CN203289677U - Ultrahigh-frequency high-power induction heating power supply - Google Patents
Ultrahigh-frequency high-power induction heating power supply Download PDFInfo
- Publication number
- CN203289677U CN203289677U CN2013203763227U CN201320376322U CN203289677U CN 203289677 U CN203289677 U CN 203289677U CN 2013203763227 U CN2013203763227 U CN 2013203763227U CN 201320376322 U CN201320376322 U CN 201320376322U CN 203289677 U CN203289677 U CN 203289677U
- Authority
- CN
- China
- Prior art keywords
- resistance
- signal
- circuit
- current
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 26
- 230000006698 induction Effects 0.000 title claims abstract description 25
- 238000002955 isolation Methods 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims abstract description 31
- 239000003990 capacitor Substances 0.000 claims description 37
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 claims 1
- 238000011217 control strategy Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Landscapes
- Measurement Of Current Or Voltage (AREA)
Abstract
超高频大功率感应加热电源,属于开关电源领域。本实用新型解决了现有高频感应加热电源对于负载两端电压和电流的相位锁定准确度低和功率低的问题。本实用新型的电压信号检测及相位处理电路输出的电压相位信号经电压相位信号隔离电路后送至处理器,电流检测电路将采集到的电流信号经电流信号滤波电路后,分别发送至电流信号相位处理电路和电流幅值处理电路,电流信号相位处理电路输出的电流相位信号经电流相位信号隔离电路后,发送至处理器,处理器接收到电流相位信号和电压相位信号后,通过模糊PID控制策略,调整输出PWM开关频率和占空比,来达到减小电压和电流相位差,并且达到控制功率的目的,本实用新型主要应用在开关电源领域。
An ultra-high-frequency high-power induction heating power supply belongs to the field of switching power supplies. The utility model solves the problems of low phase locking accuracy and low power of the existing high-frequency induction heating power supply for the voltage and current at both ends of the load. The voltage phase signal output by the voltage signal detection and phase processing circuit of the utility model is sent to the processor through the voltage phase signal isolation circuit, and the current detection circuit sends the collected current signal to the current signal phase respectively after passing through the current signal filter circuit Processing circuit and current amplitude processing circuit, the current phase signal output by the current signal phase processing circuit is sent to the processor after the current phase signal isolation circuit, after the processor receives the current phase signal and the voltage phase signal, through the fuzzy PID control strategy , adjust the output PWM switching frequency and duty cycle to reduce the voltage and current phase difference and achieve the purpose of power control. The utility model is mainly used in the field of switching power supply.
Description
技术领域technical field
本实用新型属于开关电源领域。The utility model belongs to the field of switching power supplies.
背景技术Background technique
高频大功率感应加热电源主要是针对细小金属工件进行热处理操作。通过相位跟踪可以实现负载近似于纯电阻的状态下工作。目前市场上并未见到基于TMS320F2812处理器与相位信号处理电路相配合的成熟产品,而与此相类似的产品是通过电压和电流传感器,或者使用模拟电路来实现相位跟踪功能,甚至有的并不对负载相位进行跟踪,这样的产品工作可靠性不高,性能不理想,功率也不大。The high-frequency high-power induction heating power supply is mainly used for heat treatment of small metal workpieces. Through phase tracking, the load can be operated in a state similar to that of pure resistance. At present, there is no mature product based on the combination of TMS320F2812 processor and phase signal processing circuit in the market, and similar products realize the phase tracking function through voltage and current sensors, or use analog circuits, and some even do not If the load phase is not tracked, such a product has low reliability, unsatisfactory performance, and low power.
实用新型内容Utility model content
本实用新型是为了解决现有高频感应加热电源对于负载两端电压和电流的相位锁定准确度低和功率低的问题,本实用新型提供了一种超高频大功率感应加热电源。The utility model aims to solve the problems of low phase locking accuracy and low power of the existing high-frequency induction heating power supply for the voltage and current at both ends of the load. The utility model provides an ultra-high-frequency high-power induction heating power supply.
超高频大功率感应加热电源,它包括电压信号检测及相位处理电路、逆变电路、整流电路、电流检测电路、负载输出电路、电流信号滤波电路、电流信号相位处理电路、电流相位信号隔离电路、电流幅值处理电路、模拟信号隔离电路、处理器、状态参数显示电路、驱动信号隔离电路、逆变器功率开关管驱动电路和电压相位信号隔离电路,Ultra-high frequency high-power induction heating power supply, which includes voltage signal detection and phase processing circuit, inverter circuit, rectification circuit, current detection circuit, load output circuit, current signal filter circuit, current signal phase processing circuit, current phase signal isolation circuit , current amplitude processing circuit, analog signal isolation circuit, processor, state parameter display circuit, drive signal isolation circuit, inverter power switch tube drive circuit and voltage phase signal isolation circuit,
所述的整流电路的直流信号输出端与逆变电路的直流信号输入端连接,The DC signal output end of the rectification circuit is connected to the DC signal input end of the inverter circuit,
电压信号检测及相位处理电路用于检测所述的逆变电路的输出电压信号,所述的电压信号检测及相位处理电路的信号输出端与电压相位信号隔离电路的信号输入端连接,所述的电压相位信号隔离电路的信号输出端与处理器的电压相位信号输入端连接,所述的处理器的显示信号输出端与状态参数显示电路的信号输入端连接,The voltage signal detection and phase processing circuit is used to detect the output voltage signal of the inverter circuit, the signal output end of the voltage signal detection and phase processing circuit is connected to the signal input end of the voltage phase signal isolation circuit, and the The signal output end of the voltage phase signal isolation circuit is connected to the voltage phase signal input end of the processor, and the display signal output end of the processor is connected to the signal input end of the state parameter display circuit,
电流检测电路串联在逆变电路的输出端和负载输出电路之间,用于检测所述逆变电路输出的电流信号,所述的电流检测电路的检测结果信号输出端与电流信号滤波电路的信号输入端连接,所述的电流信号滤波电路的信号输出端同时与电流信号相位处理电路的信号输入端和电流幅值处理电路的信号输入端连接,电流信号相位处理电路的信号输出端与电流相位信号隔离电路的信号输入端连接,所述的电流相位信号隔离电路的信号输出端与处理器的电流相位信号输入端连接,所述的电流幅值处理电路的信号输出端与模拟信号隔离电路的电流幅值信号输入端连接,所述的模拟信号隔离电路的电流幅值信号输出端与处理器的电流幅值信号输入端连接,The current detection circuit is connected in series between the output terminal of the inverter circuit and the load output circuit, and is used to detect the current signal output by the inverter circuit, and the detection result signal output terminal of the current detection circuit is connected with the signal of the current signal filter circuit The input end is connected, the signal output end of the current signal filter circuit is connected with the signal input end of the current signal phase processing circuit and the signal input end of the current amplitude processing circuit at the same time, the signal output end of the current signal phase processing circuit is connected with the current phase The signal input end of the signal isolation circuit is connected, the signal output end of the current phase signal isolation circuit is connected with the current phase signal input end of the processor, the signal output end of the current amplitude processing circuit is connected with the analog signal isolation circuit The current amplitude signal input terminal is connected, and the current amplitude signal output terminal of the analog signal isolation circuit is connected to the current amplitude signal input terminal of the processor,
所述的处理器的控制信号输出端与驱动信号隔离电路的信号输入端连接,所述的驱动信号隔离电路的信号输出端与逆变器功率开关管驱动电路的信号输入端连接,所述的逆变器功率开关管驱动电路的驱动信号输出端与逆变电路的控制信号输入端连接。The control signal output end of the processor is connected to the signal input end of the drive signal isolation circuit, the signal output end of the drive signal isolation circuit is connected to the signal input end of the inverter power switch tube drive circuit, and the The drive signal output end of the inverter power switch tube drive circuit is connected to the control signal input end of the inverter circuit.
电压信号检测及相位处理电路输出的电压相位信号经电压相位信号隔离电路后,送至处理器,电流检测电路将采集到的电流信号经电流信号滤波电路后,分别发送至电流信号相位处理电路和电流幅值处理电路,电流信号相位处理电路输出的电流相位信号经电流相位信号隔离电路后,发送至处理器,处理器接收到电流相位信号和电压相位信号后,通过模糊PID控制策略,调整输出PWM开关频率和占空比,来达到减小电压和电流相位差,并且达到控制功率的目的,本实用新型主要应用在开关电源领域。The voltage phase signal output by the voltage signal detection and phase processing circuit is sent to the processor after being passed through the voltage phase signal isolation circuit, and the current detection circuit sends the collected current signal to the current signal phase processing circuit and the The current amplitude processing circuit, the current phase signal output by the current signal phase processing circuit is sent to the processor after the current phase signal isolation circuit, and after the processor receives the current phase signal and the voltage phase signal, it adjusts the output through the fuzzy PID control strategy The PWM switching frequency and the duty ratio are used to reduce the voltage and current phase difference and to control the power. The utility model is mainly used in the field of switching power supply.
本实用新型带来的有益效果是,本实用新型所述的超高频大功率感应加热电源对负载两端电压和电流的相位锁定准确度提高了15%、功率提高了15%。The beneficial effect brought by the utility model is that the ultra-high-frequency high-power induction heating power supply described in the utility model improves the phase locking accuracy of the voltage and current at both ends of the load by 15%, and the power increases by 15%.
附图说明Description of drawings
图1为本实用新型所述的超高频大功率感应加热电源的电气原理示意图。Fig. 1 is a schematic diagram of the electrical principle of the ultra-high frequency high-power induction heating power supply described in the present invention.
图2为具体实施方式三所述的电压信号检测及相位处理电路的结构示意图。FIG. 2 is a schematic structural diagram of the voltage signal detection and phase processing circuit described in the third embodiment.
图3为具体实施方式四所述的电流信号滤波电路的结构示意图。FIG. 3 is a schematic structural diagram of the current signal filter circuit described in
图4为具体实施方式五所述的电流信号相位处理电路的结构示意图。FIG. 4 is a schematic structural diagram of a current signal phase processing circuit described in
图5为具体实施方式六所述的电流幅值处理电路的结构示意图。FIG. 5 is a schematic structural diagram of the current amplitude processing circuit described in
图6为具体实施方式七所述的模拟信号隔离电路的结构示意图。FIG. 6 is a schematic structural diagram of the analog signal isolation circuit described in
图7为具体实施方式一所述的电压相位信号隔离电路的结构示意图。FIG. 7 is a schematic structural diagram of the voltage phase signal isolation circuit according to the first embodiment.
图8为具体实施方式一所述的驱动信号隔离电路的结构示意图。FIG. 8 is a schematic structural diagram of the driving signal isolation circuit described in the first embodiment.
图9为具体实施方式一所述的电流相位信号隔离电路的结构示意图。FIG. 9 is a schematic structural diagram of the current phase signal isolation circuit according to the first embodiment.
具体实施方式Detailed ways
具体实施方式一:参见图1、7、8、和9说明本实施方式,本实施方式所述的超高频大功率感应加热电源,它包括电压信号检测及相位处理电路1、逆变电路2、整流电路3、电流检测电路4、负载输出电路5、电流信号滤波电路6、电流信号相位处理电路7、电流相位信号隔离电路8、电流幅值处理电路9、模拟信号隔离电路10、处理器11、状态参数显示电路12、驱动信号隔离电路13、逆变器功率开关管驱动电路14和电压相位信号隔离电路15,Specific Embodiment 1: Referring to Figures 1, 7, 8, and 9 to illustrate this embodiment, the ultra-high-frequency high-power induction heating power supply described in this embodiment includes a voltage signal detection and
所述的整流电路3的直流信号输出端与逆变电路2的直流信号输入端连接,The DC signal output end of the
电压信号检测及相位处理电路1用于检测所述的逆变电路2的输出电压信号,所述的电压信号检测及相位处理电路1的信号输出端与电压相位信号隔离电路15的信号输入端连接,所述的电压相位信号隔离电路15的信号输出端与处理器11的电压相位信号输入端连接,所述的处理器11的显示信号输出端与状态参数显示电路12的信号输入端连接,The voltage signal detection and
电流检测电路4串联在逆变电路2的输出端和负载输出电路5之间,用于检测所述逆变电路2输出的电流信号,所述的电流检测电路4的检测结果信号输出端与电流信号滤波电路6的信号输入端连接,所述的电流信号滤波电路6的信号输出端同时与电流信号相位处理电路7的信号输入端和电流幅值处理电路9的信号输入端连接,电流信号相位处理电路7的信号输出端与电流相位信号隔离电路8的信号输入端连接,所述的电流相位信号隔离电路8的信号输出端与处理器11的电流相位信号输入端连接,所述的电流幅值处理电路9的信号输出端与模拟信号隔离电路10的电流幅值信号输入端连接,所述的模拟信号隔离电路10的电流幅值信号输出端与处理器11的电流幅值信号输入端连接,The
所述的处理器11的控制信号输出端与驱动信号隔离电路13的信号输入端连接,所述的驱动信号隔离电路13的信号输出端与逆变器功率开关管驱动电路14的信号输入端连接,所述的逆变器功率开关管驱动电路14的驱动信号输出端与逆变电路2的控制信号输入端连接。The control signal output end of the
具体实施方式二:参见图1、7、8、和9说明本实施方式,本实施方式与具体实施方式一所述的超高频大功率感应加热电源的区别在于,所述的处理器11采用芯片TMS320F2812实现。Specific Embodiment 2: Refer to Fig. 1, 7, 8, and 9 to illustrate this embodiment. The difference between this embodiment and the ultra-high frequency high-power induction heating power supply described in
具体实施方式三:参见图1、2、7、8、和9说明本实施方式,本实施方式与具体实施方式一或二所述的超高频大功率感应加热电源的区别在于,所述的电压信号检测及相位处理电路1包括二极管D1、二极管D2、二极管D3、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电容C1、电容C2和芯片TLV3502,所述的二极管D2的正极接+5V电源地HGND,二极管D2的负极同时与二极管D1的正极、芯片TLV3502的+INA端口和电阻R4的另一端连接,所述的二极管D1的负极同时与电阻R1的一端、电阻R2的一端和+5V电源连接,所述的电阻R1的另一端同时与电阻R5的一端和电阻R3的一端连接,所述的电阻R5的另一端与芯片TLV3502的-INA端口连接,所述的电阻R3的另一端接+5V电源地HGND,所述的电阻R2的另一端同时与电阻R4的一端、电容C1的一端和二极管D3的正极连接,所述的电容C1的另一端接+5V电源地HGND,所述的二极管D3的负极与逆变电路2的电压信号输出端连接,所述的芯片TLV3502的V+端口同时与+5V电源和电容C2的一端连接,所述的电容C2的另一端与芯片TLV3502的V-端口连接,所述的电容C2的另一端接+5V电源地HGND,所述的芯片TLV3502的OUTA端口与电压相位信号隔离电路15的信号输入端连接,所述的芯片TLV3502的OUTA端口为电压信号检测及相位处理电路1的信号输出端,所述的二极管D3的负极用于接收所述的逆变电路2的输出电压信号。Specific embodiment three: Referring to Figs. 1, 2, 7, 8, and 9 to illustrate this embodiment, the difference between this embodiment and the ultra-high frequency high-power induction heating power supply described in specific embodiment one or two is that the described The voltage signal detection and
具体实施方式四:参见图1、3、7、8、和9说明本实施方式,本实施方式与具体实施方式一所述的超高频大功率感应加热电源的区别在于,所述的电流信号滤波电路6包括电阻R6、电阻R7、电阻R8、电阻R9、电容C3、电容C4和芯片OPA3690,所述的芯片OPA3690的1号端口同时与电容C3的一端和电阻R9的一端连接,所述的电容C3的另一端同时与电容C4的一端、电阻R6的一端和电阻R7的一端连接,所述的电容C4的另一端同时与电阻R9的另一端、芯片OPA3690的14号端口、电流信号相位处理电路7的信号输入端和电流幅值处理电路9的信号输入端连接,所述的电阻R6的另一端同时与电流检测电路4的检测结果信号输出端、电阻R7的另一端和电阻R8的另一端连接,所述的电阻R8的另一端接信号地SGND,所述的的电阻R8的一端与芯片OPA3690的2号端口连接,所述的芯片OPA3690的16号端口与Vcc连接,所述的电阻R6的另一端为电流信号滤波电路6的信号输入端,所述的电阻R9的另一端为电流信号滤波电路6的信号输出端。Specific Embodiment 4: Referring to Figures 1, 3, 7, 8, and 9 to illustrate this embodiment, the difference between this embodiment and the ultra-high frequency high-power induction heating power supply described in
具体实施方式五:参见图1、4、7、8、和9说明本实施方式,本实施方式与具体实施方式一所述的超高频大功率感应加热电源的区别在于,所述的电流信号相位处理电路7包括电阻R10、电阻R11和芯片TL3016ID,所述的芯片TL3016ID的1号端口与Vcc连接,所述的芯片TL3016ID的5号端口和6号端口接信号地SGND,所述的芯片TL3016ID的3号端口与电阻R10的一端连接,所述的电阻R10的另一端与电流信号滤波电路6的信号输出端连接,所述的芯片TL3016ID的2号端口与电阻R11的一端连接,所述的电阻R11的另一端接信号地SGND,所述的芯片TL3016ID的7号端口与电流相位信号隔离电路8的信号输入端连接,所述的电阻R10的另一端为电流信号相位处理电路7的信号输入端,所述的芯片TL3016ID的7号端口为电流信号相位处理电路7的信号输出端。Embodiment 5: Refer to Figs. 1, 4, 7, 8, and 9 to illustrate this embodiment. The difference between this embodiment and the ultra-high frequency high-power induction heating power supply described in
具体实施方式六:参见图1、5、7、8、和9说明本实施方式,本实施方式与具体实施方式一所述的超高频大功率感应加热电源的区别在于,所述的电流幅值处理电路9包括电阻R12、电阻R13、电阻R14、电阻R15、电阻R16、电阻R17、电阻R18、电阻R19、二极管D4、二极管D5和2个芯片OPA360,所述的电阻R12的一端同时与电流信号滤波电路6的信号输出端和电阻R18的一端连接,所述的电阻R12的另一端同时与第一芯片OPA360的4号端口、电阻R14的一端和二极管D4的负极连接,所述的电阻R14的另一端与同时与电阻R19的一端和二极管D5的正极连接,所述的二极管D5的负极同时与第一芯片OPA360的12号端口和二极管D4的正极连接,所述的第一芯片OPA360的5号端口与电阻R13的一端连接,所述的电阻R13的另一端接信号地SGND,所述的第一芯片OPA360的3号端口与第二芯片OPA360的6号端口连接,所述的电阻R18的另一端同时与电阻R19的另一端、电阻R16的一端和第二芯片OPA360的7号端口连接,所述的电阻R16的另一端同时与模拟信号隔离电路10的电流幅值信号输入端和第二芯片OPA360的10号端口连接,所述的第二芯片OPA360的8号端口与电阻R17的一端连接,所述的电阻R17的另一端接信号地SGND,所述的电阻R12的一端为电流幅值处理电路9的信号输入端,所述的电阻R16的另一端为电流幅值处理电路9的信号输出端。Specific Embodiment 6: Refer to Figures 1, 5, 7, 8, and 9 to illustrate this embodiment. The difference between this embodiment and the ultra-high frequency high-power induction heating power supply described in
具体实施方式七:参见图1、6、7、8、和9说明本实施方式,本实施方式与具体实施方式一所述的超高频大功率感应加热电源的区别在于,所述的模拟信号隔离电路10包括电阻R20、电阻R21、电阻R22、电阻R23、电容C5、电容C6和光电耦合器,所述的电阻R20的一端与电流幅值处理电路9的信号输出端连接,所述的电阻R20的另一端同时与电容C5的一端、电阻R21的一端和电阻R22的一端连接,所述的电容C5的另一端、电阻R22的另一端和光电耦合器输入端的发光二极管的阴极连接,所述的电阻R22的另一端接信号地SGND,所述的电阻R21的另一端与光电耦合器输入端的发光二极管的阳极连接,所述的光电耦合器的输出端的光敏三极管的集电极同时与+3.3V电源和电容C6的一端连接,所述的电容C6的另一端同时与光电耦合器的输出端的光敏三极管的发射极、电阻R23的一端和处理器11的电流幅值信号输入端连接,所述的电阻R23的另一端接+3.3V电源地GND,所述的电容C6的另一端为模拟信号隔离电路10的信号输出端,所述的电阻R20的一端为模拟信号隔离电路10的电流幅值信号输入端。Embodiment 7: Refer to Figures 1, 6, 7, 8, and 9 to illustrate this embodiment. The difference between this embodiment and the ultra-high frequency high-power induction heating power supply described in
具体实施方式八:参见图1、6、7、8、和9说明本实施方式,本实施方式与具体实施方式一所述的超高频大功率感应加热电源的区别在于,所述的光耦隔离器采用TLP421实现的。Embodiment 8: Refer to Figures 1, 6, 7, 8, and 9 to illustrate this embodiment. The difference between this embodiment and the ultra-high frequency high-power induction heating power supply described in
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013203763227U CN203289677U (en) | 2013-06-27 | 2013-06-27 | Ultrahigh-frequency high-power induction heating power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013203763227U CN203289677U (en) | 2013-06-27 | 2013-06-27 | Ultrahigh-frequency high-power induction heating power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203289677U true CN203289677U (en) | 2013-11-13 |
Family
ID=49546016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013203763227U Expired - Lifetime CN203289677U (en) | 2013-06-27 | 2013-06-27 | Ultrahigh-frequency high-power induction heating power supply |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203289677U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103313450A (en) * | 2013-06-27 | 2013-09-18 | 哈尔滨理工大学 | Ultrahigh-frequency high-power induction heating source |
-
2013
- 2013-06-27 CN CN2013203763227U patent/CN203289677U/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103313450A (en) * | 2013-06-27 | 2013-09-18 | 哈尔滨理工大学 | Ultrahigh-frequency high-power induction heating source |
CN103313450B (en) * | 2013-06-27 | 2015-03-11 | 哈尔滨理工大学 | Ultrahigh-frequency high-power induction heating source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204216790U (en) | A Programmable Scanning Power Supply | |
CN103066865B (en) | Three-phase Bridgeless power factor correction A.C.-D.C. converter | |
CN102496933B (en) | Double parallel active power filtering apparatus | |
CN104578743B (en) | Power-supplying circuit | |
CN106655538B (en) | One kind is based on exchange envelope modulation radio energy transmission system | |
CN103313450B (en) | Ultrahigh-frequency high-power induction heating source | |
CN105490360A (en) | Mobile phone wireless charging circuit | |
CN105958661A (en) | Efficient E class resonant type magnetic coupling wireless energy transmission system | |
CN203289677U (en) | Ultrahigh-frequency high-power induction heating power supply | |
CN106655803A (en) | Intelligent half-bridge sine wave voltage conversion circuit based on Vienna PFC | |
CN103796389B (en) | High-high brightness hoisting module, controllable silicon light modulation LED drive circuit and system | |
CN102916497B (en) | A socket for safe electric energy wireless transmission | |
CN114744864A (en) | Power control circuit and control method thereof | |
CN205232491U (en) | Electromagnetism stove circuit | |
CN203278653U (en) | Direct current charging module of full bridge phase shift soft switch | |
CN203590068U (en) | A high-frequency conversion circuit of a resonant wireless power transmission system | |
CN209343216U (en) | A control circuit capable of reducing temperature rise of power devices | |
CN202818099U (en) | A high-efficiency switching power supply frequency modulation circuit | |
CN203883686U (en) | Single-phase rectification inverter | |
CN208723784U (en) | A PFC Converter with Constant Current Output | |
CN201622339U (en) | A switching power supply full-wave zero-crossing detection circuit | |
CN205070803U (en) | Exchange direct transform ware based on singlechip | |
CN205622292U (en) | Wireless charging circuit of cell -phone | |
CN206506442U (en) | An intelligent half-bridge sine wave voltage conversion circuit based on Vienna PFC | |
CN102270933B (en) | High voltage power circuit with AC input and low-power isolated fixed output |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20131113 Effective date of abandoning: 20150311 |
|
RGAV | Abandon patent right to avoid regrant |