CN203661069U - A gain spectrum flattening Raman optical fiber amplifier based on tellurite-based optical fibers - Google Patents
A gain spectrum flattening Raman optical fiber amplifier based on tellurite-based optical fibers Download PDFInfo
- Publication number
- CN203661069U CN203661069U CN201420009099.7U CN201420009099U CN203661069U CN 203661069 U CN203661069 U CN 203661069U CN 201420009099 U CN201420009099 U CN 201420009099U CN 203661069 U CN203661069 U CN 203661069U
- Authority
- CN
- China
- Prior art keywords
- optical
- optical fiber
- pump laser
- gain spectrum
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 96
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 29
- 238000001228 spectrum Methods 0.000 title claims abstract description 20
- SITVSCPRJNYAGV-UHFFFAOYSA-L tellurite Chemical compound [O-][Te]([O-])=O SITVSCPRJNYAGV-UHFFFAOYSA-L 0.000 title abstract 2
- 230000003287 optical effect Effects 0.000 claims abstract description 72
- 238000006073 displacement reaction Methods 0.000 claims 2
- 238000010606 normalization Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 230000008030 elimination Effects 0.000 abstract 3
- 238000003379 elimination reaction Methods 0.000 abstract 3
- 239000000835 fiber Substances 0.000 description 16
- 229910052714 tellurium Inorganic materials 0.000 description 9
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Landscapes
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域 technical field
本实用新型涉及光通信技术领域,特别是一种基于碲基光纤的增益谱平坦拉曼光纤放大器。 The utility model relates to the technical field of optical communication, in particular to a Raman optical fiber amplifier with a flat gain spectrum based on a tellurium-based optical fiber. the
背景技术 Background technique
众所周知,光在长距离传输时,由于受发射功率、接收机灵敏度、光纤线路衰减,以及色散等因素的影响和限制,使得光脉冲从光发射机输出经光纤传输一定距离后,其幅度会受到衰减,波形也会出现失真。因此,要进行长距离的信号传输,就需要在光信号传输一定距离后加入放大器,以放大衰减的信号,使光脉冲得到再生。 As we all know, when light is transmitted over a long distance, due to the influence and limitation of factors such as transmit power, receiver sensitivity, fiber line attenuation, and dispersion, the amplitude of the light pulse output from the optical transmitter will be affected by the optical fiber after a certain distance. Attenuation, the waveform will also be distorted. Therefore, in order to carry out long-distance signal transmission, it is necessary to add an amplifier after the optical signal has been transmitted for a certain distance to amplify the attenuated signal and regenerate the optical pulse. the
掺铒光纤放大器EDFA(Erbium Doped Fiber Amplifier)实用新型之前,由于不能直接放大光信号,所有的光纤通信系统都只能采用光-电-光中继方式。即先将光信号变为电信号,在电域内进行放大、再生等信息处理,然后再变成光信号在光纤中传输,这种中继方式装置复杂、成本高、传输质量比较低。掺铒光纤放大器取代传统的光-电-光中继方式,实现了一根光纤中多路光信号的同时放大,大大降低了光中继的成本;同时可与传输光纤实现良好的耦合,具有高增益低噪声等优点。因此成功地应用于波分复用光通信系统,极大地增加了光纤中可传输的信息容量和传输距离。 Before the Erbium Doped Fiber Amplifier EDFA (Erbium Doped Fiber Amplifier) utility model, all optical fiber communication systems can only use the optical-electrical-optical relay mode because they cannot directly amplify optical signals. That is, the optical signal is first converted into an electrical signal, and information processing such as amplification and regeneration is performed in the electrical domain, and then it is converted into an optical signal for transmission in an optical fiber. This relay method has complex devices, high cost, and relatively low transmission quality. The erbium-doped fiber amplifier replaces the traditional optical-electrical-optical relay mode, and realizes the simultaneous amplification of multiple optical signals in one optical fiber, which greatly reduces the cost of optical relay; at the same time, it can achieve good coupling with the transmission optical fiber, which has the advantages of Advantages such as high gain and low noise. Therefore, it is successfully applied to the wavelength division multiplexing optical communication system, which greatly increases the information capacity and transmission distance that can be transmitted in the optical fiber. the
然而在进一步开发整个光纤低损耗区域带宽资源的进程中,传统掺铒光纤放大器的1550nm附近约30nm的带宽就远远不够用了;而基于碲基光纤的拉曼放大器拥有50nm的增益带宽,只要选择合适的泵浦光,便可以放大任意波段的 信号,并且其输出增益高、增益平坦度好、响应时间快、饱和输出功率大、噪声指数低且易于耦合,这对密集波分复用系统扩容升级、降低成本和增加业务等具有十分重要的技术经济价值。 However, in the process of further developing the bandwidth resources in the low-loss area of the entire fiber, the bandwidth of about 30nm near 1550nm of the traditional erbium-doped fiber amplifier is far from enough; while the Raman amplifier based on tellurium-based fiber has a gain bandwidth of 50nm, as long as Selecting the appropriate pump light can amplify signals of any band, and its output gain is high, the gain flatness is good, the response time is fast, the saturated output power is large, the noise index is low, and it is easy to couple. Capacity expansion and upgrading, cost reduction and business increase have very important technical and economic value. the
实用新型内容 Utility model content
本实用新型的目的是要提供一种基于碲基光纤的增益谱平坦拉曼光纤放大器,其结构简单,设计合理,实现方便且成本低,输出增益高、增益平坦度好、响应时间快、饱和输出功率大、噪声指数低且易于耦合,实用性强,使用效果好,便于推广使用。 The purpose of this utility model is to provide a gain-spectrum flat Raman fiber amplifier based on tellurium-based fiber, which has simple structure, reasonable design, convenient implementation and low cost, high output gain, good gain flatness, fast response time, and low saturation The output power is large, the noise index is low, the coupling is easy, the practicability is strong, the use effect is good, and it is convenient to popularize and use. the
为达到上述目的,本实用新型是按照以下技术方案实施的: In order to achieve the above object, the utility model is implemented according to the following technical solutions:
一种基于碲基光纤的增益谱平坦拉曼光纤放大器,连接于光发射机和光接收机,包括第一泵浦激光器、第一合波器、光隔离器、带阻滤波器、第二泵浦激光器、第二合波器和分波器,所述光发射机和光接收机设置为多个,多个光发射机的输出端对应地通过第一光纤与第一合波器的输入端连接,所述第一泵浦激光器的输出端通过第一段第二光纤与第一合波器的输入端连接,所述第一合波器的输出端通过用于第一段第三光纤连接光隔离器的输入端,所述光隔离器的输出端通过第四光纤连接带阻滤波器的输入端,所述带阻滤波器的输出端通过第五光纤连接第二合波器的输入端,所述第二泵浦激光器的输出端通过第二段第二光纤与所述第二合波器的输入端连接,所述第二合波器的输出端通过第二段第三光纤连接分波器的输入端,所述分波器的输出端对应通过多根第六光纤与多个光接收机的输入端相连;所述多个光发射机的中心波长各不相同且多个所述光发射机中任意一个的中心波长λi均大于所述第一泵浦激光器的中心波长λ1P和所述第二泵浦激光器的中心波长λ2P,且的取值范围为300cm-1~ 500cm-1,的取值范围为420cm-1~620cm-1,其中,i为信道数且i的取值为1~N,N为信号光总数且为整数。 A Gain Spectrum Flat Raman Fiber Amplifier Based on Tellurium Fiber, Connected to Optical Transmitter and Optical Receiver, Comprising First Pumping Laser, First Combiner, Optical Isolator, Band Stop Filter, Second Pumping A laser, a second multiplexer and a multiplexer, the optical transmitter and the optical receiver are arranged in multiples, and the output ends of the multiple optical transmitters are correspondingly connected to the input end of the first multiplexer through the first optical fiber, The output end of the first pump laser is connected to the input end of the first multiplexer through the first section of the second optical fiber, and the output end of the first multiplexer is optically isolated by connecting the first section of the third optical fiber The input end of the optical isolator, the output end of the optical isolator is connected to the input end of the band-stop filter through the fourth optical fiber, and the output end of the band-stop filter is connected to the input end of the second multiplexer through the fifth optical fiber, so The output end of the second pump laser is connected to the input end of the second wave combiner through the second section of the second optical fiber, and the output end of the second wave combiner is connected to the wave splitter through the second section of the third optical fiber The input end of the wave splitter is correspondingly connected to the input end of a plurality of optical receivers through a plurality of sixth optical fibers; the center wavelengths of the plurality of optical transmitters are different and a plurality of the optical transmitters The central wavelength λ i of any one of the lasers is greater than the central wavelength λ 1P of the first pump laser and the central wavelength λ 2P of the second pump laser, and The value range of is 300cm -1 ~ 500cm -1 , The value range of is from 420cm -1 to 620cm -1 , wherein, i is the number of channels and the value of i is 1 to N, and N is the total number of signal lights and is an integer.
作为本实用新型的进一步优选方案,所述多个光发射机中任意一个的中心波长λi与所述第一泵浦激光器的中心波长λ1P满足频移计算公式Δv=(1/λ1P)—(1/λi),其中,Δv为频移量且Δv的取值范围为300cm-1~500cm-1。 As a further preferred solution of the present utility model, the central wavelength λ i of any one of the plurality of optical transmitters and the central wavelength λ 1P of the first pump laser satisfy the frequency shift calculation formula Δv=(1/λ 1P ) —(1/λ i ), where Δv is the frequency shift and the value range of Δv is 300cm −1 to 500cm −1 .
作为本实用新型的进一步优选方案,所述多个光发射机中任意一个的中心波长λi与所述第二泵浦激光器的中心波长λ2P满足频移计算公式Δv=(1/λ2P)—(1/λi),其中,Δv为频移量且Δv的取值范围为420cm-1~620cm-1。 As a further preferred solution of the present utility model, the central wavelength λ i of any one of the plurality of optical transmitters and the central wavelength λ 2P of the second pump laser satisfy the frequency shift calculation formula Δv=(1/λ 2P ) —(1/λ i ), where Δv is the frequency shift and the value range of Δv is 420cm −1 to 620cm −1 .
作为本实用新型的进一步优选方案,所述第一段第三光纤和第二段第三光纤(6)均为碲基高非线性光纤,所述碲基高非线性光纤的拉曼增益谱在300cm-1~620cm-1的频移范围内归一化拉曼增益系数范围为0.82×10-12m/W~2.5×10-12m/W。 As a further preferred solution of the present invention, the first section of the third optical fiber and the second section of the third optical fiber (6) are all tellurium-based high nonlinear fibers, and the Raman gain spectrum of the tellurium-based high nonlinear fibers is The normalized Raman gain coefficient ranges from 0.82×10 -12 m/W to 2.5×10 -12 m/W within the frequency shift range of 300cm -1 to 620cm -1 .
作为本实用新型的进一步优选方案,所述带阻滤波器中心波长与第一泵浦激光器中心波长相同。 As a further preferred solution of the present invention, the center wavelength of the band-stop filter is the same as the center wavelength of the first pump laser. the
与现有技术相比,本实用新型结构简单,设计合理,实现方便且成本低,输出增益高、增益平坦度好、响应时间快、饱和输出功率大、噪声指数低且易于耦合,实用性强,使用效果好,便于推广使用。 Compared with the prior art, the utility model has the advantages of simple structure, reasonable design, convenient implementation and low cost, high output gain, good gain flatness, fast response time, large saturated output power, low noise index, easy coupling, and strong practicability , the use effect is good, and it is convenient to popularize and use. the
附图说明 Description of drawings
图1为本实用新型的原理框图; Fig. 1 is a block diagram of the utility model;
图中:1—第一光纤;2—第一段第二光纤;3—第一段第三光纤;4—第四光纤;5—第五光纤;6—第二段第三光纤;7—第六光纤;8—光发射机;9—第一泵浦激光器;10—第一合波器;11—光隔离器;12—带阻滤波器;13—第二 泵浦激光器;14—第二合波器;15—分波器;16—光接收机;17—第二段第二光纤; In the figure: 1—the first optical fiber; 2—the second optical fiber in the first section; 3—the third optical fiber in the first section; 4—the fourth optical fiber; 5—the fifth optical fiber; 6—the third optical fiber in the second section; 7— The sixth optical fiber; 8—optical transmitter; 9—the first pump laser; 10—the first multiplexer; 11—optical isolator; 12—band stop filter; 13—the second pump laser; 14—the first Two multiplexers; 15—demultiplexer; 16—optical receiver; 17—the second segment of the second optical fiber;
图2为本实用新型第三光纤的拉曼增益谱; Fig. 2 is the Raman gain spectrum of the third optical fiber of the utility model;
图3为本实用新型中信号光功率随光纤长度的变化规律图; Fig. 3 is the change law figure of signal light power with the length of optical fiber in the utility model;
图4为本实用新型光纤拉曼放大器各个信号光的输出增益图。 Fig. 4 is an output gain diagram of each signal light of the optical fiber Raman amplifier of the present invention. the
具体实施方式 Detailed ways
下面结合附图及其具体实施例对本实用新型作进一步描述,在此实用新型的示意性实施例以及说明用来解释本实用新型,但并不作为对本实用新型的限定。 The utility model will be further described below in conjunction with the accompanying drawings and specific embodiments thereof. The schematic embodiments and descriptions of the utility model are used to explain the utility model, but not as a limitation to the utility model. the
如图1所示的本实用新型的一种基于碲基光纤的增益谱平坦拉曼光纤放大器,连接于光发射机8和光接收机16,包括第一泵浦激光器9、第一合波器10、光隔离器11、带阻滤波器12、第二泵浦激光器13、第二合波器14和分波器15,所述光发射机8和光接收机16设置为多个,所述多个光发射机8的输出端通过第一光纤1与第一合波器10的输入端连接,所述第一泵浦激光器9的输出端通过第一段第二光纤2与所述第一合波器10的输入端连接,所述第一合波器10的输出端通过用于通过受激拉曼散射放大过程来进行对信号光放大的第一段第三光纤3连接有用于隔离反向传输光的光隔离器11,所述光隔离器11的输出端通过第四光纤4连接用于滤除掉第一泵浦激光器产生的连续激光的带阻滤波器12,所述带阻滤波器12的输出端通过第五光纤5连接有用于对第二泵浦激光器13产生的连续激光与经过放大后的信号光进行耦合的第二合波器14,所述第二泵浦激光器13的输出端通过第二段第二光纤17与所述第二合波器14的输入端连接,所述第二合波器14的输出端通过用于对第二合波器14输出的功率各不 相等的信号进行增益补偿的第二段第三光纤6连接用于输出功率相等信号的分波器15,所述分波器15输出端通过多根第六光纤7与多个光接收机16相连,多个所述光发射机8的中心波长各不相同且多个所述光发射机8中任意一个的中心波长λi均大于所述第一泵浦激光器9的中心波长λ1P和所述第二泵浦激光器13的中心波长λ2P,且的取值范围为300cm-1~500cm-1,的取值范围为420cm-1~620cm-1,其中,i为信道数且i的取值为1~N,N为信号光总数且为整数。
As shown in Figure 1, a kind of gain spectrum flat Raman fiber amplifier based on tellurium-based optical fiber of the present utility model is connected to
本实施例中所述多个所述光发射机8中任意一个的中心波长λi与所述第一泵浦激光器9的中心波长λ1P满足频移计算公式Δv=(1/λ1P)—(1/λi),其中,Δv为频移量且Δv的取值范围为300cm-1~500cm-1。
In this embodiment, the central wavelength λ i of any one of the plurality of
本实施例中所述的多个所述光发射机8中任意一个的中心波长λi与所述第二连续泵浦激光器13的中心波长λ2P满足频移计算公式Δv=(1/λ2P)—(1/λi),其中,Δv为频移量且Δv的取值范围为420cm-1~620cm-1。
The central wavelength λ i of any one of the multiple
本实施例中所述的第一段第三光纤3和第二段第三光纤6均为碲基高非线性光纤,所述碲基高非线性光纤的拉曼增益谱在300cm-1~620cm-1的频移范围内归一化拉曼增益系数范围为0.82×10-12m/W~2.5×10-12m/W。
The first section of the third
本实施例中所述的带阻滤波器12中心波长与第一泵浦激光器9中心波长相同。
The center wavelength of the band-
采用本实用新型进行光信号放大的方法,包括以下步骤: Adopt the utility model to carry out the method for optical signal amplification, comprise the following steps:
步骤一、选择中心波长为λ1P的第一泵浦激光器9,第一泵浦激光器9输出第一连续泵浦光并经过第一段第二光纤2传输到第一合波器10;本实施例中,选择中心波长为λ1P=1444.5nm、功率为1W的第一泵浦激光器9;
步骤二、根据频移计算公式Δv=(1/λ1P)—(1/λi)选择多个中心波长各不相同 的光发送机8,其中λi为多个所述光发射机器8中任意一个的中心波长,并将多个所述光发送机8输出多个中心波长各不相同的信号光并经多根第一光纤传输给第一合波器10;如图2,其中,Δv为频移量且Δv的取值范围为300cm-1~500cm-1,这个取值范围在拉曼增益谱内拉曼增益系数随频移先增大后减小;本实施例中,选取各光发送机8发送信号光的波长范围为1510nm~1557nm且各波长间隔为1nm,光功率均为0.01mW;
步骤三、通过第一合波器10将第一段第二光纤2传输的所述第一连续泵浦光和多根第一光纤1分别传输的多个信号光耦合输入到第一段第三光纤3中;
Step 3: Coupling the first continuous pump light transmitted by the first section of the second
步骤四、经第一合波器10输入的所述第一连续泵浦光和多个信号光在第一段第三光纤3中经过受激拉曼散射效应对多个信号光进行放大后输入到光隔离器11,然后经第四光纤4传输输入到带阻滤波器12中,第一连续泵浦光经带阻滤波器12被滤除掉;
Step 4: The first continuous pump light and multiple signal lights input through the
步骤五、根据频移计算公式Δv=(1/λ2P)—(1/λi)选择第二泵浦激光器13中心波长,其中λi为多个所述光发送机8中任意一个的中心波长,第二泵浦激光器13输出第二连续泵浦光并经过第二段第二光纤17传给第二合波器14,与经带阻滤波器12输出的波长经第二合波器14输入到第二段第三光纤6;如图2中,Δv为频移量且Δv的取值范围为420cm-1~620cm-1,这个取值范围在拉曼增益谱内拉曼增益系数随频移增大先减小再增大;本实施例中,第二泵浦激光器13中心波长为1419.9nm;
步骤六、经第二合波器14耦合输入到所述第二段第三光纤6中的第二连续泵浦光和多个信号光在第二段第三光纤6中经过受激拉曼散射效应对多个信号光进行增益补偿;
Step 6: The second continuous pump light and multiple signal lights coupled into the second segment of the third
步骤七、多个信号光在和第一泵浦激光器9产生的第一连续泵浦光经过第 一段第三光纤进行不同程度的放大,多个信号光在和第二泵浦激光器13产生的第二连续泵浦再经过第二段第三光纤进行增益补偿,使得多个所述信号光的光功率等到了等值的放大并传输给第二合波器14;本实施例中,所述第一段第三光纤3的长度0.34km,所述第二段第三光纤的长度为0.159km;由于在与第一段第三光纤3同种类的第二段第三光纤6中加入了中心波长与第一连续泵浦光波长不同的第二连续泵浦光,对第二泵浦激光器13波长的改变使得频移范围得到了改变,使得第二段第三光纤6中对信号的拉曼增益系数与第一段第三光纤3中对信号的拉曼增益系数呈互补的走势,第一段第三光纤3中第一连续泵浦光对信号的拉曼增益系数随频移的增大先增大后减小,第二段第三光纤6中第二连续泵浦光对信号的拉曼增益系数随频移的增大先减小再增大,使得在第一段第三光纤3中运用第一部分频移范围使得进行拉曼放大,在第二段第三光纤6中运用第二部分频移范围使得进行放大功率的补偿作用,最终达到相等效果。多个信号光光功率随第三光纤长度的变化规律如图3所示,信号光光功率明显的收敛到5.2×10-4W到6.3×10-4W之间,横坐标表示光纤长度,单位为km;纵坐标表示光功率P,单位为W;
步骤八、所述分波器15对混合在一起的多个光功率相等的信号光进行分离,输出增益补偿后的多个光功率相等的信号光。进行增益补偿后个信号光获得最终增益如图4所示,横坐标表示信号光波长λ,单位为nm;纵坐标均表示增益,单位为dB;从图4可以看出,经过增益补偿后各信号光获得的最终增益趋于相等,在增益带宽为48nm时,平均增益为17.72dB,增益平坦度为0.68dB。
Step 8: The
本实用新型的技术方案不限于上述具体实施例的限制,凡是根据本实用新型的技术方案做出的技术变形,均落入本实用新型的保护范围之内。 The technical solution of the utility model is not limited to the limitations of the above-mentioned specific embodiments, and any technical deformation made according to the technical solution of the utility model falls within the protection scope of the utility model. the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420009099.7U CN203661069U (en) | 2014-01-07 | 2014-01-07 | A gain spectrum flattening Raman optical fiber amplifier based on tellurite-based optical fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420009099.7U CN203661069U (en) | 2014-01-07 | 2014-01-07 | A gain spectrum flattening Raman optical fiber amplifier based on tellurite-based optical fibers |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203661069U true CN203661069U (en) | 2014-06-18 |
Family
ID=50927417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420009099.7U Expired - Fee Related CN203661069U (en) | 2014-01-07 | 2014-01-07 | A gain spectrum flattening Raman optical fiber amplifier based on tellurite-based optical fibers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203661069U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103716093A (en) * | 2014-01-07 | 2014-04-09 | 西安邮电大学 | Gain spectrum flat Raman fiber amplifier based on tellurium-based optical fibers |
CN104639258A (en) * | 2015-02-06 | 2015-05-20 | 电子科技大学 | Parameter multicast photon channelized radio-frequency receiver |
-
2014
- 2014-01-07 CN CN201420009099.7U patent/CN203661069U/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103716093A (en) * | 2014-01-07 | 2014-04-09 | 西安邮电大学 | Gain spectrum flat Raman fiber amplifier based on tellurium-based optical fibers |
CN104639258A (en) * | 2015-02-06 | 2015-05-20 | 电子科技大学 | Parameter multicast photon channelized radio-frequency receiver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001521294A (en) | Multi-wavelength bidirectional lightwave amplifier | |
CN205304807U (en) | Fine amplifier of mixed light based on EDFA with cascade RFA | |
WO2020019659A1 (en) | Dwdm remote pumping system capable of improving osnr | |
CN102088314A (en) | Optical signal to noise ratio (OSNR) monitoring device and monitoring method | |
CN107294604A (en) | A kind of single span long-distance WDM circuit optical fiber Transmission system | |
CN107579777A (en) | A self-adaptive device for all-optical regenerator | |
CN106961305B (en) | Bypass forward Raman amplification relay-free optical fiber transmission system | |
CN203661069U (en) | A gain spectrum flattening Raman optical fiber amplifier based on tellurite-based optical fibers | |
CN209844966U (en) | hybrid amplifier | |
Shen et al. | MIMO-Free $20-\text {Gb}/\mathrm {s}\times 4\times 2$ WDM-MDM Transmission Over 151.5-km Single-Span Ultra Low-Crosstalk FMFs | |
CN214315276U (en) | Multi-pumping Raman amplifier based on erbium-doped tellurium-based optical fiber | |
CN204928834U (en) | Optical Amplifying Equipment in Ultra-Long Distance Transmission System | |
CN107154822B (en) | Suppression device for multi-stage SOA nonlinear effect | |
US6621622B2 (en) | Optical amplifier and optical amplifier arrangement with reduced cross phase modulation | |
CN204131527U (en) | A kind of raman amplifier based on the cascade of As-S and As-Se optical fiber | |
CN216251606U (en) | Rear pumping Raman optical fiber amplifier based on tellurate glass optical fiber | |
CN203673196U (en) | Tellurite-based optical fiber Raman amplification controller with flat gain | |
CN206164538U (en) | Raman amplifier based on photonic crystal optic fibre cascades | |
CN112134621B (en) | Ultra-low noise index bidirectional relay system for optical fiber time frequency synchronization | |
CN207475558U (en) | A kind of cascade multi-pumping Raman amplifier of As-S and As-Se optical fiber | |
CN110176711B (en) | Erbium-doped optical fiber amplifier with S wave band, C wave band and L wave band | |
CN203661068U (en) | A Flat Gain As-S Fiber Raman Amplifier | |
CN204597214U (en) | A kind of mixing discrete highly nonlinear optical fiber amplifier based on two feedback arrangement | |
CN203691408U (en) | Low-noise optical amplifier | |
CN209183940U (en) | Fiber amplifiers cascaded with tellurium-based fibers, photonic crystal fibers and chalcogenide fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140618 Termination date: 20160107 |