CN203206110U - 电荷泵电路 - Google Patents

电荷泵电路 Download PDF

Info

Publication number
CN203206110U
CN203206110U CN 201320089824 CN201320089824U CN203206110U CN 203206110 U CN203206110 U CN 203206110U CN 201320089824 CN201320089824 CN 201320089824 CN 201320089824 U CN201320089824 U CN 201320089824U CN 203206110 U CN203206110 U CN 203206110U
Authority
CN
China
Prior art keywords
sequence switch
clock signal
electrically connected
electric capacity
pumping electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN 201320089824
Other languages
English (en)
Inventor
丁启源
赵德林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Galaxycore Shanghai Ltd Corp
Original Assignee
Galaxycore Shanghai Ltd Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galaxycore Shanghai Ltd Corp filed Critical Galaxycore Shanghai Ltd Corp
Priority to CN 201320089824 priority Critical patent/CN203206110U/zh
Application granted granted Critical
Publication of CN203206110U publication Critical patent/CN203206110U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本实用新型涉及一种电荷泵电路,所述电荷泵电路包括:第一泵送电容、第二泵送电容、电源端口(Vcc)、接地端口(GND)、输出端口(Vout)和多个时序开关。所述电源端口与所述输出端口分别通过时序开关并联于所述第一泵送电容的第一端,所述电源端口与所述接地端口分别通过时序开关并联于所述第一泵送电容的第二端;所述电源端口与所述输出端口分别通过时序开关并联于所述第二泵送电容的第一端,所述电源端口与所述接地端口分别通过时序开关并联于所述第二泵送电容的第二端;所述第一泵送电容的第一端与第二泵送电容的第一端通过时序开关电性串联。本实用新型采用两个泵送电容交替输出与电荷回收机制降低了电路能耗及输出纹波。

Description

电荷泵电路
技术领域
本实用新型涉及一种电荷泵电路,特别涉及一种电荷泵电路。
背景技术
电荷泵电路是一种DC-DC电路,可以产生比输入电源电压更高的输出电压,作为其它电路模块的工作电压。目前电荷泵电路被普遍应用于非挥发性存储器以及TFT LCD驱动等领域,其输出电压的纹波大小及电路的能量效率则成为衡量电荷泵性能的重要指标。目前的三倍压电荷泵电路通常使用两个飞电容(flying capacitor)和两相非交叠时序信号,利用两个电容的串联来实现三倍电源电压的输出,如附图1所示。但是这种电路存在一些问题,该电路生成三倍电源电压时需要使用开关将两个电容串联,这将会增加电荷泵电路对外输出时的能量损耗。此外,该电路只在输出相位生成三倍电源电压的输出电压,而在其充电相位下输出电压只能依靠负载电容保持,这将会导致输出电压产生较大的纹波。
实用新型内容
鉴于现有技术的上述问题,本实用新型的目的是提供一种低能耗以及优化输出纹波的电荷泵电路。
为达上述目的本实用新型提出一种电荷泵电路,包括:第一泵送电容、第二泵送电容、电源端口(Vcc)、接地端口(GND)、输出端口(Vout)、多个时序开关;所述电源端口与所述输出端口分别通过时序开关并联于所述第一泵送电容的第一端,所述电源端口与所述接地端口分别通过时序开关并联于所述第一泵送电容的第二端;所述电源端口与所述输出端口分别通过时序开关并联于所述第二泵送电容的第一端,所述电源端口与所述接地端口分别通过时序开关并联于所述第二泵送电容的第二端;所述第一泵送电容的第一端与第二泵送电容的第一端通过时序开关电性串联。
优选的,所述时序开关包括:
第一时序开关,包括控制端、第一端与第二端,所述第一时序开关的控制端接收第三时序信号,所述第一时序开关的第一端电性连接至所述第一泵送电容的第一端,所述第一时序开关的第二端电性连接至所述第二泵送电容的第一端;
第二时序开关,包括控制端、第一端与第二端,所述第二时序开关的控制端接收第一时序信号,所述第二时序开关的第一端电性连接至所述电源端口,所述第二时序开关的第二端电性连接至所述第一泵送电容的第一端;
第三时序开关,包括控制端、第一端与第二端,所述第三时序开关的控制端接收第六时序信号,所述第三时序开关的第一端电性连接至所述接地端口,所述第三时序开关的第二端电性连接至所述第一泵送电容的第二端;
第四时序开关,包括控制端、第一端与第二端,所述第四时序开关的控制端接收第二时序信号,所述第四时序开关的第一端电性连接至所述电源端口,所述第四时序开关的第二端电性连接至所述第二泵送电容的第一端;
第五时序开关,包括控制端、第一端与第二端,所述第五时序开关的控制端接收第七时序信号,所述第五时序开关的第一端电性连接至所述接地端口,所述第五时序开关的第二端电性连接至所述第二泵送电容的第二端;
第六时序开关,包括控制端、第一端与第二端,所述第六时序开关的控制端接收第二时序信号,所述第六时序开关的第一端电性连接至所述输出端口,所述第六时序开关的第二端电性连接至所述第一泵送电容的第一端;
第七时序开关,包括控制端、第一端与第二端,所述第七时序开关的控制端接收第五时序信号,所述第七时序开关的第一端电性连接至所述电源端口,所述第七时序开关的第二端电性连接至所述第一泵送电容的第二端;
第八时序开关,包括控制端、第一端与第二端,所述第八时序开关的控制端接收第一时序信号,所述第八时序开关的第一端电性连接至所述输出端口,所述第八时序开关的第二端电性连接至所述第二泵送电容的第一端;
第九时序开关,包括控制端、第一端与第二端,所述第九时序开关的控制端接收第四时序信号,所述第九时序开关的第一端电性连接至所述电源端口,所述第九时序开关的第二端电性连接至所述第二泵送电容的第二端。
优选的,所述第一时序信号与所述第二时序信号为第一组两相非交叠时序信号;所述第四时序信号与所述第五时序信号为第二组两相非交叠时序信号;所述第六时序信号与所述第七时序信号为第三组两相非交叠时序信号;所述第三时序信号与第一组两相非交叠时序信号非交叠。
优选的,所述第二组两相非交叠时序信号的两个下降沿分别与所述第一组两相非交叠时序信号的两个下降沿同步,两个上升沿分别相对于所述第一组两相非交叠时序信号的两个上升沿延迟一定的时间,以将所述第三时序信号的有效相位包含在内,所述延迟时间不超过所述第一组两相非交叠时序信号的非交叠时间。
优选的,所述第三组两相非交叠时序信号分别是所述第二组两相非交叠时序信号的反相信号。
优选的,所述第一泵送电容与所述第二泵送电容相同。
优选的,所述电源端口(Vcc)、所述接地端口(GND)与所述输出端口(Vout)分别为一个或多个。
优选的,所述第一时序开关为单个PMOS管或单个NMOS管或者是传输门;所述第三时序开关和第五时序开关为N型MOS晶体管;所述第二时序开关、第四时序开关、第六时序开关、第七时序开关、第八时序开关和第九时序开关为P型MOS晶体管。
本实用新型的有益效果为:所述电荷泵电路利用两个充放电单元交替进行输出电压,有效地降低了输出电压的纹波。此外,本实用新型的电荷泵电路利用了电荷回收的机制,有效地降低了电路的能耗。
附图说明
图1是现有技术的三倍压电荷泵电路图。
图2是本实用新型的电路图。
图3是本实用新型一实施例的电路图。
图4是本实用新型时序控制实施例的时序图。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似推广,因此本实用新型不受下面公开的具体实施例的限制。
下面,结合附图对本实用新型的具体实施例进行描述。首先图2为本实用新型的电路图,一种电荷泵电路包括两个充放电单元U1与U2以及一电荷回收时序开关电路,具体包括:第一泵送电容C1、第二泵送电容C2、电源端口Vcc、接地端口GND、输出端口Vout、9个时序开关S1-S9。
在图2所示电路中,第一时序开关S1,包括控制端、第一端与第二端,所述控制端接收第三时序信号CLK3,所述第一端电性连接至第一泵送电容C1的第一端,所述第二端电性连接至第二泵送电容C2的第一端;第二时序开关S2,其包括控制端、第一端与第二端,所述控制端接收第一时序信号CLK1,所述第一端电性连接至电源端口Vcc,所述第二端电性连接至第一泵送电容C1的第一端;第三时序开关S3,其包括控制端、第一端与第二端,所述控制端接收第六时序信号CLK1b’,所述第一端电性连接至接地端口GND,所述第二端电性连接至第一泵送电容C1的第二端;第六时序开关S6,其包括控制端、第一端与第二端,所述控制端接收第二时序信号CLK2,所述第一端电性连接至输出端口Vout,所述第二端电性连接至第一泵送电容C1的第一端;第七时序开关S7,其包括控制端、第一端与第二端,所述控制端接收第五时序信号CLK2’,所述第一端电性连接至电源端口Vcc,所述第二端电性连接至第一泵送电容C1的第二端;第四时序开关S4,其包括控制端、第一端与第二端,所述控制端接收第二时序信号CLK2,所述第一端电性连接至电源端口Vcc,所述第二端电性连接至第二泵送电容C2的第一端;第五时序开关S5,其包括控制端、第一端与第二端,所述控制端接收第七时序信号CLK2b’,所述第一端电性连接至接地端口GND,所述第二端电性连接至第二泵送电容C2的第二端;第八时序开关S8,其包括控制端、第一端与第二端,所述控制端接收第一时序信号CLK1,所述第一端电性连接至输出端口Vout,所述第二端电性连接至第二泵送电容C2的第一端;第九时序开关S9,其包括控制端、第一端与第二端,所述控制端接收第四时序信号CLK1’,所述第一端电性连接至电源端口Vcc,所述第二端电性连接至第二泵送电容C2的第二端。
如图3所示是本实用新型的一实施例,时序开关S2、S4、S6、S7、S8、S9为P型金属氧化物半导体(Metal Oxide Semiconductor,MOS)晶体管,时序开关S1、S3、S5为N型金属氧化物半导体(Metal OxideSemiconductor,MOS)晶体管。
在本实施例中,S1的栅极接收时序信号CLK3,其余两端分别电性连接至第一泵送电容C1的第一端和第二泵送电容C2的第二端;S2的栅极接收时序信号CLK1,漏极与源极分别电性连接至电源端口Vcc和第一泵送电容C1的第一端;S3的栅极接收时序信号CLK1b’,漏极与源极分别电性连接至接地端口GND和第一泵送电容C1的第二端;S6的栅极接收时序信号CLK2,漏极与源极分别电性连接至输出端口Vout和第一泵送电容C1的第一端;S7的栅极接收时序信号CLK2’,漏极与源极分别电性连接至第一泵送电容C1的第二端和电源端口Vcc;S4的栅极接收时序信号CLK2,漏极与源极分别电性连接至电源端口Vcc和第二泵送电容C2的第一端;S5的栅极接收时序信号CLK2b’,漏极与源极分别电性连接至第二泵送电容C2的第二端和接地端口GND;S8的栅极接收时序信号CLK1,漏极与源极分别电性连接至输出端口Vout和第二泵送电容C2的第一端;S9的栅极接收时序信号CLK1’,漏极与源极分别电性连接至第二泵送电容C2的第二端和电源端口Vcc。
图4为时序控制的一具体实施例,如图所示,所述第一时序信号CLK1与所述第二时序信号CLK2为第一组两相非交叠时序信号;所述第四时序信号CLK1’与所述第五时序信号CLK2’为第二组两相非交叠时序信号;所述第六时序信号CLK1b’与所述第七时序信号CLK2b’为第三组两相非交叠时序信号;所述第三时序信号CLK3与第一组两相非交叠时序信号非交叠。所述第二组两相非交叠时序信号的下降沿分别与所述第一组两相非交叠时序信号同步,上升沿分别相对于所述第一组两相非交叠时序信号的上升沿延迟一定的时间,以将所述第三时序信号的有效相位包含在内,所述延迟时间不超过所述第一组两相非交叠时序信号的非交叠时间。所述第三组两相非交叠时序信号分别是所述第二组两相非交叠时序信号的反相信号。
将图4的时序控制应用到图2的电路时,以第三时序信号CLK3的时序周期作为时序控制的时序周期。所述充放电过程为:在第N个时序周期中第一泵送电容C1作为充电电容,同时,第二泵送电容C2作为放电电容对外输出电压,在第N+1个时序周期中第二泵送电容C2作为充电电容,同时第一泵送电容C1作为放电电容对外输出电压,当C1或C2的第一端放电时,将电源电压Vcc加至所述放电电容的第二端使所述放电电容的第一端得到倍增电压。所述电荷回收过程为:在第N个时序周期中C2对外输出后,使C2的第二端与所述电源端口导通,使C1的第二端与所述接地端口导通,同时使C2的第一端与C1的第一端电性导通,使电荷从C2的第一端转移到C1的第一端得到回收电压;在第N+1个时序周期中C1对外输出后,使C1的第二端与所述电源端口导通,使C2的第二端与所述接地端口导通,同时使C1的第一端与C2的第一端电性导通,使电荷从C1的第一端转移到C2的第一端得到回收电压。所述电压输出过程为:在C1或C2对外输出时都是将所述回收电压与所述倍增电压叠加后对外输出。
图4所示时序控制应用于图3所示实施例时,以第三时序信号CLK3的时序周期作为时序控制的时序周期。对于该实施例的时序控制包括以下过程:
充放电过程在第N个时序周期中为:在第N个时序周期结束前提供同时处于有效相位的CLK1、CLK1’与CLK1b’分别使S2、S3、S8、S9处于导通状态,同时提供处于无效相位的其它时序信号使其它时序开关处于关闭状态。在S2与S3导通时提供VCC至C1的第一端同时将C1的第二端接地,此时C1充电;在S8与S9处于导通时提供Vcc至C2的第二端在C2的第一端生成倍增电压,同时C2的第一端接Vout对外输出电压,此时C2放电。
电荷回收过程在第N个时序周期中为:CLK1进入无效相位时,提供处于有效相位的CLK3,同时提供处于有效相位的CLK1’与CLK1b’分别使S1、S9、S3处于导通状态,同时提供处于无效相位的其它时序信号使其它时序开关处于关闭状态。在S3与S9处于导通时将C1的第二端接地,提供Vcc至C2的第二端,S1导通时C1的第一端与C2的第一端电性导通,此时将C2第一端的电压回收至C1的第一端。
电压输出过程在第N个时序周期中是C2的放电过程,将所述回收电压与倍增电压在C2的第一端叠加后对外输出。
充放电过程在第N+1个时序周期中为:在第N+1个时序周期开始时,提供同时处于有效相位的CLK2、CLK2’与CLK2b’分别使S6、S7、S4与S5处于导通状态,同时提供处于无效相位的其它时序信号使其它时序开关处于关闭状态。在S4与S5导通时提供Vcc至C2的第一端同时将C2的第二端接地,此时C2充电;在S6与S7处于导通时提供Vcc至C1的第二端在C2的第一端生成倍增电压,同时C1的第一端接Vout对外输出电压,此时C1放电。
电荷回收过程在第N+1个时序周期中为:CLK2进入无效相位时,CLK3再次进入有效相位,同时提供处于有效相位的CLK2’与CLK2b’分别使S1、S7、S5处于导通状态,同时提供处于无效相位的其它时序信号使其它时序开关处于关闭状态。在S5与S7处于导通时,将C2的第二端接地,提供Vcc至C1的第二端,同时S1处于导通,将C1的第一端与C2的第一端电性导通,此时将C1第一端的电压回收至C2的第一端。
电压输出过程在第N+1个时序周期中是C1的放电过程,将所述回收电压与倍增电压在C1的第一端叠加后对外输出。
结合图3与图4能够得到所述电荷泵电路的电荷回收机制,及电荷泵升压机制。将时序信号CLK3的时序周期定义为本电路的时序周期,请参照图3与图4,在第N个时序周期的CLK1的第N个有效相位,S2、S3、S8、S9都处于导通状态,第一泵送电容C1处于充电状态,第一端电压为Vcc,第二端电压为0;第二泵送电容C2处于放电状态,第一端输出电压为VN,第二端电压为Vcc。接下来进入CLK1和CLK2的非交叠时间,S2、S4、S6、S8都处于断开状态,第一泵送电容C1和地二泵送电容C2的第一端处于悬空状态;同时由于CLK1’和CLK1b’仍然处于有效相位,S3和S9继续导通,第一泵送电容C1和地二泵送电容C2的第二端分别保持与接地端口GND和电源端口Vcc导通连接。随后在该状态下,CLK3处于有效相位Cn使S1导通,此时电荷将从地二泵送电容C2的第一端(高电平节点VN)被引向第一泵送电容C1的第一端(低电平结点Vcc)。若忽略开关损耗则可以得出电荷回收后两个泵送电容第一端电压VCn
导通前:第二泵送电容C2的电荷量为C2(VN-Vcc),C1的电荷量为C1VCC
导通后:第一泵送电容C1的电荷量与第二泵送电容C2的电荷量之和为C1VCn+C2(VCn-Vcc);
因导通前后电荷守恒所以可得下式:
C1VCn+C2(VCn-Vcc)=C1VCC+C2(VN-Vcc)
推到可得:
VCn=(C1Vcc+C2VN)/(C1+C2)
优选的,在一实施例中选取两个相同泵送电容构成三倍压电荷泵,即第一泵送电容与第二泵送电容的电容相同时,由上式可得:
VCn=(VccC+VN)/2   (1)
电荷回收过程完成后,再经过一段非交叠时间,电路进入第N+1个时序周期的CLK2的第N+1个有效相位,S4、S5、S6、S7处于导通状态,第一泵送电容C1处于放电状态,第一泵送电容C1的第二端与Vcc连通,则第一泵送电容C1的第一端的输出电压记为VN+1,则:
VN+1=VN+Vcc    (2)
同时C2进入充电相位,上极板与Vcc连通,下极板与零电位连通。电路的工作过程即在重复上述过程,C1和C2交替进入充电和输出相位,并且在时序信号非交叠时间内进行电荷回收,将电荷从处于较高电位的上极板导向较低电位的上极板。最终电路达到稳定工作状态后应有:
VN+1N→∞=VNN→∞    (3)
所以将式(1)(2)代入(3)式可得
VCn+Vcc=VN=(Vcc+VN)/2+Vcc    (4)
即得:VN=3Vcc
根据以上分析可以得出电路最终输出电压为三倍的电源电压实现了三倍压电荷泵电路的功能。
优选的,本实用新型另一具体实施例是电荷回收时序开关S1采用传输门,其它电路结构与时序控制与上述实施例相同。
在本实用新型另一具体实施例中所述时序开关S2与时序开关S8采用同一个时序开关;所述时序开关S6与所述时序开关S4采用同一个时序开关;所述电源端口(Vcc)、所述接地端口(GND)与所述输出端口(Vout)分别为一个;其它电路结构与时序控制与上述实施例相同。
上面结合附图对本实用新型进行了示例性描述,显然本实用新型的具体实现并不受上述方式的限制,只要采用了本实用新型的方法构思和技术方案进行的各种改进,或者未经改进将本实用新型的构思和技术方案直接应用于其它场合的,均在本实用新型的保护范围之内。

Claims (8)

1.一种电荷泵电路,其特征在于,包括:
第一泵送电容;
第二泵送电容;
电源端口(Vcc);
接地端口(GND);
输出端口(Vout);
多个时序开关;
所述电源端口与所述输出端口分别通过时序开关并联于所述第一泵送电容的第一端,所述电源端口与所述接地端口分别通过时序开关并联于所述第一泵送电容的第二端;
所述电源端口与所述输出端口分别通过时序开关并联于所述第二泵送电容的第一端,所述电源端口与所述接地端口分别通过时序开关并联于所述第二泵送电容的第二端;
所述第一泵送电容的第一端与第二泵送电容的第一端通过时序开关电性串联。
2.根据权利要求1所述的电荷泵电路,其特征在于:所述时序开关包括:
第一时序开关,包括控制端、第一端与第二端,所述第一时序开关的控制端接收第三时序信号,所述第一时序开关的第一端电性连接至所述第一泵送电容的第一端,所述第一时序开关的第二端电性连接至所述第二泵送电容的第一端;
第二时序开关,包括控制端、第一端与第二端,所述第二时序开关的控制端接收第一时序信号,所述第二时序开关的第一端电性连接至所述电源端口,所述第二时序开关的第二端电性连接至所述第一泵送电容的第一端;
第三时序开关,包括控制端、第一端与第二端,所述第三时序开关的控制端接收第六时序信号,所述第三时序开关的第一端电性连接至所述接地端口,所述第三时序开关的第二端电性连接至所述第一泵送电容的第二端;
第四时序开关,包括控制端、第一端与第二端,所述第四时序开关的控制端接收第二时序信号,所述第四时序开关的第一端电性连接至所述电源端口,所述第四时序开关的第二端电性连接至所述第二泵送电容的第一端;
第五时序开关,包括控制端、第一端与第二端,所述第五时序开关的控制端接收第七时序信号,所述第五时序开关的第一端电性连接至所述接地端口,所述第五时序开关的第二端电性连接至所述第二泵送电容的第二端;
第六时序开关,包括控制端、第一端与第二端,所述第六时序开关的控制端接收第二时序信号,所述第六时序开关的第一端电性连接至所述输出端口,所述第六时序开关的第二端电性连接至所述第一泵送电容的第一端;
第七时序开关,包括控制端、第一端与第二端,所述第七时序开关的控制端接收第五时序信号,所述第七时序开关的第一端电性连接至所述电源端口,所述第七时序开关的第二端电性连接至所述第一泵送电容的第二端;
第八时序开关,包括控制端、第一端与第二端,所述第八时序开关的控制端接收第一时序信号,所述第八时序开关的第一端电性连接至所述输出端口,所述第八时序开关的第二端电性连接至所述第二泵送电容的第一端;
第九时序开关,包括控制端、第一端与第二端,所述第九时序开关的控制端接收第四时序信号,所述第九时序开关的第一端电性连接至所述电源端口,所述第九时序开关的第二端电性连接至所述第二泵送电容的第二端。
3.根据权利要求2所述的电荷泵电路,其特征在于:
所述第一时序信号与所述第二时序信号为第一组两相非交叠时序信号;
所述第四时序信号与所述第五时序信号为第二组两相非交叠时序信号;
所述第六时序信号与所述第七时序信号为第三组两相非交叠时序信号;
所述第三时序信号与第一组两相非交叠时序信号非交叠。
4.根据权利要求3所述的电荷泵电路,其特征在于:所述第二组两相非交叠时序信号的两个下降沿分别与所述第一组两相非交叠时序信号的两个下降沿同步,两个上升沿分别相对于所述第一组两相非交叠时序信号的两个上升沿延迟一定的时间,以将所述第三时序信号的有效相位包含在内,所述延迟时间不超过所述第一组两相非交叠时序信号的非交叠时间。
5.根据如权利要求4所述的电荷泵电路,其特征在于:所述第三组两相非交叠时序信号分别是所述第二组两相非交叠时序信号的反相信号。
6.根据权利要求1至5任一项所述的电荷泵电路,其特征在于:所述第一泵送电容与所述第二泵送电容相同。
7.根据权利要求6所述的电荷泵电路,其特征在于:所述电源端口(Vcc)、所述接地端口(GND)与所述输出端口(Vout)分别为一个或多个。
8.根据权利要求7所述的电荷泵电路,其特征在于:所述第一时序开关为单个PMOS管或单个NMOS管或者是传输门;所述第三时序开关和第五时序开关为N型MOS晶体管;所述第二时序开关、第四时序开关、第六时序开关、第七时序开关、第八时序开关和第九时序开关为P型MOS晶体管。
CN 201320089824 2013-02-27 2013-02-27 电荷泵电路 Withdrawn - After Issue CN203206110U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201320089824 CN203206110U (zh) 2013-02-27 2013-02-27 电荷泵电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201320089824 CN203206110U (zh) 2013-02-27 2013-02-27 电荷泵电路

Publications (1)

Publication Number Publication Date
CN203206110U true CN203206110U (zh) 2013-09-18

Family

ID=49150169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201320089824 Withdrawn - After Issue CN203206110U (zh) 2013-02-27 2013-02-27 电荷泵电路

Country Status (1)

Country Link
CN (1) CN203206110U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178709A (zh) * 2013-02-27 2013-06-26 格科微电子(上海)有限公司 电荷泵电路及其时序控制方法
TWI499182B (zh) * 2013-11-20 2015-09-01 Sitronix Technology Corp 回收電能之方法及其相關驅動電路
CN105471256A (zh) * 2015-12-15 2016-04-06 格科微电子(上海)有限公司 电荷泵装置
US10289778B2 (en) 2014-07-31 2019-05-14 Samsung Electronics Co., Ltd. Simulating electronic circuits including charge pumps

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178709A (zh) * 2013-02-27 2013-06-26 格科微电子(上海)有限公司 电荷泵电路及其时序控制方法
CN103178709B (zh) * 2013-02-27 2015-12-16 格科微电子(上海)有限公司 电荷泵电路及其时序控制方法
TWI499182B (zh) * 2013-11-20 2015-09-01 Sitronix Technology Corp 回收電能之方法及其相關驅動電路
US9502967B2 (en) 2013-11-20 2016-11-22 Sitronix Technology Corp. Method of reusing electrical energy and related electrical energy reusing circuit
US10289778B2 (en) 2014-07-31 2019-05-14 Samsung Electronics Co., Ltd. Simulating electronic circuits including charge pumps
CN105471256A (zh) * 2015-12-15 2016-04-06 格科微电子(上海)有限公司 电荷泵装置
CN105471256B (zh) * 2015-12-15 2020-11-17 格科微电子(上海)有限公司 电荷泵装置

Similar Documents

Publication Publication Date Title
CN104796171B (zh) 一种应用于soi cmos射频开关的控制电路
CN102082507B (zh) 一种电容式电荷泵
CN102629822B (zh) 电荷泵及液晶显示屏驱动芯片
CN103178709B (zh) 电荷泵电路及其时序控制方法
CN101355299B (zh) 多级电荷泵电路及其方法
CN203206110U (zh) 电荷泵电路
CN101159412A (zh) 包含升压电路的电子器件
CN102290981A (zh) 一种电荷泵电路和采用所述电荷泵电路的闪速存储器
CN106787691B (zh) 电荷泵电路、电荷泵系统和存储器
JP2015154627A (ja) 降圧回路及びこれを用いた降圧充電回路
CN100574068C (zh) 电荷泵
AU2010206040B2 (en) High-efficiency, switched-capacitor power conversion
CN104883057A (zh) 升压与线性充电共用功率器件的移动电源转换器
CN108809084B (zh) 电荷泵电路
CN201904721U (zh) 一种升压电荷泵
TWI442685B (zh) 電荷幫浦裝置
CN107546976B (zh) 电荷泵电路及电荷泵
CN207530711U (zh) 一种低功耗恒定导通时间定时电路
CN207304375U (zh) 电荷泵和存储器
CN204721218U (zh) 升压与线性充电共用功率器件的移动电源转换器
CN109639144A (zh) 一种五电平变换器
Huang et al. Improving the efficiency of mixed-structure charge pumps by the multi-phase technique
CN107612317A (zh) 一种电荷泵电路
CN103872903B (zh) 堆叠式电压发生器
CN203590034U (zh) 开关电源电路

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20130918

Effective date of abandoning: 20151216

C25 Abandonment of patent right or utility model to avoid double patenting