CN203730300U - Fourier non-circular gear-driven four-blade differential pump - Google Patents
Fourier non-circular gear-driven four-blade differential pump Download PDFInfo
- Publication number
- CN203730300U CN203730300U CN201420053198.5U CN201420053198U CN203730300U CN 203730300 U CN203730300 U CN 203730300U CN 201420053198 U CN201420053198 U CN 201420053198U CN 203730300 U CN203730300 U CN 203730300U
- Authority
- CN
- China
- Prior art keywords
- circular gear
- fourier
- fourier non
- conjugate
- impeller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 claims abstract description 85
- 238000006073 displacement reaction Methods 0.000 claims abstract description 35
- 230000008878 coupling Effects 0.000 claims abstract description 6
- 238000010168 coupling process Methods 0.000 claims abstract description 6
- 238000005859 coupling reaction Methods 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims description 18
- 230000014509 gene expression Effects 0.000 claims description 16
- 238000009434 installation Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 7
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 claims description 3
- 230000010349 pulsation Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 7
- 238000005457 optimization Methods 0.000 description 4
- 238000001595 flow curve Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Rotary Pumps (AREA)
Abstract
本实用新型公开了一种傅里叶非圆齿轮驱动的四叶片差速泵。本实用新型的动力由电机输出,经过联轴器传给输入轴;第一傅里叶非圆齿轮和第二傅里叶非圆齿轮均固定在输入轴上;第一共轭傅里叶非圆齿轮固定在输出轴上,并与第一傅里叶非圆齿轮啮合;第二共轭傅里叶非圆齿轮与第二叶轮通过轴套固结,轴套活套在输出轴上;第二共轭傅里叶非圆齿轮与第二傅里叶非圆齿轮啮合;第一叶轮固定在输出轴上;第一叶轮和第二叶轮均设置有两片叶片,所有叶片内部均安装一个单向泄压阀,单向泄压阀方向与叶片转动方向一致。本实用新型排量大、流量稳定,不等速规律易调整,有效解决传统差速泵压力脉动和困液问题。
The utility model discloses a four-blade differential speed pump driven by Fourier noncircular gears. The power of the utility model is output by the motor and transmitted to the input shaft through the coupling; the first Fourier non-circular gear and the second Fourier non-circular gear are fixed on the input shaft; the first conjugate Fourier non-circular gear is fixed on the input shaft; The circular gear is fixed on the output shaft and meshes with the first Fourier non-circular gear; the second conjugate Fourier non-circular gear and the second impeller are consolidated through the sleeve, and the sleeve is looped on the output shaft; the second The two-conjugate Fourier non-circular gear meshes with the second Fourier non-circular gear; the first impeller is fixed on the output shaft; the first impeller and the second impeller are equipped with two blades, and a single blade is installed inside each blade. Directional pressure relief valve, the direction of one-way pressure relief valve is consistent with the direction of blade rotation. The utility model has the advantages of large displacement, stable flow, and easy adjustment of unequal velocity law, and effectively solves the problems of pressure pulsation and trapped liquid in traditional differential pumps.
Description
技术领域technical field
本实用新型属于容积泵技术领域,涉及叶片差速泵,具体涉及一种傅里叶非圆齿轮驱动的四叶片差速泵。The utility model belongs to the technical field of displacement pumps and relates to a vane differential pump, in particular to a four-blade differential pump driven by Fourier non-circular gears.
背景技术Background technique
通用机械常用的液泵有活塞泵、柱塞泵、隔膜泵、滚子泵和离心泵,其中:活(柱)塞泵具有较高的出口压力,但要求活塞与缸筒之间的密封可靠,且压力波动大;隔膜泵在多缸时能产生一个较平稳的液流,但是结构复杂;滚子泵的排量在转速稳定时是均匀的,随着压力的提高,泄漏量增加,泵的排液量及效率相应减小;离心泵结构简单,容易制造,但是它的排量大,压力低,用于工作压力要求不高的场合。这些泵存在各自的缺陷,还不能很好地满足部分特种机械要求的恒定流量、高压力的需求。The liquid pumps commonly used in general machinery include piston pumps, plunger pumps, diaphragm pumps, roller pumps and centrifugal pumps. Among them: live (pillar) piston pumps have higher outlet pressure, but require a reliable seal between the piston and the cylinder. , and the pressure fluctuates greatly; the diaphragm pump can produce a relatively stable liquid flow when there are multiple cylinders, but the structure is complex; the displacement of the roller pump is uniform when the speed is stable, and the leakage increases with the increase of the pressure. The displacement and efficiency of the centrifugal pump are correspondingly reduced; the structure of the centrifugal pump is simple and easy to manufacture, but its displacement is large and the pressure is low, so it is used in occasions where the working pressure is not required. These pumps have their own defects, and they cannot meet the constant flow and high pressure requirements of some special machinery.
现有的差速泵根据驱动机构的不同主要有以下几种:The existing differential pumps mainly have the following types according to the different driving mechanisms:
转动导杆—齿轮式叶片差速泵,其驱动系统承受交变载荷,产生齿轮啮合噪声,且各运动副间隙较大时也会引起冲击噪声。Rotating guide rod-gear vane differential pump, its drive system is subjected to alternating loads, which produces gear meshing noise, and impact noise will also be caused when the gaps between the moving pairs are large.
万向节齿轮机构驱动叶片差速泵,其万向节机构的输入轴与输出轴的夹角是影响泵的性能的一个关键参数。该角越大,泵的排量也越大,但是,随着该角的增大,泵的流量脉动加剧和万向节的传动效率降低。The universal joint gear mechanism drives the vane differential pump, and the angle between the input shaft and the output shaft of the universal joint mechanism is a key parameter affecting the performance of the pump. The larger the angle, the larger the displacement of the pump. However, with the increase of the angle, the flow pulsation of the pump increases and the transmission efficiency of the universal joint decreases.
变形偏心圆非圆齿轮驱动叶片差速泵,其偏心圆非圆齿轮节曲线调整参数主要是偏心率和变形系数,调整量有限,调整精度不高,造成传动比优化、调整不方便,设计不灵活,不利于进一步优化设计,很难优化压力脉动、困液等问题。Deformed eccentric circle non-circular gear drive vane differential pump, the adjustment parameters of the eccentric circle non-circular gear pitch curve are mainly eccentricity and deformation coefficient, the adjustment amount is limited, the adjustment accuracy is not high, resulting in transmission ratio optimization, inconvenient adjustment, poor design Flexibility is not conducive to further optimization of the design, and it is difficult to optimize problems such as pressure pulsation and trapped liquid.
发明内容Contents of the invention
本实用新型的目的是针对现有技术的不足,提供一种傅里叶非圆齿轮驱动的四叶片差速泵,该叶片差速泵排量大、压力高、流量稳定、结构紧凑;驱动机构的不等速规律容易调整,方便性能优化;通过在叶片内安装单向泄压阀,压力超限时打通邻近封闭腔,有效解决现有差速泵困液问题。The purpose of this utility model is to provide a four-blade differential pump driven by Fourier non-circular gears, which has large displacement, high pressure, stable flow and compact structure; The non-uniform velocity law is easy to adjust, which is convenient for performance optimization; by installing a one-way pressure relief valve in the blade, the adjacent closed cavity is opened when the pressure exceeds the limit, effectively solving the problem of trapped liquid in the existing differential pump.
本实用新型包括驱动部件和差速泵部件。The utility model comprises a driving part and a differential pump part.
所述的驱动部件包括驱动齿轮箱、输入轴、输出轴、第一傅里叶非圆齿轮、第二傅里叶非圆齿轮、第一共轭傅里叶非圆齿轮、第二共轭傅里叶非圆齿轮和轴套。电机驱动输入轴转动,输入轴通过两个轴承支撑在驱动齿轮箱的两侧壁;所述的第一傅里叶非圆齿轮和第二傅里叶非圆齿轮均固定安装在输入轴上;输出轴的两端分别通过轴承支撑在驱动齿轮箱和泵壳的箱壁上,第一共轭傅里叶非圆齿轮固定安装在输出轴上,并与第一傅里叶非圆齿轮啮合;第二共轭傅里叶非圆齿轮和第二叶轮都固结在轴套上,轴套活套在输出轴上;第二共轭傅里叶非圆齿轮与第二傅里叶非圆齿轮啮合;The drive components include a drive gearbox, an input shaft, an output shaft, a first Fourier non-circular gear, a second Fourier non-circular gear, a first conjugate Fourier non-circular gear, a second conjugate Fourier non-circular gear Rifle non-circular gears and bushings. The motor drives the input shaft to rotate, and the input shaft is supported on both side walls of the drive gearbox through two bearings; the first Fourier non-circular gear and the second Fourier non-circular gear are fixedly installed on the input shaft; The two ends of the output shaft are respectively supported on the box wall of the drive gearbox and the pump casing through bearings, and the first conjugate Fourier non-circular gear is fixedly installed on the output shaft and meshes with the first Fourier non-circular gear; Both the second conjugate Fourier non-circular gear and the second impeller are fixed on the shaft sleeve, and the shaft sleeve is looped on the output shaft; the second conjugate Fourier non-circular gear and the second Fourier non-circular gear Engage;
所述的差速泵部件包括泵壳、第一叶轮、第二叶轮和单向泄压阀;所述的泵壳沿圆周方向依次开设有第一排液口、第一吸液口、第二排液口和第二吸液口;第一叶轮固定在输出轴上;所述的第一叶轮和第二叶轮均对称设置有两片叶片;沿圆周方向,第一叶轮的叶片与第二叶轮的叶片相间设置;所有叶片内部均安装一个单向泄压阀。The differential pump components include a pump casing, a first impeller, a second impeller and a one-way pressure relief valve; the pump casing is sequentially provided with a first discharge port, a first liquid suction port, a second The liquid discharge port and the second liquid suction port; the first impeller is fixed on the output shaft; the first impeller and the second impeller are symmetrically provided with two blades; along the circumferential direction, the blades of the first impeller and the second impeller The blades are arranged alternately; a one-way pressure relief valve is installed inside all blades.
根据泵的结构,给定第一傅里叶非圆齿轮与第一共轭傅里叶非圆齿轮的中心距初值a0,再根据节曲线封闭条件和啮合条件,采用进退法搜索获得中心距a的精确值。具体计算如下:According to the structure of the pump, the initial value a 0 of the center distance between the first Fourier non-circular gear and the first conjugate Fourier non-circular gear is given, and then according to the closed condition of the pitch curve and the meshing condition, the center is obtained by using the advance and retreat method The exact value of distance a. The specific calculation is as follows:
第一傅里叶非圆齿轮的节曲线表达式为:The pitch curve expression of the first Fourier non-circular gear is:
其中,a1、a2、b1和b2为傅里叶函数的参数,a1取值范围为1~6,a2取值范围为1~3,b1取值范围为0~2.3,b2取值范围为0~2.3,n为第一傅里叶非圆齿轮的阶数,取值为2;为第一傅里叶非圆齿轮的转角,为第一傅里叶非圆齿轮对应转角的向径。Among them, a 1 , a 2 , b 1 and b 2 are the parameters of the Fourier function, the value range of a 1 is 1~6, the value range of a 2 is 1~3, and the value range of b 1 is 0~2.3 , b 2 ranges from 0 to 2.3, n is the order of the first Fourier non-circular gear, and the value is 2; is the rotation angle of the first Fourier non-circular gear, is the corresponding rotation angle of the first Fourier non-circular gear radial direction.
根据非圆齿轮啮合原理,第一傅里叶非圆齿轮旋转360°时,第一共轭傅里叶非圆齿轮的角位移:According to the principle of non-circular gear meshing, when the first Fourier non-circular gear rotates 360°, the angular displacement of the first conjugate Fourier non-circular gear:
第一傅里叶非圆齿轮和第一共轭傅里叶非圆齿轮均为二阶非圆齿轮,因此,第一傅里叶非圆齿轮旋转360°时,第一共轭傅里叶非圆齿轮也旋转360°,可得计算中心距a的迭代式:Both the first Fourier non-circular gear and the first conjugate Fourier non-circular gear are second-order non-circular gears. Therefore, when the first Fourier non-circular gear rotates 360°, the first conjugate Fourier non-circular gear The circular gear also rotates 360°, and the iterative formula for calculating the center distance a can be obtained:
取中心距初值a0采用进退法搜索算出中心距a的精确值。Take the initial value of the center distance a 0 and use the advance and retreat method to search and calculate the exact value of the center distance a.
所述的输入轴和输出轴分别设置在齿轮箱的两端;所述输入轴的一端头部伸出驱动齿轮箱外通过联轴器与电机连接。The input shaft and the output shaft are respectively arranged at two ends of the gearbox; one end of the input shaft extends out of the drive gearbox and is connected with the motor through a coupling.
所述的第一排液口与第二排液口对称设置,第一吸液口与第二吸液口对称设置。The first liquid discharge port and the second liquid discharge port are arranged symmetrically, and the first liquid suction port and the second liquid suction port are symmetrically arranged.
所有单向泄压阀方向与叶片转动方向一致。The direction of all one-way pressure relief valves is consistent with the direction of vane rotation.
所述的第一傅里叶非圆齿轮和第二傅里叶非圆齿轮的结构完全一致,第一共轭傅里叶非圆齿轮和第二共轭傅里叶非圆齿轮的结构完全一致,第一傅里叶非圆齿轮、第二傅里叶非圆齿轮、第一共轭傅里叶非圆齿轮和第二共轭傅里叶非圆齿轮均为二阶非圆齿轮;第一傅里叶非圆齿轮与第二傅里叶非圆齿轮的初始安装相位差、第一共轭傅里叶非圆齿轮与第二共轭傅里叶非圆齿轮的初始安装相位差均为90°。The structures of the first Fourier non-circular gear and the second Fourier non-circular gear are completely consistent, and the structures of the first conjugate Fourier non-circular gear and the second conjugate Fourier non-circular gear are completely consistent , the first Fourier non-circular gear, the second Fourier non-circular gear, the first conjugate Fourier non-circular gear and the second conjugate Fourier non-circular gear are all second-order non-circular gears; the first The initial installation phase difference between the Fourier non-circular gear and the second Fourier non-circular gear, and the initial installation phase difference between the first conjugate Fourier non-circular gear and the second conjugate Fourier non-circular gear are all 90 °.
第一傅里叶非圆齿轮与第一共轭傅里叶非圆齿轮的传动比为:The transmission ratio between the first Fourier non-circular gear and the first conjugate Fourier non-circular gear is:
第二傅里叶非圆齿轮与第二共轭傅里叶非圆齿轮的传动比为:The transmission ratio between the second Fourier non-circular gear and the second conjugate Fourier non-circular gear is:
其中,θ为第一傅里叶非圆齿轮与第二傅里叶非圆齿轮的初始安装相位差,取值为90°。Among them, θ is the initial installation phase difference between the first Fourier non-circular gear and the second Fourier non-circular gear, and the value is 90°.
令第一傅里叶非圆齿轮与第一共轭傅里叶非圆齿轮的传动比i21等于第二傅里叶非圆齿轮与第二共轭傅里叶非圆齿轮的传动比i43,可求得四个不同的转角转角取最小值时,第一傅里叶非圆齿轮的角位移为第二傅里叶非圆齿轮的角位移为第一叶轮和第二叶轮的转角分别为:Make the transmission ratio i 21 of the first Fourier non-circular gear and the first conjugate Fourier non-circular gear equal to the transmission ratio i 43 of the second Fourier non-circular gear and the second conjugate Fourier non-circular gear , four different corners can be obtained corner Take the minimum When , the angular displacement of the first Fourier non-circular gear is The angular displacement of the second Fourier non-circular gear is The rotation angles of the first impeller and the second impeller are respectively:
泵壳的第一排液口中心位置角第一吸液口中心位置角第二排液口中心位置角ψ排2=ψ排1+π、第二吸液口中心位置角ψ吸2=ψ吸1+π;第一排液口、第一吸液口、第二排液口和第二吸液口的大小相等,且比叶片的叶片角θ叶小2~5°;第一叶轮及第二叶轮的叶片角θ叶的取值均为40°~45°。The center position angle of the first discharge port of the pump casing Center position angle of the first liquid suction port The center position angle of the second liquid discharge port ψ row 2 = ψ row 1 + π, the center position angle of the second liquid suction port ψ suction 2 = ψ suction 1 + π; the first liquid discharge port, the first liquid suction port, the second liquid suction port The liquid discharge port and the second liquid suction port are equal in size and 2-5° smaller than the vane angle θ lobe of the blade; the value of the vane angle θ lobe of the first impeller and the second impeller are both 40°-45°.
相邻两叶片最小张角此时该封闭腔为最小容积:Minimum opening angle of two adjacent blades At this time, the closed cavity has the minimum volume:
其中,R为叶片半径,r为叶轮轴半径,h为叶片厚度。Among them, R is the radius of the blade, r is the radius of the impeller shaft, and h is the thickness of the blade.
相邻两叶片最大张角此时该封闭腔为最大容积:Maximum opening angle of two adjacent blades At this time, the closed cavity has the maximum volume:
四叶片差速泵的排量计算表达式:The displacement calculation expression of the four-blade differential pump:
Q=4×(Vmax-Vmin)=2(Δψmax-Δψmin)(R2-r2)×h×10-6 Q=4×(V max -V min )=2(Δψ max -Δψ min )(R 2 -r 2 )×h×10 -6
四叶片差速泵的瞬时流量计算表达式:The instantaneous flow calculation expression of the four-blade differential pump:
其中,V为排液腔容积;ω为第一傅里叶非圆齿轮及第二傅里叶非圆齿轮的角速度,其计算式为 Among them, V is the volume of the liquid discharge chamber; ω is the angular velocity of the first Fourier non-circular gear and the second Fourier non-circular gear, and its calculation formula is
四叶片差速泵的最小容积、最大容积困液压力变化计算表达式:Calculation expressions of the minimum volume and maximum volume trapped liquid pressure changes of the four-blade differential pump:
其中K为液体的弹性模量。where K is the elastic modulus of the liquid.
本实用新型具有的有益效果是:The beneficial effect that the utility model has is:
本实用新型采用傅里叶非圆齿轮机构,傅里叶非圆齿轮节曲线有六个调整参数,相比已有的变形偏心圆非圆齿轮可调参数多,因此傅里叶非圆齿轮不等速传动规律容易调整,容易实现差速泵的排量、压力、流量等性能的优化。通过在叶片内安装单向泄压阀,压力超限时打通邻近封闭腔,有效解决现有差速泵困液问题。由于傅里叶非圆齿轮机构驱动的差速泵吸液口和排液口对称,径向平衡性好,非等速传动为旋转运动,因此运行平稳可靠、径向工作载荷平衡、脉动可控性好;叶片多、排量大,泵壳的内表面及叶片形状简单,容积效率高。The utility model adopts a Fourier non-circular gear mechanism, and the pitch curve of the Fourier non-circular gear has six adjustment parameters. The law of constant speed transmission is easy to adjust, and it is easy to realize the optimization of the displacement, pressure, flow and other performances of the differential pump. By installing a one-way pressure relief valve in the vane, the adjacent closed cavity is opened when the pressure exceeds the limit, which effectively solves the problem of trapped liquid in the existing differential pump. Due to the symmetrical suction port and liquid discharge port of the differential pump driven by the Fourier non-circular gear mechanism, the radial balance is good, and the non-constant speed transmission is a rotary motion, so the operation is stable and reliable, the radial working load is balanced, and the pulsation is controllable Good performance; many blades, large displacement, the inner surface of the pump casing and the shape of the blades are simple, and the volumetric efficiency is high.
本实用新型的核心机构为两对不同安装相位的傅里叶非圆齿轮,部件少、结构紧凑。The core mechanism of the utility model is two pairs of Fourier non-circular gears with different installation phases, with few parts and compact structure.
附图说明Description of drawings
图1为本实用新型的机构运动简图;Fig. 1 is a schematic diagram of the mechanism movement of the utility model;
图2为本实用新型中差速泵部件的整体结构剖视图;Figure 2 is a sectional view of the overall structure of the differential pump components in the utility model;
图3为本实用新型中傅里叶非圆齿轮在初始安装位置时的啮合关系示意图;Fig. 3 is a schematic diagram of the meshing relationship of Fourier non-circular gears in the initial installation position in the utility model;
图4为本实用新型的叶片极限位置示意图;Fig. 4 is the schematic diagram of the limit position of the blade of the present utility model;
图5-1为本实用新型排量最大时的瞬时流量图;Fig. 5-1 is the instantaneous flow diagram when the displacement of the utility model is maximum;
图5-2为本实用新型排量最大时的傅里叶非圆齿轮节曲线啮合图;Fig. 5-2 is the meshing diagram of the Fourier non-circular gear pitch curve when the displacement of the utility model is maximum;
图6-1为本实用新型排量最小时的瞬时流量图;Fig. 6-1 is the instantaneous flow diagram when the displacement of the utility model is minimum;
图6-2为本实用新型排量最小时的傅里叶非圆齿轮节曲线啮合图;Fig. 6-2 is the meshing diagram of the Fourier non-circular gear pitch curve when the displacement of the utility model is the minimum;
图7-1为本实用新型用于多泵并联时的瞬时流量图;Fig. 7-1 is the instantaneous flow diagram when the utility model is used in parallel connection of multiple pumps;
图7-2为本实用新型用于多泵并联时的傅里叶非圆齿轮节曲线啮合图。Fig. 7-2 is the meshing diagram of the Fourier non-circular gear pitch curve when the utility model is used in parallel connection of multiple pumps.
图中:1、驱动齿轮箱,2、输入轴,3、输出轴,4、第一傅里叶非圆齿轮,5、第二傅里叶非圆齿轮,6、第一共轭傅里叶非圆齿轮,7、第二共轭傅里叶非圆齿轮,8、轴套,9、联轴器,10、电机,11、泵壳,11-1、第一排液口,11-2、第一吸液口,11-3、第二排液口,11-4、第二吸液口,12、第一叶轮,13、第二叶轮,14、单向单向阀。In the figure: 1. Drive gearbox, 2. Input shaft, 3. Output shaft, 4. First Fourier non-circular gear, 5. Second Fourier non-circular gear, 6. First conjugate Fourier Non-circular gear, 7. Second conjugate Fourier non-circular gear, 8. Shaft sleeve, 9. Coupling, 10. Motor, 11. Pump casing, 11-1, First liquid discharge port, 11-2 , the first liquid suction port, 11-3, the second liquid discharge port, 11-4, the second liquid suction port, 12, the first impeller, 13, the second impeller, 14, one-way check valve.
具体实施方式Detailed ways
下面结合附图及实施例对本实用新型作进一步说明。Below in conjunction with accompanying drawing and embodiment the utility model is further described.
如图1和2所示,傅里叶非圆齿轮驱动的四叶片差速泵包括驱动部件和差速泵部件。As shown in Figures 1 and 2, a four-blade differential pump driven by a Fourier non-circular gear includes a driving part and a differential pump part.
驱动部件包括驱动齿轮箱1、输入轴2、输出轴3、第一傅里叶非圆齿轮4、第二傅里叶非圆齿轮5、第一共轭傅里叶非圆齿轮6、第二共轭傅里叶非圆齿轮7和轴套8。电机10经过联轴器9将动力传给输入轴2,输入轴2通过两个轴承支撑在驱动齿轮箱1的两侧壁;第一傅里叶非圆齿轮4和第二傅里叶非圆齿轮5均固定安装在输入轴2上;输出轴3的两端分别通过轴承支撑在驱动齿轮箱1和泵壳11的箱壁上,第一共轭傅里叶非圆齿轮6固定安装在输出轴3上,并与第一傅里叶非圆齿轮4啮合;第二共轭傅里叶非圆齿轮7和第二叶轮13都固结在轴套8上,轴套8活套在输出轴3上;第二共轭傅里叶非圆齿轮7与第二傅里叶非圆齿轮5啮合。The drive components include a drive gearbox 1, an input shaft 2, an output shaft 3, a first Fourier non-circular gear 4, a second Fourier non-circular gear 5, a first conjugate Fourier non-circular gear 6, a second Conjugate Fourier non-circular gear 7 and shaft sleeve 8 . The motor 10 transmits power to the input shaft 2 through the coupling 9, and the input shaft 2 is supported on both side walls of the drive gearbox 1 through two bearings; the first Fourier non-circular gear 4 and the second Fourier non-circular gear The gears 5 are all fixedly installed on the input shaft 2; the two ends of the output shaft 3 are respectively supported on the box walls of the drive gearbox 1 and the pump casing 11 through bearings, and the first conjugate Fourier non-circular gear 6 is fixedly installed on the output shaft. on the shaft 3, and meshes with the first Fourier non-circular gear 4; the second conjugate Fourier non-circular gear 7 and the second impeller 13 are fixed on the shaft sleeve 8, and the shaft sleeve 8 is looped on the output shaft 3 above; the second conjugate Fourier non-circular gear 7 meshes with the second Fourier non-circular gear 5 .
差速泵部件包括泵壳11、第一叶轮12、第二叶轮13和单向泄压阀14;泵壳11沿圆周方向依次开设有第一排液口11-1、第一吸液口11-2、第二排液口11-3和第二吸液口11-4;第一排液口11-1与第二排液口11-3对称设置,第一吸液口11-2与第二吸液口11-4对称设置;第一叶轮12固定在输出轴3上;第一叶轮12和第二叶轮13均对称设置有两片叶片;沿圆周方向,第一叶轮12的叶片与第二叶轮13的叶片相间设置;所有叶片内部均安装一个单向泄压阀14,单向泄压阀14方向与叶片转动方向一致。The differential pump components include a pump casing 11, a first impeller 12, a second impeller 13 and a one-way pressure relief valve 14; the pump casing 11 is sequentially provided with a first liquid discharge port 11-1 and a first liquid suction port 11 along the circumferential direction -2. The second liquid discharge port 11-3 and the second liquid suction port 11-4; the first liquid discharge port 11-1 and the second liquid discharge port 11-3 are symmetrically arranged, and the first liquid suction port 11-2 is connected to the The second liquid suction port 11-4 is arranged symmetrically; the first impeller 12 is fixed on the output shaft 3; the first impeller 12 and the second impeller 13 are all symmetrically provided with two blades; along the circumferential direction, the blades of the first impeller 12 and The blades of the second impeller 13 are arranged alternately; a one-way pressure relief valve 14 is installed inside all the blades, and the direction of the one-way pressure relief valve 14 is consistent with the rotation direction of the blades.
如图3所示,第一傅里叶非圆齿轮4和第二傅里叶非圆齿轮5的结构完全一致,第一共轭傅里叶非圆齿轮6和第二共轭傅里叶非圆齿轮7的结构完全一致,第一傅里叶非圆齿轮4、第二傅里叶非圆齿轮5、第一共轭傅里叶非圆齿轮6和第二共轭傅里叶非圆齿轮7均为二阶非圆齿轮;第一傅里叶非圆齿轮4的初始安装相位角为θ1,第二傅里叶非圆齿轮5的初始安装相位角为θ2;第一傅里叶非圆齿轮4与第二傅里叶非圆齿轮5、第一共轭傅里叶非圆齿轮6与第二共轭傅里叶非圆齿轮7的初始安装相位差均为θ1-θ2,其值为90°,实现第一叶轮12和第二叶轮13的差速转动,使得差速泵封闭腔的容积周期性变化,在第一排液口11-1和第二排液口11-3产生排液,在第一吸液口11-2和第二吸液口11-4产生吸液。由于傅里叶非圆齿轮的非匀速传动是连续的,在封闭腔处于完全密闭时,叶片仍有差速转动,这将使封闭腔压力超过限定值,单向泄压阀14将邻近封闭腔打通泄压,防止困液。As shown in Figure 3, the structures of the first Fourier non-circular gear 4 and the second Fourier non-circular gear 5 are exactly the same, and the first conjugate Fourier non-circular gear 6 and the second conjugate Fourier non-circular gear The structure of the circular gear 7 is exactly the same, the first Fourier non-circular gear 4, the second Fourier non-circular gear 5, the first conjugate Fourier non-circular gear 6 and the second conjugate Fourier non-circular gear 7 are second-order non-circular gears; the initial installation phase angle of the first Fourier non-circular gear 4 is θ 1 , and the initial installation phase angle of the second Fourier non-circular gear 5 is θ 2 ; the first Fourier The initial installation phase difference between the non-circular gear 4 and the second Fourier non-circular gear 5, the first conjugate Fourier non-circular gear 6 and the second conjugate Fourier non-circular gear 7 is θ 1 -θ 2 , whose value is 90°, realizes the differential rotation of the first impeller 12 and the second impeller 13, so that the volume of the closed chamber of the differential pump changes periodically, at the first discharge port 11-1 and the second discharge port 11 -3 produces discharge, and produces suction at the first liquid suction port 11-2 and the second liquid suction port 11-4. Since the non-uniform speed transmission of the Fourier non-circular gear is continuous, when the closed cavity is completely sealed, the blades still rotate at a differential speed, which will cause the pressure in the closed cavity to exceed the limit value, and the one-way pressure relief valve 14 will be adjacent to the closed cavity Open up and release pressure to prevent trapped liquid.
该傅里叶非圆齿轮驱动的四叶片差速泵的工作原理:The working principle of the four-blade differential pump driven by Fourier non-circular gears:
电机10通过联轴器9和输入轴2将动力传给第一傅里叶非圆齿轮4和第二傅里叶非圆齿轮5。第一傅里叶非圆齿轮4与第一共轭傅里叶非圆齿轮6啮合,第二傅里叶非圆齿轮5与第二共轭傅里叶非圆齿轮7啮合,第一共轭傅里叶非圆齿轮6将动力通过输出轴3传给第一叶轮12,第二共轭傅里叶非圆齿轮7将动力通过轴套8传给第二叶轮13。两对傅里叶非圆齿轮副的安装相位不同,实现第一叶轮12与第二叶轮13的差速转动,从而实现吸液和排液。The motor 10 transmits power to the first Fourier non-circular gear 4 and the second Fourier non-circular gear 5 through the coupling 9 and the input shaft 2 . The first Fourier non-circular gear 4 meshes with the first conjugate Fourier non-circular gear 6, the second Fourier non-circular gear 5 meshes with the second conjugate Fourier non-circular gear 7, and the first conjugate The Fourier non-circular gear 6 transmits power to the first impeller 12 through the output shaft 3 , and the second conjugate Fourier non-circular gear 7 transmits power to the second impeller 13 through the shaft sleeve 8 . The installation phases of the two pairs of Fourier non-circular gear pairs are different to realize the differential rotation of the first impeller 12 and the second impeller 13, thereby realizing liquid suction and liquid discharge.
根据泵的结构,给定第一傅里叶非圆齿轮4与第一共轭傅里叶非圆齿轮6的中心距初值a0,再根据节曲线封闭条件和啮合条件,采用进退法搜索获得中心距a的精确值。具体计算如下:According to the structure of the pump, the initial value a 0 of the center distance between the first Fourier non-circular gear 4 and the first conjugate Fourier non-circular gear 6 is given, and then according to the closed condition of the pitch curve and the meshing condition, the advance and retreat method is used to search Get the exact value of the center distance a. The specific calculation is as follows:
第一傅里叶非圆齿轮4的节曲线表达式为:The pitch curve expression of the first Fourier non-circular gear 4 is:
其中,a1、a2、b1和b2为傅里叶函数的参数,n为第一傅里叶非圆齿轮4的阶数,取值为2;为第一傅里叶非圆齿轮4的转角,为第一傅里叶非圆齿轮4对应转角的向径。Among them, a 1 , a 2 , b 1 and b 2 are the parameters of the Fourier function, n is the order of the first Fourier non-circular gear 4, and the value is 2; is the rotation angle of the first Fourier non-circular gear 4, Corresponding rotation angle for the first Fourier non-circular gear 4 radial direction.
根据非圆齿轮啮合原理,第一傅里叶非圆齿轮4旋转360°时,第一共轭傅里叶非圆齿轮6的角位移:According to the principle of non-circular gear meshing, when the first Fourier non-circular gear 4 rotates 360°, the angular displacement of the first conjugate Fourier non-circular gear 6 is:
第一傅里叶非圆齿轮4和第一共轭傅里叶非圆齿轮6均为二阶非圆齿轮,因此,第一傅里叶非圆齿轮4旋转360°时,第一共轭傅里叶非圆齿轮6也旋转360°,可得计算中心距a的迭代式:Both the first Fourier non-circular gear 4 and the first conjugate Fourier non-circular gear 6 are second-order non-circular gears. Therefore, when the first Fourier non-circular gear 4 rotates 360°, the first conjugate Fourier non-circular gear Rifle non-circular gear 6 also rotates 360°, and the iterative formula for calculating the center distance a can be obtained:
取中心距初值a0采用进退法搜索算出中心距a的精确值。Take the initial value of the center distance a 0 and use the advance and retreat method to search and calculate the exact value of the center distance a.
求得中心距a的精确值后,可求解泵壳的排、吸液口中心位置,四叶片差速泵的排量、瞬时流量以及最小容积、最大容积困液压力变化表达式。具体计算如下:After obtaining the accurate value of the center distance a, the center position of the discharge and suction ports of the pump casing, the displacement, instantaneous flow rate, and the minimum volume and maximum volume trapping pressure change expressions of the four-blade differential pump can be solved. The specific calculation is as follows:
第一傅里叶非圆齿轮4与第一共轭傅里叶非圆齿轮6的传动比为:The transmission ratio of the first Fourier non-circular gear 4 and the first conjugate Fourier non-circular gear 6 is:
第二傅里叶非圆齿轮5与第二共轭傅里叶非圆齿轮7的传动比为:The transmission ratio of the second Fourier non-circular gear 5 and the second conjugate Fourier non-circular gear 7 is:
其中,θ为第一傅里叶非圆齿轮4与第二傅里叶非圆齿轮5的初始安装相位差,取值为90°。Wherein, θ is the initial installation phase difference between the first Fourier non-circular gear 4 and the second Fourier non-circular gear 5, and the value is 90°.
令第一傅里叶非圆齿轮4与第一共轭傅里叶非圆齿轮6的传动比i21等于第二傅里叶非圆齿轮5与第二共轭傅里叶非圆齿轮7的传动比i43,可求得四个不同的转角转角取最小值时,第一傅里叶非圆齿轮4的角位移为第二傅里叶非圆齿轮5的角位移为第一叶轮12和第二叶轮13的转角分别为:Make the transmission ratio i 21 of the first Fourier non-circular gear 4 and the first conjugate Fourier non-circular gear 6 equal to that of the second Fourier non-circular gear 5 and the second conjugate Fourier non-circular gear 7 transmission ratio i 43 , four different corners can be obtained corner Take the minimum , the angular displacement of the first Fourier non-circular gear 4 is The angular displacement of the second Fourier non-circular gear 5 is The rotation angles of the first impeller 12 and the second impeller 13 are respectively:
如图4所示,泵壳的第一排液口中心位置角第一吸液口中心位置角第二排液口中心位置角ψ排2=ψ排1+π、第二吸液口中心位置角ψ吸2=ψ吸1+π;第一排液口、第一吸液口、第二排液口和第二吸液口的大小均比叶片的叶片角θ叶小2°;第一叶轮12及第二叶轮13的叶片角θ叶的取值均为45°。As shown in Figure 4, the center position angle of the first discharge port of the pump casing Center position angle of the first liquid suction port The center position angle of the second liquid discharge port ψ row 2 = ψ row 1 + π, the center position angle of the second liquid suction port ψ suction 2 = ψ suction 1 + π; the first liquid discharge port, the first liquid suction port, the second liquid suction port The sizes of the liquid discharge port and the second liquid suction port are 2° smaller than the vane angle θ lobe of the blade; the value of the vane angle θ lobe of the first impeller 12 and the second impeller 13 is both 45°.
相邻两叶片最小张角此时该封闭腔为最小容积:Minimum opening angle of two adjacent blades At this time, the closed cavity has the minimum volume:
其中,R为叶片半径,取值为90mm;r为叶轮轴半径,取值为20mm;h为叶片厚度,取值为50mm。Among them, R is the blade radius, the value is 90mm; r is the impeller shaft radius, the value is 20mm; h is the blade thickness, the value is 50mm.
相邻两叶片最大张角此时该封闭腔为最大容积:Maximum opening angle of two adjacent blades At this time, the closed cavity has the maximum volume:
四叶片差速泵的排量计算表达式:The displacement calculation expression of the four-blade differential pump:
Q=4×(Vmax-Vmin)=2(Δψmax-Δψmin)(R2-r2)×h×10-6 Q=4×(V max -V min )=2(Δψ max -Δψ min )(R 2 -r 2 )×h×10 -6
四叶片差速泵的瞬时流量计算表达式:The instantaneous flow calculation expression of the four-blade differential pump:
其中,V为排液腔容积;ω为第一傅里叶非圆齿轮4及第二傅里叶非圆齿轮5的角速度,其计算式为 Among them, V is the volume of the liquid discharge chamber; ω is the angular velocity of the first Fourier non-circular gear 4 and the second Fourier non-circular gear 5, and its calculation formula is
四叶片差速泵的最小容积、最大容积困液压力变化计算表达式:Calculation expressions of the minimum volume and maximum volume trapped liquid pressure changes of the four-blade differential pump:
其中K为液体的弹性模量。where K is the elastic modulus of the liquid.
通过计算四叶片差速泵的最小容积、最大容积困液压力变化,可为选用叶片内的单向泄压阀提供参考,一般用于确定单向泄压阀的上限值。By calculating the minimum volume and maximum volume of the four-blade differential pump, the trapped liquid pressure can provide a reference for the selection of the one-way pressure relief valve in the vane, and is generally used to determine the upper limit of the one-way pressure relief valve.
如图5-1和5-2所示,第一傅里叶非圆齿轮4的节曲线表达式中傅里叶函数的参数为a1=5.025、a2=2.568、b1=0.013、b2=0.013,第一傅里叶非圆齿轮4的阶数n=2,中心距初值a0=15mm,可求得中心距a为32.3mm,第一傅里叶非圆齿轮4的转角取得最小值46°,此时,第一傅里叶非圆齿轮4的角位移为46°,第二傅里叶非圆齿轮5的角位移为136°,第一叶轮12的转角ψ1为64°,第二叶轮13的转角ψ2为115°,第一排液口中心位置角ψ排1为86.5°、第一吸液口中心位置角ψ吸1为137.5°、第二排液口中心位置角ψ排2为266.5°、第二吸液口中心位置角ψ吸2为317.5°。该参数下,四叶片差速泵的排量最大,其值为10305.9ml,此时瞬时流量脉动明显,第一傅里叶非圆齿轮4、第二傅里叶非圆齿轮5、第一共轭傅里叶非圆齿轮6和第二共轭傅里叶非圆齿轮7的节曲线均出现明显内凹。As shown in Figures 5-1 and 5-2, the parameters of the Fourier function in the pitch curve expression of the first Fourier non-circular gear 4 are a 1 =5.025, a 2 =2.568, b 1 =0.013, b 2 =0.013, the order of the first Fourier non-circular gear 4 is n=2, the initial value of the center distance a 0 =15mm, the center distance a can be obtained as 32.3mm, and the rotation angle of the first Fourier non-circular gear 4 Obtain the minimum value of 46°, at this time, the angular displacement of the first Fourier non-circular gear 4 is 46°, the angular displacement of the second Fourier non-circular gear 5 is 136°, the rotation angle ψ 1 of the first impeller 12 is 64°, the rotation angle ψ 2 of the second impeller 13 is 115°, the center position angle ψ row 1 of the first liquid discharge port is 86.5°, and the center position of the first liquid suction port The angle ψsuction 1 is 137.5°, the central position angle ψrow 2 of the second liquid discharge port is 266.5°, and the central position angle ψsuction 2 of the second liquid suction port is 317.5°. Under this parameter, the displacement of the four-blade differential pump is the largest, and its value is 10305.9ml. At this time, the instantaneous flow pulsation is obvious, the first Fourier non-circular gear 4, the second Fourier non-circular gear 5, the first common The pitch curves of the yoke Fourier non-circular gear 6 and the second conjugate Fourier non-circular gear 7 are obviously concave.
如图6-1和6-2所示,第一傅里叶非圆齿轮4的节曲线表达式中傅里叶函数的参数为a1=2、a2=2.568、b1=0.013、b2=0.013,第一傅里叶非圆齿轮4的阶数n=2,中心距初值a0=20mm,可求得中心距a为40.5mm,第一傅里叶非圆齿轮4的转角取得最小值46°,此时,第一傅里叶非圆齿轮4的角位移为46°,第二傅里叶非圆齿轮5的角位移为136°,第一叶轮12的转角ψ1为51°,第二叶轮13的转角ψ2为128°,第一排液口中心位置角ψ排1为73.5°、第一吸液口中心位置角ψ吸1为150.5°、第二排液口中心位置角ψ排2为253.5°、第二吸液口中心位置角ψ吸2为330.5°。该参数下,四叶片差速泵的排量最小,其值为3318.25ml,此时瞬时流量曲线平缓,第一傅里叶非圆齿轮4、第二傅里叶非圆齿轮5、第一共轭傅里叶非圆齿轮6和第二共轭傅里叶非圆齿轮7的节曲线均有内凹。As shown in Figures 6-1 and 6-2, the parameters of the Fourier function in the pitch curve expression of the first Fourier non-circular gear 4 are a 1 =2, a 2 =2.568, b 1 =0.013, b 2 =0.013, the order of the first Fourier non-circular gear 4 is n=2, the initial value of the center distance a 0 =20mm, the center distance a can be obtained as 40.5mm, and the rotation angle of the first Fourier non-circular gear 4 Obtain the minimum value of 46°, at this time, the angular displacement of the first Fourier non-circular gear 4 is 46°, the angular displacement of the second Fourier non-circular gear 5 is 136°, the rotation angle ψ 1 of the first impeller 12 is 51°, the rotation angle ψ 2 of the second impeller 13 is 128°, the center position angle ψ row 1 of the first liquid discharge port is 73.5°, and the center position of the first liquid suction port The angle ψsuction 1 is 150.5°, the center position angle ψrow 2 of the second liquid discharge port is 253.5°, and the center position angle ψsuction 2 of the second liquid suction port is 330.5°. Under this parameter, the displacement of the four-blade differential pump is the smallest, and its value is 3318.25ml. At this time, the instantaneous flow curve is gentle, and the first Fourier non-circular gear 4, the second Fourier The pitch curves of the yoke Fourier non-circular gear 6 and the second conjugate Fourier non-circular gear 7 are concave.
如图7-1和7-2所示,第一傅里叶非圆齿轮4的节曲线表达式中傅里叶函数的参数为a1=6、a2=2、b1=0.013、b2=0.013,第一傅里叶非圆齿轮4的阶数n=2,中心距初值a0=20mm,可求得中心距a为42.1mm,第一傅里叶非圆齿轮4的转角取得最小值46°,此时,第一傅里叶非圆齿轮4的角位移为46°,第二傅里叶非圆齿轮5的角位移为136°,第一叶轮12的转角ψ1为62°,第二叶轮13的转角ψ2为118°,第一排液口中心位置角ψ排1为84.5°、第一吸液口中心位置角ψ吸1为140.5°、第二排液口中心位置角ψ排2为264.5°、第二吸液口中心位置角ψ吸2为320.5°。该参数下,四叶片差速泵的排量为9123.91ml,此时瞬时流量曲线顶部比底部平缓,适合多泵并联,第一傅里叶非圆齿轮4、第二傅里叶非圆齿轮5、第一共轭傅里叶非圆齿轮6和第二共轭傅里叶非圆齿轮7的节曲线内凹不明显,可以获得较好的齿轮传递特性和四叶片差速泵的性能。As shown in Figures 7-1 and 7-2, the parameters of the Fourier function in the pitch curve expression of the first Fourier non-circular gear 4 are a 1 =6, a 2 =2, b 1 =0.013, b 2 =0.013, the order of the first Fourier non-circular gear 4 is n=2, the initial value of the center distance a 0 =20mm, the center distance a can be obtained as 42.1mm, and the rotation angle of the first Fourier non-circular gear 4 Obtain the minimum value of 46°, at this time, the angular displacement of the first Fourier non-circular gear 4 is 46°, the angular displacement of the second Fourier non-circular gear 5 is 136°, the rotation angle ψ 1 of the first impeller 12 is 62°, the rotation angle ψ 2 of the second impeller 13 is 118°, the center position angle ψ row 1 of the first liquid discharge port is 84.5°, and the center position of the first liquid suction port The angle ψsuction 1 is 140.5°, the center position angle ψrow 2 of the second liquid discharge port is 264.5°, and the center position angle ψsuction 2 of the second liquid suction port is 320.5°. Under this parameter, the displacement of the four-blade differential pump is 9123.91ml. At this time, the top of the instantaneous flow curve is gentler than the bottom, which is suitable for multi-pump parallel connection. The first Fourier non-circular gear 4, the second Fourier non-circular gear 5 , The pitch curves of the first conjugated Fourier non-circular gear 6 and the second conjugate Fourier non-circular gear 7 are not obviously concave, and better gear transmission characteristics and performance of the four-blade differential pump can be obtained.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420053198.5U CN203730300U (en) | 2014-01-27 | 2014-01-27 | Fourier non-circular gear-driven four-blade differential pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420053198.5U CN203730300U (en) | 2014-01-27 | 2014-01-27 | Fourier non-circular gear-driven four-blade differential pump |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203730300U true CN203730300U (en) | 2014-07-23 |
Family
ID=51200379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420053198.5U Expired - Lifetime CN203730300U (en) | 2014-01-27 | 2014-01-27 | Fourier non-circular gear-driven four-blade differential pump |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203730300U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103742406A (en) * | 2014-01-27 | 2014-04-23 | 浙江理工大学 | Four-vane differential velocity pump driven by Fourier noncircular gears |
-
2014
- 2014-01-27 CN CN201420053198.5U patent/CN203730300U/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103742406A (en) * | 2014-01-27 | 2014-04-23 | 浙江理工大学 | Four-vane differential velocity pump driven by Fourier noncircular gears |
CN103742406B (en) * | 2014-01-27 | 2015-07-22 | 浙江理工大学 | Four-vane differential velocity pump driven by Fourier noncircular gears |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103758751B (en) | Four-blade differential pump driven by elliptic non-circular gears | |
CN104455313B (en) | High-order denatured eccentric gear and the method for designing of conjugate non-circular gear pair thereof | |
CN103742406B (en) | Four-vane differential velocity pump driven by Fourier noncircular gears | |
CN102367788A (en) | Staggered phase parallel combined plunger-type hydraulic pump | |
CN203702541U (en) | Four-blade differential pump driven by sinusoidal non-circular gears | |
CN203730300U (en) | Fourier non-circular gear-driven four-blade differential pump | |
CN203730302U (en) | Fourier non-circular gear-driven eight-blade differential pump | |
CN103758748B (en) | The quaterfoil differential pump that a kind of sinusoidal non-circular gear drives | |
CN203702544U (en) | Four-vane differential pump driven by elliptic non-circular gear | |
CN203730297U (en) | Elliptic non-circular gear-driven six-blade differential pump | |
CN203730296U (en) | Fourier non-circular gear-driven six-blade differential pump | |
CN105864040B (en) | The oval gear pump of oval gear speed changer driving | |
CN103742404B (en) | Six-blade differential pump driven by elliptic non-circular gears | |
CN203730301U (en) | Elliptic non-circular gear-driven eight-blade differential pump | |
CN203702542U (en) | Six-blade differential pump driven by sinusoidal non-circular gears | |
CN103758757B (en) | Eight blade differential pumps that a kind of Fourier's noncircular gear drives | |
CN203702543U (en) | Eight-blade differential pump driven by sinusoidal non-circular gears | |
CN203730298U (en) | Pascal non-circular gear-driven four-blade differential pump | |
CN103758750B (en) | Six-blade differential pump driven by Fourier noncircular gears | |
CN103758749B (en) | Sinusoidal non-circular gear driven six-vane differential velocity pump | |
CN203730299U (en) | Pascal non-circular gear-driven eight-blade differential pump | |
CN103758755B (en) | An eight-vane differential pump driven by sinusoidal non-circular gears | |
CN203730303U (en) | Pascal non-circular gear-driven six-blade differential pump | |
CN103742405B (en) | Eight blade differential pumps that a kind of oval noncircular gear drives | |
CN103758752B (en) | Eight blade differential pumps that a kind of Bath main officer of Tibet noncircular gear drives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20140723 Effective date of abandoning: 20150722 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20140723 Effective date of abandoning: 20150722 |
|
RGAV | Abandon patent right to avoid regrant |