CN203480041U - 海洋地震数据采集系统 - Google Patents

海洋地震数据采集系统 Download PDF

Info

Publication number
CN203480041U
CN203480041U CN201320520524.4U CN201320520524U CN203480041U CN 203480041 U CN203480041 U CN 203480041U CN 201320520524 U CN201320520524 U CN 201320520524U CN 203480041 U CN203480041 U CN 203480041U
Authority
CN
China
Prior art keywords
towboat
seismic
wave
signal
seabed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201320520524.4U
Other languages
English (en)
Inventor
张敏强
徐发
高顺莉
陈志良
陈永军
熊忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Offshore Oil Corp CNOOC
CNOOC China Ltd Shanghai Branch
Original Assignee
China National Offshore Oil Corp CNOOC
CNOOC China Ltd Shanghai Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Offshore Oil Corp CNOOC, CNOOC China Ltd Shanghai Branch filed Critical China National Offshore Oil Corp CNOOC
Priority to CN201320520524.4U priority Critical patent/CN203480041U/zh
Application granted granted Critical
Publication of CN203480041U publication Critical patent/CN203480041U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本实用新型公开了一种海洋地震数据采集系统,其中,该海洋地震数据采集系统包括:第一拖船;第二拖船;海底电缆,位于海底,一端与第二拖船连接;震源,位于第一拖船上,用于激发地震波;多个检波器,设置在海底电缆的不同位置上,用于检测震源激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号;以及信号采集装置,位于第二拖船上,与多个检波器连接,用于接收和存储所检测到的地震波反射信号。通过使用本实用新型的系统,实现了复杂海底条件(例如中、古生界海相盆地)下的深层勘探,且检波器位于海底,避免了各种干扰,从而能够获得复杂地质情况下的高质量的地震剖面信息以清晰地反映地下地质信息。

Description

海洋地震数据采集系统
技术领域
本实用新型涉及地质勘探领域,具体地,涉及一种海洋地震数据采集系统。
背景技术
现有的海上勘探主要集中在新生界盆地,因此常规海洋地震资料采集主要是针对该层系的技术序列,例如震源容量、气枪阵压力、沉放深度,电缆长度、电缆沉放深度等地震资料采集参数多是针对新生界盆地勘探目的层而设计的。针对复杂地震地质条件,例如中、古生界海相盆地的勘探,复杂海底条件下的深层勘探,浅部强屏蔽层下勘探等情况,现有常规地震采集手段所获得的地震剖面不能得到清晰有效的地下反射信息,致使地下地质构造成像效果差,严重影响油气、固体矿产等海洋资源勘探进展。随着海洋资源勘探重点往中古生界老地层、中深层复杂构造和岩性圈闭等方向发展,常规海上地震采集已不能满足生产的需要。
实用新型内容
本实用新型的目的是提供一种海洋地震数据采集系统,以实现复杂海底条件(例如中、古生界海相盆地)下的深层勘探。
为了实现上述目的,本实用新型提供一种海洋地震数据采集系统,该系统包括:第一拖船;第二拖船;海底电缆,位于海底,一端与所述第二拖船连接;震源,位于所述第一拖船上,用于激发地震波;多个检波器,设置在所述海底电缆的不同位置上,用于检测所述震源激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号;以及信号采集装置,位于所述第二拖船上,与所述多个检波器连接,用于接收和存储所检测到的地震波反射信号。
优选地,所述检波器包括:压力检波器、水平X轴速度检波器、水平Y轴速度检波器和垂直Z轴速度检波器。
优选地,所述信号采集装置包括:信号传输接口,用于接收所检测到的地震波反射信号;以及信号存储模块,与所述信号传输接口连接,用于存储所检测到的地震波反射信号。
优选地,所述震源为放炮装置。
优选地,所述多个检波器以相等间距设置在所述海底电缆中。
优选地,所述间距为25米。
通过上述技术方案,当需要进行海洋地震数据采集时,利用位于第一拖船上的震源激发地震波,利用设置在海底电缆的不同位置上的多个检波器检测震源激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号,以及利用位于第二拖船上的信号采集装置接收和存储所检测到的地震波反射信号,实现了复杂海底条件(例如中、古生界海相盆地)下的深层勘探,且检波器位于海底,避免了各种干扰(例如,海水鸣震效应、海底多次波、洋流、采油平台、海面船只、电缆拖动噪声带来的干扰),从而能够获得复杂地质情况下的高质量的地震剖面信息以清晰地反映地下地质信息。
本实用新型的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本实用新型的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本实用新型,但并不构成对本实用新型的限制。在附图中:
图1是根据本实用新型实施例的海洋地震数据采集系统的示意图;
图2是根据本实用新型实施例的检波器的结构示意图;
图3是根据本实用新型实施例的海洋地震数据采集方法的流程图;以及
图4是根据本实用新型实施例的检波器位置排列和震源移动线路示意图。
具体实施方式
以下结合附图对本实用新型的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本实用新型,并不用于限制本实用新型。
图1是根据本实用新型实施例的海洋地震数据采集系统的示意图。
如图1所示,该海洋地震数据采集系统包括:第一拖船3’;第二拖船4’;海底电缆1,位于海底,一端与所述第二拖船4’连接;震源3,位于所述第一拖船3’上,用于激发地震波;多个检波器2,设置在所述海底电缆1的不同位置上,用于检测所述震源3激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号;以及信号采集装置4,位于所述第二拖船4’上,与所述多个检波器2连接,用于接收和存储所检测到的地震波反射信号。
虽然图1中仅示出了三个检波器,但本实用新型不限于此,本领域技术人员可以根据实际需要确定检波器的数量。
通过位于第一拖船3’上的震源3激发地震波,利用设置在海底电缆1的不同位置上的多个检波器2检测震源激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号,以及利用位于第二拖船4’上的信号采集装置4接收和存储所检测到的地震波反射信号,实现了复杂海底条件(例如中、古生界海相盆地)下的深层勘探,且检波器2位于海底,避免了各种干扰(例如,海水鸣震效应、海底多次波、洋流、采油平台、海面船只、电缆拖动噪声带来的干扰),从而能够获得复杂地质情况下的高质量的地震剖面信息以清晰地反映地下地质信息。
图2是根据本实用新型实施例的检波器的结构示意图。
如图2所示,检波器2可以包括:压力检波器21、水平X轴速度检波器22、水平Y轴速度检波器23和垂直Z轴速度检波器24(即,包括压力检波器21以及相互正交的三分量速度检波器22、23和24)。压力检波器21、水平X轴速度检波器22、水平Y轴速度检波器23和垂直Z轴速度检波器24之间可以并联连接。
其中,该压力检波器21可以用于检测所述地震波反射信号中的压力纵波信号;该水平X轴速度检波器22可以在水平方向上平行于所述海底电缆1长轴方向设置,用于检测所述地震波反射信号中的垂直偏振横波(SV)分量信号;该水平Y轴速度检波器23可以在水平方向上垂直于所述海底电缆1长轴方向设置,用于检测所述地震波反射信号中的水平偏振横波(SH)分量信号;以及该垂直Z轴速度检波器24在竖直方向上垂直于所述海底电缆1长轴方向设置,用于检测所述地震波反射信号中的速度纵波分量信号(即,P波信号)。
通过采用包括压力检波器21以及相互正交的三分量速度检波器22、23和24的检波器2检测地震波反射信号,能够实现全波场的采集,且消除了海面和海底界面引起的多次波(即,鸣震信息)、环境噪声等所引起的各种干扰,极大地提高了所检测到的数据的信噪比。
根据本实用新型的一种实施方式,所述信号采集装置4包括:信号传输接口,用于接收所检测到的地震波反射信号;以及信号存储模块,与所述信号传输接口连接,用于存储所检测到的地震波反射信号。信号采集装置4可以通过海底电缆1接收检波器2输出的地震波反射信号。
在上述实施例中,所述震源3可以为放炮装置。所述多个检波器2可以以相等间距设置在所述海底电缆1中,例如相邻检波器之间的间距可以为25米。并且在一个示例中,所述多个检波器2中从第一个检波器排列到最后一个检波器之间的距离(检波器总的排列距离)例如可以选取为24Km(如图4所示),由此根据相邻检波器之间的间距和检波器总的排列距离可以确定检波器的数量。本领域技术人员应当理解,上述的放炮装置、间距设置以及检波器总的排列距离仅仅是示例性的,并非用于限定本实用新型。
利用根据本实用新型实施例的海洋地震数据采集系统,从震源3激发一次地震波开始,然后检波器2检测震源激发的地震波经海底地质界面反射后的地震波反射信号并输出所检测到的地震波反射信号,到信号采集装置4接收和存储所检测到的地震波反射信号为止,完成一次地震波反射信号的采集。对于一定距离(预定公里数)内的海洋区域的地震资料的采集,可以通过设置有震源3的第一拖船3’每移动预定距离后重复执行上述过程来实现(具体过程可参考下述对海洋地震数据采集方法的描述),其中,海底电缆1布设在海底预设位置并保持稳定,海底电缆1长轴方向与第一拖船3’(震源激发船)行进轨迹平行。而对于其他待采集海洋区域内的地震资料的采集,通过第一拖船4’将海底电缆1拖动至对应的海洋区域内的海底并保持稳定即可,同样地,海底电缆1长轴方向与第一拖船3’(震源激发船)行进轨迹平行。本领域技术人员可以根据待采集海洋区域的距离设定海底电缆1的长度。
图3是根据本实用新型实施例的海洋地震数据采集方法的流程图。
如图3所示,该海洋地震数据采集方法包括:
S300,利用位于第一拖船3’上的震源3激发地震波;
S302,利用设置在海底电缆1的不同位置上的多个检波器2检测所述震源3激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号;以及
S304,利用位于所述第二拖船4’上的信号采集装置4接收和存储所检测到的地震波反射信号,其中所述第二拖船4’与位于海底的所述海底电缆1的一端连接。
通过震源3激发地震波,利用设置在海底电缆1的不同位置上的多个检波器2检测震源激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号,以及利用信号采集装置4接收和存储所检测到的地震波反射信号,实现了复杂海底条件(例如中、古生界海相盆地)下的深层勘探,且检波器2位于海底,避免了各种干扰(例如,海水鸣震效应、海底多次波、洋流、采油平台、海面船只、电缆拖动噪声带来的干扰),从而能够获得复杂地质情况下的高质量的地震剖面信息以清晰地反映地下地质信息。
图4是根据本实用新型实施例的检波器位置排列和震源移动线路示意图。下面结合图4对根据本实用新型实施例的海洋地震数据采集方法进行进一步说明。
参考图4,在该方法中,利用位于第一拖船3’上的震源3激发地震波包括:所述第一拖船3’从初始位置以预定方向往目标位置移动(例如,图4中从左到右的箭头指向),并在到达所述目标位置后以与所述预定方向相反的方向往所述初始位置移动(例如,图4中从右到左的箭头指向),在所述初始位置、所述目标位置和每移动预定距离所到达的位置(即,每个炮点)处所述震源3均激发一次地震波。也就是,图4中的炮点分布是通过第一拖船3’的移动实现的(第一拖船3’在上述两个方向的移动过程中,初始位置、目标位置和每移动预定距离所到达的位置共同形成多个炮点,在每个炮点震源3会激发一次地震波)。并且,在从左到右的箭头指向方向上,可以通过第一拖船3’的移动完成奇数次地震波激发(即,奇数个炮点),而在从右到左的箭头指向方向上,可以通过第一拖船3’的移动完成偶数次地震波激发(即,偶数个炮点),反之亦然。
其中,海底电缆1布设在海底预设位置并保持稳定,海底电缆1长轴方向与第一拖船3’(震源激发船)行进轨迹平行。
在该方法中,所述第一拖船3’从所述初始位置以预定方向往所述目标位置移动的路线与从所述目标位置以与所述预定方向相反的方向往所述初始位置移动的路线平行,且两条路线之间相距预定间隔,如图4所示。对于两条路线之间相距预定间隔(线距),可以通过公式ΔY≤Vi/(4×Fp×tan(α))来计算。其中,ΔY为线距,Vi为地下(海下)地质目标地层的地震波层速度,Fp为地下(海下)目标地层的主频率,α为目标地层的视倾角。
优选地,上述的第一拖船3’每次移动的预定距离可以设定为50m(即,炮间距为50m),而两条路线之间相距的预定间隔可以设定为100m。所述多个检波器2可以以相等间距设置在所述海底电缆1中,例如相邻检波器之间的间距可以为25米。在图4的示例中,所述多个检波器2中从第一个检波器排列到最后一个检波器之间的距离(检波器总的排列距离)例如可以选取为24Km,由此根据相邻检波器之间的间距和检波器总的排列距离可以确定检波器的数量。
基于上述内容可知,本实用新型实际上是对二维地震测线按照三维方式进行观测,采取了邻道面元叠加、增加侧面信息的方式(如图4所示),能够保证整条测线均匀地提高覆盖次数,增加炮点优选的机会,从而改善高陡构造成像、减小侧面干扰、提高地震资料信噪比,最终获得高质量的地震剖面信息以清晰地反映地下地质信息。
本领域技术人员应当理解,图4中所示的炮点间距、线路间的预定间隔、相邻检波器之间的间距和检波器总的排列距离的设置仅仅是示例性的,并非用于限定本实用新型。此外,由于实际的检波器总的排列距离较长,无法在图4中示出全部的检波器排列,故在图4中省略了部分检波器。
根据本实用新型实施例的海洋地震数据采集系统和方法,不仅可以用于海洋油气的勘探开采,还可以用于海洋固体矿产的勘探开采。
从上述实施例中可以看出,通过位于第一拖船3’上的震源3激发地震波,利用设置在海底电缆1的不同位置上的多个检波器2检测震源激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号,以及利用位于第二拖船4’上的信号采集装置4接收和存储所检测到的地震波反射信号,实现了复杂海底条件(例如中、古生界海相盆地)下的深层勘探,且检波器2位于海底,避免了各种干扰(例如,海水鸣震效应、海底多次波、洋流、采油平台、海面船只、电缆拖动噪声带来的干扰),从而能够获得复杂地质(例如,强反射屏蔽层、改善中古生界老地层等)情况下的高质量的地震剖面信息以清晰地反映地下地质信息。
并且,通过使用本实用新型的系统和方法,实现了地震全波场采集,通过对地震纵波、转换横波信息处理并加以地质解释,对于气烟囱内部成像、地层尖灭、小幅度构造、小断层、礁体、古潜山的准确定位、非构造油气藏的勘探,裂缝发育带分析以及流体识别与监测等具有更好的勘探效果,降低了勘探风险。
以上结合附图详细描述了本实用新型的优选实施方式,但是,本实用新型并不限于上述实施方式中的具体细节,在本实用新型的技术构思范围内,可以对本实用新型的技术方案进行多种简单变型,这些简单变型均属于本实用新型的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本实用新型对各种可能的组合方式不再另行说明。
此外,本实用新型的各种不同的实施方式之间也可以进行任意组合,只要其不违背本实用新型的思想,其同样应当视为本实用新型所公开的内容。

Claims (6)

1.一种海洋地震数据采集系统,其特征在于,该系统包括:
第一拖船;
第二拖船;
海底电缆,位于海底,一端与所述第二拖船连接;
震源,位于所述第一拖船上,用于激发地震波;
多个检波器,设置在所述海底电缆的不同位置上,用于检测所述震源激发的地震波经海底地质界面反射后的地震波反射信号,并输出所检测到的地震波反射信号;以及
信号采集装置,位于所述第二拖船上,与所述多个检波器连接,用于接收和存储所检测到的地震波反射信号。
2.根据权利要求1所述的系统,其特征在于,所述检波器包括:压力检波器、水平X轴速度检波器、水平Y轴速度检波器和垂直Z轴速度检波器。
3.根据权利要求1或2所述的系统,其特征在于,所述信号采集装置包括:
信号传输接口,用于接收所检测到的地震波反射信号;以及
信号存储模块,与所述信号传输接口连接,用于存储所检测到的地震波反射信号。
4.根据权利要求1所述的系统,其特征在于,所述震源为放炮装置。
5.根据权利要求1所述的系统,其特征在于,所述多个检波器以相等间距设置在所述海底电缆中。
6.根据权利要求5所述的系统,其特征在于,所述间距为25米。
CN201320520524.4U 2013-08-23 2013-08-23 海洋地震数据采集系统 Expired - Fee Related CN203480041U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201320520524.4U CN203480041U (zh) 2013-08-23 2013-08-23 海洋地震数据采集系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201320520524.4U CN203480041U (zh) 2013-08-23 2013-08-23 海洋地震数据采集系统

Publications (1)

Publication Number Publication Date
CN203480041U true CN203480041U (zh) 2014-03-12

Family

ID=50228349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201320520524.4U Expired - Fee Related CN203480041U (zh) 2013-08-23 2013-08-23 海洋地震数据采集系统

Country Status (1)

Country Link
CN (1) CN203480041U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422962A (zh) * 2013-08-23 2015-03-18 中国海洋石油总公司 海洋地震数据采集系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422962A (zh) * 2013-08-23 2015-03-18 中国海洋石油总公司 海洋地震数据采集系统和方法

Similar Documents

Publication Publication Date Title
CN102455439B (zh) 基于克希霍夫积分法的绕射波场分离方法
CN103344991B (zh) 一种用于海上地震勘探的双源地震采集方法及采集系统
US10379256B2 (en) Combined seismic and electromagnetic survey configurations
US9188693B2 (en) Method for acquiring marine seismic data
EP3059615B1 (en) Amplitude-versus-angle analysis for quantative interpretation
CN107526101A (zh) 一种获取地震反射波的采集和处理方法
RU2539745C1 (ru) Способ сейсмического мониторинга в процесса разработки месторождений углеводородов на акваториях
CN109239782B (zh) 一种天然气水合物精细地震勘探系统及方法
CN101105536A (zh) 一种复杂地表区的条带状地震采集方法
CN104422962A (zh) 海洋地震数据采集系统和方法
CN104991268A (zh) 一种真振幅偏移成像方法
CN103293553A (zh) 一种复杂海底上下缆地震采集数据边界元延拓校正方法
CN109856680B (zh) 一种沿海滩涂区拖曳式浅层地震探测方法
CN103336315A (zh) 采用瞬变电磁法和地震映像法对淘金洞进行探测的方法
EP2593815B1 (en) Method for accentuating specular and non-specular seismic events from within shallow subsurface rock formations
CN204389704U (zh) 一种海上地震采集系统
CN111158050B (zh) 数据采集系统、方法及隧道地震波超前预报方法
AU2021220151A1 (en) System and method for simultaneously acquiring wide azimuth and ocean bottom node surveys
CN203480041U (zh) 海洋地震数据采集系统
CN202522709U (zh) 海上地震采集系统
CN101609166B (zh) 一种水域区近地表结构的测量方法
US20230184979A1 (en) Continuous seismic data acquisition having variable density source geometry
US20210247533A1 (en) Wide-tow source surveying with subline infill
Cheong et al. Integrated Offshore Seismic Survey Using an Unmanned Wave Glider. Energies 2021, 14, 297
Hoekstra et al. Shallow fault detection using 3-D seismic reflection surveys

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140312

Termination date: 20170823