,有可能造成极坏的影响。
由折叠翼的变体方式可知,在高速模态时,后掠内翼4前缘将完全被前掠折叠外翼5所遮蔽。因此后掠内翼4掠向和掠角的选择更为自由。将后掠内翼4设计为小角度后掠,可以增大机翼面积,减小单位翼载荷,并提升亚声速气动效率,从而加强本实施例低速模态时的机动性。
另外,本实施例中,后掠内翼4有4°的下反角,这是为了在高速模态时使机翼下反,从而更好地利用压缩升力。前文已经提到,在高速模态,闭合的机翼靠激波和空气动压产生升力。但机翼产生的压力不仅向下,也向两侧作用。本实施例下反的机翼可以把这些“流散”的压力包拢起来,获得更多收效。
前掠折叠外翼-后掠内翼系统通过折叠翼和气动耦合相联系,结合应用了前掠翼、后掠翼、机翼缺口等设计。在提升低速模态时各自性能的同时,兼顾应用了折叠翼的特性,从而提高了整体性能。再次体现了兼顾高低速飞行的宽飞行包线设计理念。
为了解决高超声速飞行安定性骤降的问题,本实施例保留了垂直尾翼6(简称垂尾)的设计。其主要作用是保证横向安定性,同时参与横向控制。因此将本实施例垂直尾翼6的面积设计的较小,且后掠角较大,并拥有30°的外倾角,以减小重量、阻力、和雷达反射波。另外,将垂直尾翼6设计为全动式,以增强横向控制能力。
如图16所示,基于本实施例对低速大推力和高超声速动力同时要求,本实施例的组合发动机7被设计为串联式涡轮基组合循环发动机。组合发动机7在亚声速提供较大推力的同时,也能够在高超声速飞行时提供飞行动力,而且能够自主从亚声速过渡至高超声速。本实施例的组合发动机7在不同速度区间内,分别以四种不同的模态工作,分别是:涡扇模态,v∈[0Ma,0.8Ma];涡喷模态,v∈[0.8Ma,3Ma]。
如图17所示,组合发动机7的核心机可以看做一个非常规的涡喷发动机11,高压压气机19为四级轴流式、整体叶盘结构。核心机处于风扇转子17之后的进气处称为主内涵道18的进气口,这里安装有可以调节张开大小的导流片31。这个导流片31称为流量比调节片,它的张开大小可以调节内外涵的流量比,从而使发动机在涡扇模态根据无人战斗机不同的速度和需求改变流量比,改善涡扇模态的适应性能。
高压压气机19后为预压室20,预压室20就是一个中空的空间,之内设有热交换器25,所述热交换器25兼做与所述燃料喷注口13连接的燃料供给管路26。空气在流经预压室20后被热交换器25预冷,温度下降继续增压,从而分担部分压气机的工作。这使得高压压气机19的级数可以设计的更少,从而增强发动机效率,增加推重比。
预压室20之后接内涵燃烧室21,空气在此与预热汽化的燃料混合后燃烧。内涵燃烧室21后为一级高压涡轮22,高压涡轮22与高压压气机19通过高压转子轴221固定连接形成的转子称为高压转子。高压涡轮22后为两级低压涡轮23,转向与高压涡轮22相反。低压涡轮23与低压压气机15和风扇转子17联动,低压涡轮23与低压压气机15(不包括风扇转子17)通过低压转子轴231固定连接后形成的转子称为低压转子。这种高、低压转子对转的工作方式,可使无人战斗机机动飞行时作用于两个转子上的陀螺力矩大部分抵消,减小对无人战斗机的力矩负荷,增强无人战斗机的操控性;另外这种结构使装于两个转子之间的中间轴承内外环转向相反,降低了保持架与转子组合体相对内外环的转速,对轴承的工作有利;而且高、低压转子对转也可以省去高、低压涡轮23之间的燃气导向叶片。而将低压涡轮23设计为二级是考虑到低压涡轮23除了要带动低压压气机15外还要带动风扇转子17,其负荷比较大。设计为二级虽会增加结构复杂程度和重量,但减少了单级涡轮的负荷,提高涡轮效率,从而为低压压气机15和风扇转子17输出更高功率。在涡轮之后为主内涵道排气口181,所述主内涵道排气口181处设有排气调节片182,它可调大小且能够完全关闭,它的作用是调节核心机排气。
如图18和图19所示,本实施例的风扇叶片171是可变距的,可变距风扇叶片171设计除了可在涡扇模态调节风扇的增压比之外,还可以更好的适应其它模态对外涵道12通透性和阻力需求。风扇转子17包括风扇叶片171、风扇叶柄172和转子体173三部分,一部分是位于内涵道的风扇叶柄172,它较为纤细,只起支撑作用;处在外涵道12的部分才是风扇叶片171,因此风扇只给外涵道12空气增压。
风扇转子17通过风扇变速装置与低压转子轴231联动,而且这种联动是可以通过离合器30断开的。在涡扇模态时,风扇转子17受低压转子轴231驱动,风扇叶片171对外涵道12空气增压;而在涡喷模态模态时,风扇转子17将与低压转子轴231断开联动,风扇停止转动,风扇叶片171变距调为顺浆位置,风扇叶片171与来流平行,使风扇叶片171阻力尽量降低。风扇叶片171的可变距体现了发动机设计对不同模态的兼顾,满足了本实施例宽飞行包线的需求。
本实施例中,所述风扇变速装置包括转动安装在所述低压转子轴231上的中心齿轮27,转动安装在所述中心齿轮27上的行星齿轮28,所述行星齿轮28外安装有齿圈29,所述齿圈29固定连接有转子体173,所述转子体173外周固定安装有所述风扇叶柄172,所述转子体173转动安装在所述低压转子轴231上;所述中心齿轮27与所述低压转子轴231之间安装有离合器30。
如图20和图21所示,为了减少阻力及增加空气流量,处于发动机最前部的低压压气机15被设计成三级轴流式压气机,整体叶盘结构。低压压气机15有着独立的进气道,称为内涵进气道14。内涵进气道14处于外涵进气道123内,其截面为圆形且可以完全张开或关闭,关闭后外形为一个指向前的锥体。
如图6所示,外涵道12的进气道称为外涵进气道123,它的前半部分承担着主内涵道18和外涵道12的所有进气,后部包拢着内涵进气道14。外涵进气道123的外涵道进气口121位于本实施例机身2下部,乘波体机头1末端,这样可以在无人战斗机大迎角姿态时仍能提供充足进气,而在高超声速飞行时能为发动机提供由乘波体预压缩的进气。本实施例中,外涵道进气口121的下唇口121a可以上下偏转一定的角度,用来调节进气。外涵进气道123稍稍向上倾斜,这是整体设计统筹兼顾的结果,会使无人战斗机的阻力有所增加,但也使进气道对发动机叶片有一定遮蔽作用,有利于隐身。
外涵道12后部设有长于主内涵道18的核心机的外涵道延长段122,使核心机排气与外涵道12排气通过外涵道延长段122混合再排出。这种外涵道延长段122混排方式使得组合发动机7在涡扇模态和涡喷模态时,主内涵道18、外涵道12气流可在喷出前再次做能量交换,从而提高发动机效率;外涵道延长段122具有加力燃烧室的功能并方便安装矢量喷口8。
外涵道12除了在后部的加力燃烧室外,在其中部,起于风扇转子17直至主内涵道排气口这一段为外涵道12独立的燃烧室,称为外涵燃烧室124。这个燃烧室作为冲压发动机10的主燃烧室。
本实施例的组合发动机7使用液态氢或液态碳氢化合物、液态氧作为燃料,同时作为热交换剂。在内涵燃烧室21内和外涵进气道123壁面设燃料喷注口13。
在本实施例机头1表面、整个外涵道12内壁、预压室20内和燃料喷注口13处设有热交换器25。其中外涵道12内壁的热交换器25分为前后独立的两个部分,分界处在风扇转子17附近。
热交换器25的设置可以提前预冷进气,增加进气的压缩效率;也能够对燃料喷注口13和高速无人战斗机机头起热防护作用。而使用燃料作为热交换剂可以减小热交换系统的结构重量和复杂度,简化管道布置;也使燃料提前预热汽化,对燃烧更加有利。
组合发动机7不同模态时的工作方式及模态间变换方式:
1.涡扇模态
如图22所示,此时外涵进气道123和内涵进气道14都开启且张开较大,主内涵道排气口打开。此时风扇处于涡扇模态,风扇转子17通过低压转子-风扇减速传动系统受低压转子驱动,风扇叶片171对外涵道12空气增压。在预压室20内和燃料喷注口13处的热交换器25开启,燃料先流过预压室20内的热交换器25,再流过燃料喷注口13处的热交换器25,最后注入燃烧室并与空气混合。
在内涵道,空气经外涵进气道123前半部分流入内涵进气道14,再流入低压压气机15。低压压气机15受低压涡轮23驱动,对空气增压。由于组合发动机7采用中间风扇的设计,因此低压压气机15不会受到风扇的不利干扰。大部分被低压压气机15增压的空气会流过风扇叶片171的风扇叶柄172进入核心机;而有少部分会从风扇转子17处溢出至外涵道12,可以增加外涵道12排气的压力及发动机的燃油效率,其效果类似于美国为第六代战机研制的变循环涡扇发动机的“中间涵道”。
高压压气机19被高压涡轮22驱动转动,对进入核心机的被低压压气机15增压的高压空气再次增压。之后空气被排入预压室20。在预压室20内,被增压而温度上升的高压气流流过热交换器25,与低温燃料做热交换。燃料升温,气流降温。气流的降温会再次提高压缩效率,准备用作燃烧。
预压室20也是用来增压空气的,其分担了一部分压气机增压空气的任务,因而高压压气机19的级数可以设计的更少。因此组合发动机7的高压压气机19只有四级转子叶片,减小了发动机的结构复杂度和重量,缩短了尺寸,减小了高压转子的启动惯性。而较少的压气机级数也就意味着涡轮更小的负荷,对燃气的能量消耗也就更少,燃气可以保留更多能量用以驱动低压转子以及最后喷出形成推力,间接提高了低压转子的转速和发动机推力。而且预压室20这个介于燃烧室和压气机之间的中空空间,可以起到一定的抑制发动机喘振的效果。
燃料在内涵燃烧室21内燃烧后,燃气依次流过并驱动高压涡轮22和低压涡轮23转动。之后燃气经主内涵道排气口排入外涵道12后部,在那里将与外涵道12排气混合最后由矢量喷口8排出。
在外涵道12,空气经外涵进气道123进入外涵道12。之后空气经风扇增压并与部分从内涵溢出的由低压压气机15增压的空气混合,而后从核心机外流过并冷却核心机。最后与核心机排气混合,由矢量喷口8喷出。与现代战斗机的涡扇发动机相比,组合发动机7的涵道比较大,拥有更高的效率或更大的推力;同时这也是为冲压发动机10预留足够的空间。
如图22所示,燃料依次流入预压室20内的热交换器25和燃料喷注口13(外置管道未给出),最后在内涵燃烧室21内注入压缩空气。
2.涡喷模态
如图23所示,此时外涵道进气口121张开较小,内涵道进气口141的锥形罩壳16张开较大。所述风扇变速装置的离合器30断开,所述低压转子轴231空转,所述中心齿轮27不动,从而使风扇转子17与低压转子断开联动。此时低压涡轮23只用来驱动低压压气机15,低压压气机15转速上升,满足了涡喷模态对压气机高效率的需求。此时风扇转子17停转,风扇叶片171变距,叶片平行于来流,尽量降低风扇阻力。其它部件的工作模态与涡扇模态时相似。
空气经内涵道进气口141和内涵进气道14进入低压压气机15,由低压压气机15增压后大部分空气经风扇叶片171的风扇叶柄172流入核心机,而一少部分空气会溢出至外涵道12,冷却核心机的同时增加外涵道12气流压力,提高发动机效率。流入核心机的空气再依次流过高压压气机19、预压室20、内涵燃烧室21和高压涡轮22,核心机的工作方式与涡扇时相同。
由于风扇转子17与低压转子断开联动,使得低压涡轮23的负荷减小,转速提升,从而提高低压压气机15的增压比,适应了涡喷发动机11对压气机高效率的要求。
本实用新型作为一款变体无人战斗机,其折叠机翼的变体结构使其可以改变更多气动参数,并简化变体结构;达到了低速高机动和高超声速巡航的目的,较其它变体无人战斗机拥有更高变体效率。
本实用新型及其主要部件的设计始终围绕着宽速度包线的设计理念。本实用新型将多种在不同状态下拥有不同优势的技术相结合,满足了整个飞行包线内的所有需求,并在亚声速和高超声速获得了极强的机动性能和巡航气动效率。本实用新型及其主要部件的设计满足了宽速度包线、高性能的设计定位,并拥有较强参考和应用价值。
如上所述,已经在上面具体地描述了本实用新型的实施例,但是本实用新型不限于此。本领域的技术人员应该理解,可以根据设计要求或其它因素进行各种修改、组合、子组合或者替换,而它们在所附权利要求及其等效物的范围内。
Claims (9)
1.变体无人战斗机,在低速模态或高速模态下工作或相互转换,其特征在于:包括机头和机身,所示机头的后部两侧有鸭翼,所述机身的两侧固定设有后掠内翼,所述后掠内翼的翼梢设有前掠折叠外翼,所述机身的后部上方设有一对全动式垂直尾翼,所述机身内安装有两台组合发动机,所述组合发动机的进气口位于所述机身的底部前端,所述机身的尾部对应于所述组合发动机安装有两矢量喷口;
所述机头设计为乘波体机头;
所述后掠内翼的翼型为超临界翼型;所述前掠折叠外翼的翼型为“∧”形弹翼;在低速模态下,所述前掠折叠外翼沿所述后掠内翼的翼梢展开;在高速模态下,所述前掠折叠外翼翻转并贴合在所述后掠内翼的底面,所述前掠折叠外翼的翼型变为低速模态翼型的倒置;所述鸭翼后部的机身上设有向两侧延展的边条;
所述组合发动机包括涡喷发动机和冲压发动机;
所述冲压发动机包括设有外涵道进气口的外涵道,所述外涵道的前端为外涵进气道,所述外涵道进气口位于所述机身下部和所述乘波体机头末端;所述机身上设有氧化剂燃料箱和还原剂燃料箱;所述外涵进气道的内表面设有燃料喷注口;
所述涡喷发动机安装在所述外涵道内,包括设有内涵道进气口的内涵进气道,所述内涵进气道内安装有低压压气机,所述内涵道进气口位于所述外涵进气道内,所述内涵道进气口为分瓣且可以完全关闭的锥形罩壳,所述锥形罩壳关闭后外形为一个尖部向前的锥体;所述内涵进气道后设有风扇转子,所述风扇转子包括风扇叶片、风扇叶柄和转子体,所述风扇叶片位于所述外涵道内;位于所述风扇转子后的所述外涵道内设有主内涵道,所述主内涵道内安装有高压压气机,所述高压压气机后的所述主内涵道内设有预压室,所述预压室之后设有内涵燃烧室,所述内涵燃烧室内设有燃料喷注口;所述内涵燃烧室后设有一级高压涡轮,所述高压涡轮与所述高压压气机通过高压转子轴固定连接;所述高压涡轮后设有两级低压涡轮,所述低压涡轮转向与高压涡轮相反;所述低压涡轮与低压压气机通过低压转子轴固定连接,所述风扇转子通过风扇变速装置与所述低压转子轴连接;所述高压转子轴为空心轴且套装在所述低压转子轴外,所述风扇转子安装在所述低压转子轴上;
所述低压涡轮后的所述主内涵道设有主内涵道排气口,所述主内涵道排气口设有可调大小且能够完全关闭的排气调节片;所述主内涵道排气口位于所述外涵道内;所述矢量喷口和所述主内涵道排气口之间设有作为加力燃烧室的外涵道延长段;
所述主内涵道外的所述外涵道的空间设置为外涵燃烧室;
所述矢量喷口为二元矩形矢量喷口,包括两个上下可偏转±20°的导流块。
2.如权利要求1所述的变体无人战斗机,其特征在于:所述前掠折叠外翼的前端相对所述后掠内翼更靠前,所述前掠折叠外翼和所述后掠内翼之间的缝隙相对靠后,而且所述前掠折叠外翼前半段的下弧线平直向下倾斜;所述鸭翼和所述边条具有4°的下反角。
3.如权利要求1所述的变体无人战斗机,其特征在于:所述后掠内翼的翼梢处的前缘后掠角增大并与所述前掠折叠外翼形成一个机翼前缘缺口;所述后掠内翼具有4°的下反角。
4.如权利要求1所述的变体无人战斗机,其特征在于:所述外涵道进气口设有可以上下偏转一定角度的下唇口。
5.如权利要求1所述的变体无人战斗机,其特征在于:所述机头下表面、整个所述外涵道内壁设有热交换器,所述热交换器兼做与所述燃料喷注口连接的燃料供给管路;所述预压室内设有热交换器,所述热交换器兼做与所述燃料喷注口连接的燃料供给管路。
6.如权利要求1所述的变体无人战斗机,其特征在于:所述风扇变速装置包括转动安装在所述低压转子轴上的中心齿轮,转动安装在所述中心齿轮上的行星齿轮,所述行星齿轮外安装有齿圈,所述齿圈固定连接有转子体,所述转子体外周固定安装有所述风扇叶柄,所述转子体转动安装在所述低压转子轴上;所述中心齿轮与所述低压转子轴之间安装有离合器。
7.如权利要求1所述的变体无人战斗机,其特征在于:所述风扇叶片为可变距叶片。
8.如权利要求1所述的变体无人战斗机,其特征在于:所述主内涵道的进气口处设有可以调节张开大小的导流片。
9.如权利要求1所述的变体无人战斗机,其特征在于:所述乘波体机头的侧缘具有下反角且侧缘下表面向上拱起。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420151078.9U CN203740127U (zh) | 2014-03-31 | 2014-03-31 | 变体无人战斗机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420151078.9U CN203740127U (zh) | 2014-03-31 | 2014-03-31 | 变体无人战斗机 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203740127U true CN203740127U (zh) | 2014-07-30 |
Family
ID=51339962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420151078.9U Expired - Fee Related CN203740127U (zh) | 2014-03-31 | 2014-03-31 | 变体无人战斗机 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203740127U (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103879556A (zh) * | 2014-03-31 | 2014-06-25 | 冯加伟 | 宽飞行包线变体飞行器 |
CN105109669A (zh) * | 2014-12-24 | 2015-12-02 | 江西洪都航空工业集团有限责任公司 | 飞机改出尾旋改善装置 |
CN106628163A (zh) * | 2017-01-13 | 2017-05-10 | 厦门大学 | 一种可实现大阻力减速和垂直起降的超音速无人战斗机 |
GR1009520B (el) * | 2017-12-18 | 2019-05-15 | Ιωαννης Αθανασιου Παπαδημητριου | Αεροσκαφη-ελικοπτερα μη επανδρωμενα |
CN110539898A (zh) * | 2019-08-19 | 2019-12-06 | 中国航天空气动力技术研究院 | 一种火箭发动机一体化乘波体飞行器 |
CN111516854A (zh) * | 2020-04-03 | 2020-08-11 | 中国空气动力研究与发展中心低速空气动力研究所 | 一种促进喷流偏转的流动控制部件 |
-
2014
- 2014-03-31 CN CN201420151078.9U patent/CN203740127U/zh not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103879556A (zh) * | 2014-03-31 | 2014-06-25 | 冯加伟 | 宽飞行包线变体飞行器 |
CN103879556B (zh) * | 2014-03-31 | 2016-03-02 | 冯加伟 | 宽飞行包线变体飞行器 |
CN105109669A (zh) * | 2014-12-24 | 2015-12-02 | 江西洪都航空工业集团有限责任公司 | 飞机改出尾旋改善装置 |
CN105109669B (zh) * | 2014-12-24 | 2017-04-19 | 江西洪都航空工业集团有限责任公司 | 飞机改出尾旋改善装置 |
CN106628163A (zh) * | 2017-01-13 | 2017-05-10 | 厦门大学 | 一种可实现大阻力减速和垂直起降的超音速无人战斗机 |
GR1009520B (el) * | 2017-12-18 | 2019-05-15 | Ιωαννης Αθανασιου Παπαδημητριου | Αεροσκαφη-ελικοπτερα μη επανδρωμενα |
CN110539898A (zh) * | 2019-08-19 | 2019-12-06 | 中国航天空气动力技术研究院 | 一种火箭发动机一体化乘波体飞行器 |
CN111516854A (zh) * | 2020-04-03 | 2020-08-11 | 中国空气动力研究与发展中心低速空气动力研究所 | 一种促进喷流偏转的流动控制部件 |
CN111516854B (zh) * | 2020-04-03 | 2021-08-10 | 中国空气动力研究与发展中心低速空气动力研究所 | 一种促进喷流偏转的流动控制部件 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103879556B (zh) | 宽飞行包线变体飞行器 | |
CN203740127U (zh) | 变体无人战斗机 | |
US11987352B2 (en) | Fluid systems that include a co-flow jet | |
EP0737146B1 (en) | Supersonic natural laminar flow wing | |
CN111332464B (zh) | 一种分布式推进飞翼飞行器 | |
CN203740126U (zh) | 宽飞行包线变体飞行器 | |
CN102826215B (zh) | 一种可短距起降的轻小型飞翼载人机 | |
CN106285946A (zh) | 双轴转动变形的通道无尖角内乘波式变几何进气道 | |
CN101716995A (zh) | 波形翼与物体的波形表面 | |
CN108100212A (zh) | 一种小展弦比自适应变体飞翼布局战斗机 | |
CN109612340A (zh) | 一种高速大机动高隐身的靶机 | |
CN113291459A (zh) | 一种分布式涵道风扇高升力系统及其使用方法 | |
CN203740120U (zh) | 宽飞行包线变体飞行器的气动结构 | |
CN107867387A (zh) | 一种内外流乘波飞行器布局 | |
CN207809757U (zh) | 一种小展弦比自适应变体飞翼布局战斗机 | |
CN211943728U (zh) | 一种分布式推进飞翼飞行器 | |
CN115571323A (zh) | 一种亚声速扁平融合体布局飞行器 | |
CN203906120U (zh) | 无人战斗机用组合发动机 | |
CN106167096A (zh) | 改进型近似水平转动推进器襟翼增升连接翼飞机 | |
CN205186510U (zh) | 独立气源供气的无舵面飞行器 | |
CN101804861B (zh) | 一种用于飞机过失速操纵控制的翼板 | |
US9849975B2 (en) | Deflection cone in a reaction drive helicopter | |
CN216468522U (zh) | 菱形固定翼可垂直起降无人机 | |
CN205819564U (zh) | 改进型近似水平转动推进器襟翼增升连接翼飞机 | |
CN207346106U (zh) | 飞机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140730 Termination date: 20150331 |
|
EXPY | Termination of patent right or utility model |