CN203224625U - Positioning accuracy detection device of high-accuracy airborne laser radar system - Google Patents
Positioning accuracy detection device of high-accuracy airborne laser radar system Download PDFInfo
- Publication number
- CN203224625U CN203224625U CN 201320089934 CN201320089934U CN203224625U CN 203224625 U CN203224625 U CN 203224625U CN 201320089934 CN201320089934 CN 201320089934 CN 201320089934 U CN201320089934 U CN 201320089934U CN 203224625 U CN203224625 U CN 203224625U
- Authority
- CN
- China
- Prior art keywords
- laser
- detection rod
- gps receiver
- support frame
- test rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title abstract description 123
- 230000007246 mechanism Effects 0.000 claims abstract description 11
- 238000012360 testing method Methods 0.000 claims description 20
- 238000005259 measurement Methods 0.000 abstract description 8
- 230000003068 static effect Effects 0.000 description 28
- 238000000034 method Methods 0.000 description 9
- 238000007689 inspection Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
Images
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本实用新型公开了一种高精度机载激光雷达系统的定位精度检测装置,包括GPS接收机支撑架、GPS接收机、检测杆边支撑架、第一激光脚点检测杆、第二激光脚点检测杆和检测杆中心支撑架,所述GPS接收机固装在GPS接收机支撑架上,所述GPS接收机支撑架上设置GPS接收机水平调节机构,所述检测杆边支撑架为多个,多个检测杆边支撑架将第一激光脚点检测杆和第二激光脚点检测杆支撑在一个水平面上,所述第一激光脚点检测杆的一端和第二激光脚点检测杆的一端交于检测杆中心支撑架上,所述第一激光脚点检测杆和第二激光脚点检测杆间的夹角≥90°。从而实现操作简单、测量误差小的优点,同时方便野外使用。
The utility model discloses a positioning accuracy detection device for a high-precision airborne laser radar system, which comprises a GPS receiver support frame, a GPS receiver, a detection rod side support frame, a first laser foot point detection rod, and a second laser foot point The detection rod and the central support frame of the detection rod, the GPS receiver is fixed on the GPS receiver support frame, the GPS receiver support frame is provided with a GPS receiver level adjustment mechanism, and the detection rod side support frame is a plurality of , a plurality of detection rod side support frames support the first laser foot detection rod and the second laser foot detection rod on a horizontal plane, one end of the first laser foot detection rod and the second laser foot detection rod One end is intersected on the central support frame of the detection rod, and the included angle between the first laser foot point detection rod and the second laser foot point detection rod is ≥90°. Therefore, the advantages of simple operation and small measurement error are realized, and at the same time, it is convenient for field use.
Description
技术领域 technical field
本实用新型涉及激光雷达定位领域,具体地,涉及一种高精度机载激光雷达系统的定位精度检测装置。 The utility model relates to the field of laser radar positioning, in particular to a positioning accuracy detection device of a high-precision airborne laser radar system.
背景技术 Background technique
目前,激光雷达(LiDAR)系统是一种融激光测距、全球定位系统、惯性导航系统技术和高分辨率数码影像技术于一身的用于快速获取地面及地面目标三维高空间分辨率的主动式观测系统。在近十年内,机载LiDAR技术作为一种精确、快速获取地表三维信息的方法在世界发达国家已经被普遍接受,在地形监测、环境监测、三维测试建模等诸多领域有广阔的发展前景和应用需求(Ackeman F, et al, Airborne laser scanning - present status and future expectation. ISPRS JPRS, 1999(54):64-67)。 At present, the LiDAR system is an active system that integrates laser ranging, global positioning system, inertial navigation system technology and high-resolution digital imaging technology to quickly obtain three-dimensional high spatial resolution of ground and ground targets. observation system. In the past ten years, airborne LiDAR technology has been widely accepted in developed countries in the world as a method of accurately and quickly obtaining 3D surface information, and has broad development prospects in many fields such as terrain monitoring, environmental monitoring, and 3D test modeling. Application requirements (Ackeman F, et al, Airborne laser scanning - present status and future expectation. ISPRS JPRS, 1999(54):64-67).
在实际工程中激光雷达系统的定位精度一般通过激光点云和数码影像融合生成的DOM或者通过从激光点云中寻找地物特征点来判断激光点云的精。前一种方法引入了生成DOM,因此存在激光点云和数码影像的配准误差和DOM影像像素大小误差,因此只能粗糙低评价激光点云的定位精度,误差在分米级别。后一种方法由于特征物的大小以及是否判断面或线是否规则、激光点云密度和激光脚点与反射点的误差等原因使得判断特征点的准确性也存在误差,这一方法中光激光点云的密度或者在实地找特征点时的任务误差都有10cm左右。 In actual engineering, the positioning accuracy of the laser radar system is generally judged by the DOM generated by the fusion of the laser point cloud and the digital image, or by finding the feature points of the ground object from the laser point cloud to judge the accuracy of the laser point cloud. The former method introduces the generation of DOM, so there are registration errors between the laser point cloud and the digital image and the pixel size error of the DOM image, so the positioning accuracy of the laser point cloud can only be roughly evaluated, and the error is at the decimeter level. The latter method also has errors in the accuracy of judging feature points due to the size of the feature and whether it is judged whether the surface or line is regular, the density of the laser point cloud, and the error between the laser foot point and the reflection point. The density of the point cloud or the task error when looking for feature points in the field is about 10cm.
实用新型内容 Utility model content
本实用新型的目的在于,针对上述问题,提出一种高精度机载激光雷达系统的定位精度检测装置,以实现操作简单、测量误差小的优点。 The purpose of this utility model is to propose a positioning accuracy detection device for a high-precision airborne laser radar system to achieve the advantages of simple operation and small measurement error in view of the above problems.
为实现上述目的,本实用新型采用的技术方案是: For realizing above-mentioned object, the technical scheme that the utility model adopts is:
一种高精度机载激光雷达系统的定位精度检测装置,包括GPS接收机支撑架、GPS接收机、检测杆边支撑架、第一激光脚点检测杆、第二激光脚点检测杆和检测杆中心支撑架,所述GPS接收机固装在GPS接收机支撑架上,所述GPS接收机支撑架上设置GPS接收机水平调节机构,所述检测杆边支撑架为多个,多个检测杆边支撑架将第一激光脚点检测杆和第二激光脚点检测杆支撑在一个水平面上,所述第一激光脚点检测杆的一端和第二激光脚点检测杆的一端交于检测杆中心支撑架上,所述第一激光脚点检测杆和第二激光脚点检测杆间的夹角≥90°。 A positioning accuracy detection device for a high-precision airborne laser radar system, including a GPS receiver support frame, a GPS receiver, a detection rod side support frame, a first laser foot point detection rod, a second laser foot point detection rod and a detection rod The central support frame, the GPS receiver is fixed on the GPS receiver support frame, the GPS receiver horizontal adjustment mechanism is set on the GPS receiver support frame, the detection rod side support frame is multiple, and the multiple detection rods The side support frame supports the first laser foot point detection rod and the second laser foot point detection rod on a horizontal plane, and one end of the first laser foot point detection rod and one end of the second laser foot point detection rod are intersected on the detection rod On the central support frame, the included angle between the first laser foot point detection rod and the second laser foot point detection rod is ≥90°.
根据本实用新型的优选实施例,所述第一激光脚点检测杆和第二激光脚点检测杆通过定位销钉固定在检测杆中心支撑架上。 According to a preferred embodiment of the present utility model, the first laser foot point detection rod and the second laser foot point detection rod are fixed on the central support frame of the detection rod by positioning pins.
根据本实用新型的优选实施例,所述第一激光脚点检测杆和第二激光脚点检测杆间的夹角为90°。 According to a preferred embodiment of the present utility model, the included angle between the first laser foot point detection rod and the second laser foot point detection rod is 90°.
根据本实用新型的优选实施例,所述GPS接收机支撑架和检测杆边支撑架的GPS接收机相位中心水平对准点处于同一垂线上。 According to a preferred embodiment of the present invention, the horizontal alignment point of the GPS receiver phase center of the GPS receiver support frame and the detection pole edge support frame is on the same vertical line.
同时本实用新型的技术方案还公开了一种高精度机载激光雷达系统的定位精度检测装置的检测方法,包括以下步骤: At the same time, the technical solution of the utility model also discloses a detection method of a positioning accuracy detection device of a high-precision airborne laser radar system, including the following steps:
a、在测量区架设多架上述的高精度机载激光雷达系统的定位精度检测装置、下文中的高精度机载激光雷达系统的定位精度检测装置简称为定位精度检测装置,每个定位精度检测装置为一个GPS静态观测点; a. Set up multiple positioning accuracy detection devices of the above-mentioned high-precision airborne laser radar system in the measurement area. The device is a GPS static observation point;
b、利用上述架设的定位精度检测装置采集测量区的GPS静态观测数据,并选定上述多个定位精度检测装置其中一个采集的GPS静态观测点为基准点,利用上述采集的GPS静态观测数据对已架设GPS静态观测点做平差处理,获得这些GPS静态观测点的坐标; B. Utilize the positioning accuracy detection device erected above to collect the GPS static observation data of the measurement area, and select the GPS static observation point collected by one of the above-mentioned multiple positioning accuracy detection devices as the reference point, and use the GPS static observation data of the above-mentioned collection to GPS static observation points have been set up for adjustment processing, and the coordinates of these GPS static observation points are obtained;
c、以上述获得的GPS静态观测点的坐标作为基准,分离出激光脚点检测杆检测出的激光点云数据,并按检测方式分组存放; c. Taking the coordinates of the GPS static observation points obtained above as a reference, separate the laser point cloud data detected by the laser foot point detection rod, and store them in groups according to the detection method;
d、根据上述的激光点云数据求出每个GPS静态观测点的精确坐标。 d. Calculate the precise coordinates of each GPS static observation point based on the above-mentioned laser point cloud data.
根据本实用新型的优选实施例,上述计算GPS静态观测点的精确坐标,包括以下步骤: According to a preferred embodiment of the present utility model, the above-mentioned calculation of the precise coordinates of the GPS static observation point includes the following steps:
选取一组激光点云数据,用直线方程Ax+By+Cz=0去拟合该组激光点云数据,并求的方程中的系数A、B、C使得方程 的值最小,公式中di是指激光脚点到直线方程Ax+By+cZ=0的距离; Select a set of laser point cloud data, use the straight line equation Ax+By+Cz=0 to fit the set of laser point cloud data, and find the coefficients A, B, and C in the equation so that the equation The value of is the smallest, and di in the formula refers to the distance from the laser foot point to the straight line equation Ax+By+cZ=0;
求得上述直线方程Ax+By+Cz=0在XY平面的投影直线方程ax+by=0,然后调整方程系数a和b为a1和b1,使得上述的激光点云数据在XY平面的投影点分布在直线a1x+b1y=0两边的个数基本相等; Obtain the projection line equation ax+by=0 of the above linear equation Ax+By+Cz=0 on the XY plane, and then adjust the equation coefficients a and b to a1 and b1, so that the projection point of the above laser point cloud data on the XY plane The numbers distributed on both sides of the straight line a1x+b1y=0 are basically equal;
获得同一检测点的另一组激光点云的拟合直线方程A2x+B2y+C2Z=0及其在XY平面的投影方程a2x+b2y=0; Obtain the fitting line equation A2x+B2y+C2Z=0 of another set of laser point clouds of the same detection point and its projection equation a2x+b2y=0 on the XY plane;
求解方程a1x+b1y=0和方程a2x+b2y=0的交点作为该检查点的平面坐标; Solve the intersection point of the equation a1x+b1y=0 and the equation a2x+b2y=0 as the plane coordinate of the checkpoint;
该GPS静态观测点的高程坐标则通过量取检测杆边支撑架的离地高度获得;把获得的GPS静态观测点坐标中的高度坐标减去检测杆边支撑架的离地高度获取的高度差,即为GPS静态观测点的高度坐标。 The elevation coordinate of the GPS static observation point is obtained by measuring the height above the ground of the support frame on the side of the detection pole; the height difference obtained by subtracting the height coordinate of the static observation point coordinates of the GPS , which is the height coordinate of the GPS static observation point.
本实用新型的有益效果是:本实用新型的技术方案通过交叉放置的两根大细长比、高反射率第一激光脚点检测杆和第二激光脚点检测杆作为激光点云检测杆并把交叉杆的理论交点作为激光雷达定位精度检查点,在飞行器搭载激光雷达完成项目数据采集后,根据架设的两根交叉杆测得的两组激光点云,利用最小二乘法分别拟合出这两组激光点云的两个直线方程,然后求出这两条直线在水平面的投影直线方程并求得这两个投影直线交点的坐标作为激光雷达定位精度检查点的平面坐标,而激光雷达定位精度检查点的高度坐标则通过量取中心支撑架的高度和检测杆的半径获得;然后通过比较放置在中心支撑架正上方的同步观测GPS基站坐标和激光雷达定位精度检查点坐标的误差获得该点的激光雷达定位精度。从而实现操作简单、测量误差小的优点,同时方便野外使用。 The beneficial effects of the utility model are: the technical solution of the utility model uses two cross-placed first laser foot point detection rods and second laser foot point detection rods with large slenderness ratio and high reflectivity as laser point cloud detection rods and The theoretical intersection point of the crossbar is used as the inspection point of the laser radar positioning accuracy. After the aircraft carries the laser radar to complete the project data collection, according to the two sets of laser point clouds measured by the two crossbars erected, the least square method is used to fit the two sets of point clouds respectively. Two straight line equations of two sets of laser point clouds, and then calculate the projection straight line equations of these two straight lines on the horizontal plane and obtain the coordinates of the intersection of these two projected straight lines as the plane coordinates of the laser radar positioning accuracy check point, while the laser radar positioning The height coordinates of the accuracy check point are obtained by measuring the height of the central support frame and the radius of the detection rod; then the error is obtained by comparing the coordinates of the synchronously observed GPS base station placed directly above the center support frame and the coordinates of the laser radar positioning accuracy check point. LiDAR positioning accuracy of points. Therefore, the advantages of simple operation and small measurement error are realized, and at the same time, it is convenient for field use.
下面通过附图和实施例,对本实用新型的技术方案做进一步的详细描述。 The technical solutions of the present utility model will be further described in detail through the drawings and embodiments below.
附图说明 Description of drawings
图1为本实用新型实施例所述的高精度机载激光雷达系统的定位精度检测装置的结构示意图; Fig. 1 is a schematic structural diagram of a positioning accuracy detection device of a high-precision airborne laser radar system described in an embodiment of the present invention;
图2为图1所示的高精度机载激光雷达系统的定位精度检测装置中C处的放大图。 FIG. 2 is an enlarged view of point C in the positioning accuracy detection device of the high-precision airborne lidar system shown in FIG. 1 .
结合附图,本实用新型实施例中附图标记如下: In conjunction with the accompanying drawings, reference signs are as follows in the utility model embodiment:
1-GPS接收机支撑架;2-GPS接收机水平调节机构;3- GPS接收机;4 、7、11、12-检测杆边支撑架;5- 第一激光脚点检测杆;6 -检测杆中心支撑架;8 -定位销钉;9- GPS接收机相位中心水平对准点;10-第二激光脚点检测杆。 1-GPS receiver support frame; 2-GPS receiver level adjustment mechanism; 3-GPS receiver; 4, 7, 11, 12-side support frame of the detection rod; 5-first laser foot point detection rod; 6-detection Rod center support frame; 8 - positioning pin; 9 - GPS receiver phase center horizontal alignment point; 10 - second laser foot point detection rod.
具体实施方式 Detailed ways
以下结合附图对本实用新型的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本实用新型,并不用于限定本实用新型。 The preferred embodiments of the present utility model are described below in conjunction with the accompanying drawings. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present utility model, and are not intended to limit the present utility model.
如图1、图2所示,一种高精度机载激光雷达系统的定位精度检测装置,包括GPS接收机支撑架、GPS接收机、检测杆边支撑架、第一激光脚点检测杆、第二激光脚点检测杆和检测杆中心支撑架, GPS接收机固装在GPS接收机支撑架上, GPS接收机支撑架上设置GPS接收机水平调节机构,检测杆边支撑架为4个,也可根据环境增减,4个检测杆边支撑架将第一激光脚点检测杆和第二激光脚点检测杆支撑在一个水平面上,第一激光脚点检测杆的一端和第二激光脚点检测杆的一端交于检测杆中心支撑架上,第一激光脚点检测杆和第二激光脚点检测杆间的夹角≥90°,该处设置为90°,
As shown in Figure 1 and Figure 2, a positioning accuracy detection device for a high-precision airborne laser radar system includes a GPS receiver support frame, a GPS receiver, a detection rod side support frame, a first laser foot point detection rod, a
其中,第一激光脚点检测杆和第二激光脚点检测杆通过定位销钉固定在检测杆中心支撑架上。GPS接收机支撑架和检测杆边支撑架的GPS接收机相位中心水平对准点处于同一垂线上。 Wherein, the first laser foot point detection rod and the second laser foot point detection rod are fixed on the central support frame of the detection rod through positioning pins. The GPS receiver support frame and the GPS receiver phase center horizontal alignment point of the detection pole support frame are on the same vertical line.
一种高精度机载激光雷达系统的定位精度检测装置的检测方法,包括以下步骤: A detection method for a positioning accuracy detection device of a high-precision airborne laser radar system, comprising the following steps:
a、在测量区架设多架上述的高精度机载激光雷达系统的定位精度检测装置、下文中的高精度机载激光雷达系统的定位精度检测装置简称为定位精度检测装置,每个定位精度检测装置为一个GPS静态观测点; a. Set up multiple positioning accuracy detection devices of the above-mentioned high-precision airborne laser radar system in the measurement area. The positioning accuracy detection devices of the high-precision airborne laser radar system are referred to as positioning accuracy detection devices below. The device is a GPS static observation point;
b、利用上述架设的定位精度检测装置采集测量区的GPS静态观测数据,并选定上述多个定位精度检测装置其中一个采集的GPS静态观测点为基准点,利用上述采集的GPS静态观测数据对已架设GPS静态观测点做平差处理,获得这些GPS静态观测点的坐标; B. Utilize the positioning accuracy detection device erected above to collect the GPS static observation data of the measurement area, and select the GPS static observation point collected by one of the above-mentioned multiple positioning accuracy detection devices as the reference point, and use the GPS static observation data of the above-mentioned collection to GPS static observation points have been set up for adjustment processing, and the coordinates of these GPS static observation points are obtained;
c、以上述获得的GPS静态观测点的坐标作为基准,分离出激光脚点检测杆检测出的激光点云数据,并按检测方式分组存放; c. Taking the coordinates of the GPS static observation points obtained above as a reference, separate the laser point cloud data detected by the laser foot point detection rod, and store them in groups according to the detection method;
d、根据上述的激光点云数据求出每个GPS静态观测点的精确坐标。 d. Calculate the precise coordinates of each GPS static observation point based on the above-mentioned laser point cloud data.
其中,计算GPS静态观测点的精确坐标,包括以下步骤: Wherein, calculating the precise coordinates of the GPS static observation point includes the following steps:
选取一组激光点云数据,用直线方程Ax+By+Cz=0去拟合该组激光点云数据,并求的方程中的系数A、B、C使得方程的值最小,公式中di是指激光脚点到直线方程Ax+By+cZ=0的距离; Select a set of laser point cloud data, use the straight line equation Ax+By+Cz=0 to fit the set of laser point cloud data, and find the coefficients A, B, and C in the equation so that the equation The value of is the smallest, and di in the formula refers to the distance from the laser foot point to the straight line equation Ax+By+cZ=0;
求得上述直线方程Ax+By+Cz=0在XY平面的投影直线方程ax+by=0,然后调整方程系数a和b为a1和b1,使得上述的激光点云数据在XY平面的投影点分布在直线a1x+b1y=0两边的个数基本相等; Obtain the projection line equation ax+by=0 of the above linear equation Ax+By+Cz=0 on the XY plane, and then adjust the equation coefficients a and b to a1 and b1, so that the projection point of the above laser point cloud data on the XY plane The numbers distributed on both sides of the straight line a1x+b1y=0 are basically equal;
获得同一检测点的另一组激光点云的拟合直线方程A2x+B2y+C2Z=0及其在XY平面的投影方程a2x+b2y=0; Obtain the fitting line equation A2x+B2y+C2Z=0 of another set of laser point clouds of the same detection point and its projection equation a2x+b2y=0 on the XY plane;
求解方程a1x+b1y=0和方程a2x+b2y=0的交点作为该检查点的平面坐标; Solve the intersection point of the equation a1x+b1y=0 and the equation a2x+b2y=0 as the plane coordinate of the checkpoint;
该GPS静态观测点的高程坐标则通过量取检测杆边支撑架的离地高度获得;把获得的GPS静态观测点坐标中的高度坐标减去检测杆边支撑架的离地高度获取的高度差,即为GPS静态观测点的高度坐标。 The elevation coordinate of the GPS static observation point is obtained by measuring the height above the ground of the support frame on the side of the detection pole; the height difference obtained by subtracting the height coordinate of the static observation point coordinates of the GPS , which is the height coordinate of the GPS static observation point.
其具体安装和测量过程如下: The specific installation and measurement process is as follows:
1.先在测区找一些列较平坦的开阔地面(为了以后RTK或者GPS基站同步观察数据质量良好,最好选择GPS接受信号良好的地面); 1. First find a series of relatively flat open ground in the survey area (for the future RTK or GPS base station to observe the data with good quality, it is best to choose the ground with good GPS receiving signal);
2.把检测杆边支撑架4、检测杆中心支撑架6、检测杆边支撑架7、检测杆边支撑架11和检测杆边支撑架12根据检测杆的长度稳定地架设在地面上,并且使检测杆边支撑架4、检测杆中心支撑架6、检测杆边支撑架7、形成一条直线,、检测杆中心支撑架6、检测杆边支撑架11和检测杆边支撑架12形成另一条直线,并且保证两条直线相交并形成一较大夹角,比如90°夹角;
2. The detection rod
3.把激光脚点检测杆5放置在检测杆边支撑架4、检测杆中心支撑架6、检测杆边支撑架7;
3. Place the laser foot
4.把激光脚点检测杆10放置在检测杆中心支撑架6、检测杆边支撑架11和检测杆边支撑架12上;
4. Place the laser foot
5.用定位销钉8把激光脚点检测杆5和激光脚点检测杆10定位在检测杆中心支撑架6上;
5. Position the laser foot
6.把GPS接收机支撑架1架设在检测杆中心支撑架6 的上方,并使其中心孔大致对准检测杆中心支撑架6上的GPS接收机相位中心水平对准点9;
6. The GPS
7.把GPS接收机水平调节机构2架设在GPS接收机支撑架1上,并调节GPS接收机支撑架1上的三个支腿长度和GPS接收机水平调节机构2的调节旋钮,使得GPS接收机水平调节机构2基本处于水平位置(具体调节方法参考GPS基准站相关架设方法);
7. Set up the GPS receiver
8.移动GPS接收机水平调节机构2,通过其望远镜使其中心处于检测杆中心支撑架6上的GPS接收机相位中心水平对准点9正上方,并锁紧GPS接收机水平调节机构2;
8. Move the GPS receiver
9.把GPS接收机3架设在GPS接收机水平调节机构2上,并量取GPS接收机的测高片到GPS接收机相位中心水平对准点9的距离,记为ΔH;
9. Set up the
10.以静态观察模式启动GPS接收机接收卫星信号; 10. Start the GPS receiver in static observation mode to receive satellite signals;
11.重复步骤2~10,完成其它检测点的检测装置的架设工作; 11. Repeat steps 2 to 10 to complete the erection of detection devices at other detection points;
12.启动激光雷达系统,并让飞行平台搭载激光雷达系统完成测区的数据采集工作,顺便也完成了检测点的激光点云采集工作; 12. Start the laser radar system, and let the flight platform carry the laser radar system to complete the data collection of the survey area, and also complete the laser point cloud collection of the inspection point by the way;
13.用已知点或者其中一个GPS静态观测点为基准点,利用已采集的GPS静态观测数据对已架设GPS静态观测点做平差处理,并获得这些检测点(或者说控制点)的坐标; 13. Use the known point or one of the GPS static observation points as the reference point, use the collected GPS static observation data to perform adjustment processing on the established GPS static observation points, and obtain the coordinates of these detection points (or control points);
14.用步骤13获得的检测点的坐标作为基准,解算激光点云数据,并利用激光点云处理软件(比如TerreaSolid)分离出激光脚点检测杆检测出的激光点云,并按检测方式分组存放; 14. Use the coordinates of the detection point obtained in step 13 as a reference to solve the laser point cloud data, and use laser point cloud processing software (such as TerreaSolid) to separate the laser point cloud detected by the laser foot point detection rod, and store them in groups according to the detection method ;
15.选取一组激光点云数据,用直线方程Ax+By+Cz=0去拟合该组激光点云数据,并求的方程中的系数A、B、C使得方程的值最小,公式中的di是指激光脚点到直线方程Ax+By+cZ=0的距离; 15. Select a set of laser point cloud data, use the straight line equation Ax+By+Cz=0 to fit the set of laser point cloud data, and find the coefficients A, B, and C in the equation so that the equation The value of is the smallest, di in the formula refers to the distance from the laser foot point to the straight line equation Ax+By+cZ=0;
16.求得直线方程Ax+By+Cz=0在XY平面的投影直线方程ax+by=0,然后调整方程系数a和b为a1和b1,使得步骤15中的激光点云数据在XY平面的投影点分布在直线a1x+b1y=0两边的个数基本相等; 16. Obtain the projection line equation ax+by=0 of the line equation Ax+By+Cz=0 on the XY plane, and then adjust the equation coefficients a and b to a1 and b1, so that the projection of the laser point cloud data in step 15 on the XY plane The number of points distributed on both sides of the straight line a1x+b1y=0 is basically equal;
17.重复步骤15~16,获得同一检测点的另一组激光点云的拟合直线方程A2x+B2y+C2Z=0及其在XY平面的投影方程a2x+b2y=0; 17. Repeat steps 15~16 to obtain the fitting line equation A2x+B2y+C2Z=0 and its projection equation on the XY plane a2x+b2y=0 of another set of laser point clouds at the same detection point;
18.求解方程a1x+b1y=0和方程a2x+b2y=0的交点作为该检查点的平面坐标,而该检查点的高程坐标则通过量取检测杆中心支撑架6的离地高度获得; 18. Solve the intersection point of equation a1x+b1y=0 and equation a2x+b2y=0 as the plane coordinates of this checkpoint, and the elevation coordinate of this checkpoint is obtained by measuring the height above the ground of the central support frame 6 of the detection rod;
19.把步骤13获得的控制点坐标中的高程坐标减去在架设该检测装置时量取的高度差获得的坐标作为该检查点的真值; 19. Subtract the coordinate obtained by the elevation coordinate in the control point coordinate obtained in step 13 from the height difference measured when erecting the detection device as the true value of the checkpoint;
20.计算步骤18和步骤19获得平面差值和高程差值,作为该检查点的激光点云精度值; 20. Calculation step 18 and step 19 obtain plane difference value and height difference value, as the laser point cloud precision value of this inspection point;
21.重复步骤15~20,求的得整个测区架设的所有检测装置处的激光点云精度值,并计算出这些检查点的均方根值、最大值、最小值、平均值作为该测区的激光点云精度评定指标。 twenty one. Repeat steps 15 to 20 to obtain the laser point cloud accuracy values of all detection devices erected in the entire survey area, and calculate the root mean square value, maximum value, minimum value, and average value of these inspection points as the survey area. Laser point cloud accuracy evaluation index.
在该实施方式中,如果没有足够的GPS接收机作为基站用,也可以用RTK方式通过测量检测杆中心支撑架6上的GPS接收机相位中心水平对准点9的坐标来代替该检查点的坐标真值,只是其精度略有降低。 In this embodiment, if there are not enough GPS receivers to be used as base stations, the coordinates of the inspection point can also be replaced by measuring the coordinates of the GPS receiver phase center horizontal alignment point 9 on the central support frame 6 of the detection rod in RTK mode True value, only with slightly reduced precision.
在该实施方式中,如果把检测杆中心支撑架6上的GPS接收机相位中心水平对准点9架设在已知点的正上方,则可以用已知点的坐标作为真值,处理过程类似。 In this embodiment, if the horizontal alignment point 9 of the phase center of the GPS receiver on the central support frame 6 of the detection rod is erected directly above the known point, the coordinates of the known point can be used as the true value, and the processing process is similar.
最后应说明的是:以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,尽管参照前述实施例对本实用新型进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。 Finally, it should be noted that: the above is only a preferred embodiment of the utility model, and is not intended to limit the utility model, although the utility model has been described in detail with reference to the foregoing embodiments, for those skilled in the art , it is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some of the technical features. Any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the present utility model shall be included in the protection scope of the present utility model.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320089934 CN203224625U (en) | 2013-02-27 | 2013-02-27 | Positioning accuracy detection device of high-accuracy airborne laser radar system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320089934 CN203224625U (en) | 2013-02-27 | 2013-02-27 | Positioning accuracy detection device of high-accuracy airborne laser radar system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203224625U true CN203224625U (en) | 2013-10-02 |
Family
ID=49251627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201320089934 Expired - Fee Related CN203224625U (en) | 2013-02-27 | 2013-02-27 | Positioning accuracy detection device of high-accuracy airborne laser radar system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203224625U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103176180A (en) * | 2013-02-27 | 2013-06-26 | 四川省科学城久利科技实业有限责任公司 | Device and method for detecting positioning precision of high-precision airborne laser radar system |
-
2013
- 2013-02-27 CN CN 201320089934 patent/CN203224625U/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103176180A (en) * | 2013-02-27 | 2013-06-26 | 四川省科学城久利科技实业有限责任公司 | Device and method for detecting positioning precision of high-precision airborne laser radar system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Caroti et al. | Accuracy assessment in structure from motion 3D reconstruction from UAV-born images: The influence of the data processing methods | |
CN112629431B (en) | Civil structure deformation monitoring method and related equipment | |
CN110837080B (en) | Rapid calibration method of laser radar mobile measurement system | |
Xie et al. | Study on construction of 3D building based on UAV images | |
CN103176180B (en) | Device and method for detecting positioning precision of high-precision airborne laser radar system | |
CN103323855B (en) | A kind of precision acquisition methods of baseline dynamic measurement system | |
CN109242918B (en) | Helicopter-borne binocular stereo vision calibration method | |
CN103217688B (en) | Airborne laser radar point cloud adjustment computing method based on triangular irregular network | |
WO2022126339A1 (en) | Method for monitoring deformation of civil structure, and related device | |
CN116625354B (en) | High-precision topographic map generation method and system based on multi-source mapping data | |
CN104990515A (en) | Three-dimensional shape measurement system and method for large-size object | |
CN109782276A (en) | A kind of airborne heavy rail interference SAR method for registering of Long baselines | |
CN103487033A (en) | River surface photographic surveying method based on height-change homography | |
CN114283070B (en) | Method for manufacturing terrain section by fusing unmanned aerial vehicle image and laser point cloud | |
CN113281777A (en) | Dynamic measuring method and device for cargo volume | |
CN112455502B (en) | Train positioning method and device based on laser radar | |
CN107621628A (en) | One kind placement angle error calibration method | |
CN110986888A (en) | Aerial photography integrated method | |
CN113744393B (en) | A multi-level slope landslide change monitoring method | |
CN203224625U (en) | Positioning accuracy detection device of high-accuracy airborne laser radar system | |
CN109506562A (en) | A kind of Binocular vision photogrammetry device for the detection of solar wing spreading lock depth | |
CN113592951A (en) | Method and device for calibrating external parameters of vehicle-road cooperative middle-road side camera and electronic equipment | |
Bakuła et al. | Capabilities of a smartphone for georeferenced 3dmodel creation: An evaluation | |
Zhang | Photogrammetric processing of low altitude image sequences by unmanned airship | |
El-Ashmawy | Using smart phones for deformations measurements of structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Han Xiaoyan Inventor after: Pan Wenwu Inventor after: Hu Can Inventor after: Tang Dan Inventor after: Song Liang Inventor after: Dou Yanjuan Inventor after: Wang Xin Inventor after: Tang Hailong Inventor after: He Yanlong Inventor before: He Xingrong Inventor before: Li Shiping Inventor before: Li Lu Inventor before: Qu Ming Inventor before: Xiao Qifan Inventor before: Fan Qiang |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131002 |