CN203178621U - 光控太赫兹波开关 - Google Patents

光控太赫兹波开关 Download PDF

Info

Publication number
CN203178621U
CN203178621U CN 201320111593 CN201320111593U CN203178621U CN 203178621 U CN203178621 U CN 203178621U CN 201320111593 CN201320111593 CN 201320111593 CN 201320111593 U CN201320111593 U CN 201320111593U CN 203178621 U CN203178621 U CN 203178621U
Authority
CN
China
Prior art keywords
thz wave
light
switch
defect layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN 201320111593
Other languages
English (en)
Inventor
洪治
陈涛
刘建军
刘平安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN 201320111593 priority Critical patent/CN203178621U/zh
Application granted granted Critical
Publication of CN203178621U publication Critical patent/CN203178621U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本实用新型公开了一种光控太赫兹波开关,包括半导体基片、空气层和缺陷层,半导体基片的数量为2n个,n为整数且n≥2;所述缺陷层的两侧置有相同数量的所述半导体基片,且位于所述缺陷层的同一侧的相邻半导体基片之间通过支撑环分隔而形成所述空气层;所述缺陷层由空气构成。本实用新型通过控制照射到与缺陷层最相邻的其中一个半导体基片的朝向缺陷层的表面上的激光的有无,可以实现太赫兹波开关的关闭和打开操作。本实用新型可在较低的控制用激光光功率下实现较高的开关消光比,可满足在太赫兹波成像、太赫兹波光谱测试和太赫兹波通信等领域应用的要求,也可作为太赫兹波调制器使用。

Description

光控太赫兹波开关
技术领域
本实用新型涉及一种光控太赫兹波开关,属于太赫兹波应用领域。
背景技术
太赫兹(THz,1THz=1×1012Hz)波在电磁波谱中位于微波和红外辐射之间,其频率范围为0.1~10 THz。太赫兹波在电磁波谱中占有一个特殊的位置,具有透视性、安全性等一系列优越特性。太赫兹波独特的性质在物理、化学、信息和生物学等基础研究领域以及材料、通讯、国家安全等技术领域具有重大的科学价值和广阔的应用前景。
当前太赫兹波功能器件是太赫兹波科学技术应用中的重点和难点,现有的太赫兹波功能器件通常结构复杂、体积较大、价格昂贵,因此对小型化、低成本的太赫兹波器件的研究是太赫兹波技术应用中的关键。
太赫兹波开关是一种基础性的太赫兹波器件,在太赫兹波成像、太赫兹波波谱测试、太赫兹波通信等领域有着广阔的应用前景。现有的太赫兹波开关主要有机械式、电控式和光控式三种形式。
其中,机械式太赫兹波开关的消光比大但开关速度慢。
电控式主要有液晶式和超材料式两种,前者的消光比大但响应速度慢,后者的响应速度快但消光比小。电控材料与一维光子晶体结合成为一种新型的电控式太赫兹开关,其基本结构如图1所示。其中,开关主体为由两种材料的基片1’ 和2’ 交叠而成的一维光子晶体,中间的一块基片2’ 被电光晶体基片3’ 取代。两种材料的交叠使光子晶体产生禁带,禁止某段频率的太赫兹波通过晶体。当中间的一块基片2’ 被电光晶体基片3’ 取代时,禁带中的一些不连续的特定频率的太赫兹波就可以通过光子晶体,这些频率被称为缺陷模频率,基片3’被称作缺陷层。电光晶体基片3’ 的两端通过导线5’ 连接到控制器4’。改变电光晶体基片3’ 两端的电压,可以改变其折射率,从而使缺陷模频率产生偏移。当入射太赫兹波的频率固定且频带较窄时,便可以通过控制电光晶体基片3’ 两端电压的有无实现缺陷模的有无或频移,从而实现开关的开、关的功能。但是,由于电光晶体的折射率改变需要较高的电压,操作复杂危险,且较难实现快速转换。并且,当电压较小时,折射率的改变量小,频率移动小,很难得到高消光比的太赫兹波开关。
光控式太赫兹波开关的基本原理是通过控制半导体表面的光生载流子实现开、关操作,响应速度快,消光比高,同时又与现有通讯技术结合的最好。但目前的单片光控式太赫兹波开关需要较高的控制激光光功率才能实现开关操作。
实用新型内容
本实用新型的目的在于克服现有技术的不足,提供一种可在较低的控制用激光光功率下实现较高的开关消光比的实用的光控太赫兹波开关。
为实现上述目的,本实用新型所采取的技术方案为:
本实用新型光控太赫兹波开关包括半导体基片、空气层和缺陷层,半导体基片的数量为2n个,n为整数且n≥2;所述缺陷层的两侧置有相同数量的所述半导体基片,且位于所述缺陷层的同一侧的相邻半导体基片之间通过支撑环分隔而形成所述空气层;所述缺陷层由空气构成。
进一步地,本实用新型中,与所述缺陷层最相邻的其中一个所述半导体基片的朝向缺陷层的表面为激光光束的入射面,所述激光光束用于关闭所述开关。
进一步地,本实用新型所述的n≥3。
进一步地,本实用新型所述半导体基片的数量为6个。
进一步地,本实用新型所述缺陷层的厚度为1mm~30mm。
进一步地,本实用新型所述半导体基片为高阻硅、砷化镓或磷化铟。
进一步地,本实用新型所述半导体基片的数量为6个,所述缺陷层的厚度为1mm~30mm,与所述缺陷层最相邻的其中一个所述半导体基片的朝向缺陷层的表面为激光光束的入射面,所述激光光束用于关闭所述开关。
本实用新型光控太赫兹波开关在开关操作过程中,缺陷模频率不变,通过直接改变对太赫兹波的吸收强度实现开关功能。
与现有技术相比,本实用新型具有如下优点:
(1)本实用新型光控太赫兹波开关可以通过调节缺陷层的厚度来调节开关所作用的太赫兹波的频率,缺陷层变厚时,作用频率变小;缺陷层变薄时,作用频率变大,因而可以通过调节缺陷层3的厚度改变本实用新型开关的作用频率。
(2)本实用新型可通过调节缺陷层3的厚度改变开关的作用频率,因此本实用新型太赫兹波开关适应性较强,应用面较广。
(3)本实用新型光控太赫兹波开关使用激光改变一维光子晶体对于开关所作用的太赫兹波频率的透过率,从而避免了复杂危险的高压操作,方便实用。相比于现有的由单片半导体基片构成的光控太赫兹波开关,本实用新型光控太赫兹波开关对激光光功率更敏感,实现开关操作时所需要的激光光功率降低了50倍左右。
(4)本实用新型光控太赫兹波开关可在较低的控制用激光光功率下实现较高的开关消光比,可满足在太赫兹波成像、太赫兹波光谱和太赫兹波通信等领域应用的要求。
(5)本实用新型光控太赫兹波开关也可作为光控太赫兹波调制器使用。
附图说明
图1是现有技术中的电控一维光子晶体太赫兹波开关的结构示意图;
图2是本实用新型一种光控太赫兹波开关的结构示意图;
图3是本实用新型一种光控太赫兹开关以1KHz的频率重复开关时,透过开关的太赫兹波的波形;
图4是不同激光光功率下,本实用新型一种光控太赫兹波开关的相对透过率谱;
图5是不同激光光功率下,作为对比用的单片光控太赫兹波开关的相对透过率谱。
具体实施方式
如图2所示,本实用新型光控太赫兹波开关包括半导体基片1、空气层2和缺陷层3。半导体基片的数量为2n个,n为整数且n≥2。其中,缺陷层3的两侧置有相同数量的半导体基片1,且位于缺陷层3的同一侧的相邻的半导体基片1之间通过支撑环4分隔而形成空气层2;缺陷层3由空气构成。
作为本实用新型的优选实施方式,半导体基片1共有6片,其材料为高阻硅硅片,选用的硅片电阻率R>4000Ω·cm,厚度为500μm。半导体基片1也可以使用砷化镓或磷化铟基片代替高阻硅硅片;半导体基片1的厚度可以不是500μm而选用其他的厚度。将6片高阻硅硅片分为两组,每组三片,两组高阻硅硅片分别置于缺陷层3的两侧。位于缺陷层3的同一侧的每组高阻硅硅片中,相邻的高阻硅硅片之间通过支撑环4分隔而形成空气层2。作为本实用新型的一种实施方式,支撑环4可由双面胶制作,分别贴于相邻的硅片的表面上,粘接时需要校正硅片间的平行度。在本实用新型中,缺陷层3由空气构成。在本实用新型中,一种具体做法可以是先将其中一组高阻硅硅片固定在平移台上,再将两组高阻硅硅片中的所有高阻硅硅片相互平行放置,由此,分属于不同组且最相邻的两个高阻硅硅片之间的空气构成了缺陷层3。缺陷层3的厚度可通过平移台进行精密调整,从而实现对开关所作用的太赫兹波的频率进行调整。作为本实用新型的优选实施方式,缺陷层3的厚度优选为1mm ~ 30mm,更优选5mm ~ 30mm。
作为本实用新型的另一种实施方式,也可在缺陷层3内设置一个可调式支撑环(图中未示出),该可调式支撑环分别连接缺陷层3两侧的最邻近的半导体基片1,由此,该可调式支撑环可用于支撑缺陷层并将本实用新型开关做成一个整体。通过调节可调式支撑环的厚度可以实现缺陷层3的厚度的调节,从而改变本实用新型开关所作用的太赫兹波的频率。
在图2中,对于与缺陷层3最相邻的(左起第四片)硅片而言,以其朝向缺陷层3的表面6为激光光束的入射面。激光光束用于关闭本实用新型开关。当然,作为本实用新型的另一种实施方式,也可以选择使用图2中左起第三片硅片的朝向缺陷层3的表面5作为激光光束的入射面。
半导体基片1和空气层2构成了一维光子晶体,缺陷层3的存在使得禁带中一些不连续的特定频率的太赫兹波可以透过开关。这些频率即对应于开关所能作用的太赫兹波的频率。同时,这些频率对缺陷层3的变化很敏感。一方面,当缺陷层3变厚时,上述频率变小;当缺陷层3变薄时,上述频率变大,因而可以通过调节缺陷层3的厚度改变本实用新型开关的作用频率。另一方面,当有激光照射到缺陷层3两侧的一个半导体基片1的表面5或另一个半导体基片1的表面6上时,半导体基片的表面对太赫兹波的折射率和吸收变大,等效于缺陷层3对太赫兹波的折射率和吸收变大,上述频率的透过率便降低,从而实现开关的关闭功能。
进一步使用返波振荡器(BWO)输出的频率为335.92GHz的太赫兹波,对本实用新型开关进行测试。测试时,缺陷层的厚度可设为7.108mm,激光器为一台输出功率为400mW的808nm半导体激光器,透过开关的太赫兹波使用太赫兹探测器进行接收。使用频率为1KHz的TTL信号控制激光器是否输出激光,从而得到以1KHz的频率重复使用开关的效果。使用示波器记录探测器所探测得到的透过开关的太赫兹波信号。图3为示波器所显示的波形。图3中上部的曲线为探测器测得的透过开关的太赫兹波的功率,下部的曲线为控制半导体激光器输出的TTL信号。当TTL信号为高电平时,激光器输出激光,开关闭合,此时没有太赫兹波到达探测器;反之,当TTL信号为低电平时,激光器没有输出,开关打开,此时太赫兹波可以到达探测器。半导体激光器的电源电压一般为几到十几伏特,TTL信号的电压为0V和5V。同电控一维光子晶体开关相比,本实用新型开关的操作没有高电压的困扰,安全方便且便于快速切换。
当使用不同的激光光功率照射到半导体基片的表面6上时,本实用新型开关在335.92GHz附近的相对透过率如图4所示。如图4所示,当激光功率密度为0.16 W/cm2时,本实用新型开关的消光比约为20dB,实现了对太赫兹波的关闭功能。若增加激光光功率可实现更高的消光比。从图4可知,本实用新型通过改变激光的光功率可以得到不同功率的太赫兹波,而且对于特定的开关,激光光功率和太赫兹波功率之间的对应关系确定,因此,本实用新型开关可以作为太赫兹波调制器使用。
由相对透过率的测试结果可得,本实用新型开关所用一维光子晶体腔的Q值可高达1.1×104。高Q值使开关对激光光功率十分敏感,从而大大降低了实现关断操作所需要的激光光功率。
作为对比,将控制用激光光束从图2中的左边第一片硅片(远离缺陷层)的表面上(即太赫兹波的入射面)入射,由理论计算可得,这种照射方式在一维光子晶体的各透过峰(例如如图4所示的335.92GHz)附近的开关效果与使用单片半导体基片构成的太赫兹波开关的作用效果相同,在335.92GHz附近的相对透过率的测试结果如图5所示。由图5所示的相对透过率同图4所示的相对透过率对比可知,当达到相同开、关效果时,本实用新型开关与单片光控太赫兹波开关相比,实现关闭操作所需的控制用激光光功率降低了50倍左右。
此外,由图4所示的太赫兹波的透过率随照射激光光功率的变化而变化的特性可知,本实用新型光控太赫兹波开关也可作为光控太赫兹波调制器使用。不同于作为开关使用时通过控制激咣的有无实现太赫兹波的通断,作为调制器使用时,通过控制激光功率的强弱,使器件对于太赫兹波的透过率从0到最大值之间连续变化,从而实现对太赫兹波功率的调制。

Claims (9)

1.一种光控太赫兹波开关,其特征在于:包括半导体基片、空气层和缺陷层,半导体基片的数量为2n个,n为整数且n≥2;所述缺陷层的两侧置有相同数量的所述半导体基片,且位于所述缺陷层的同一侧的相邻半导体基片之间通过支撑环分隔而形成所述空气层;所述缺陷层由空气构成。
2.根据权利要求1所述的光控太赫兹波开关,其特征在于:n≥3。
3.根据权利要求2所述的光控太赫兹波开关,其特征在于:所述半导体基片的数量为6个。
4.根据权利要求1、2或3所述的光控太赫兹波开关,其特征在于:与所述缺陷层最相邻的其中一个所述半导体基片的朝向缺陷层的表面为激光光束的入射面,所述激光光束用于关闭所述开关。
5.根据权利要求1、2或3所述的一种光控太赫兹波开关,其特征在于:所述半导体基片为高阻硅、砷化镓或磷化铟。
6.根据权利要求1、2或3所述的光控太赫兹波开关,其特征在于:所述缺陷层的厚度为1mm~30mm。
7.根据权利要求4所述的光控太赫兹波开关,其特征在于:所述缺陷层的厚度为1mm~30mm。
8.根据权利要求4所述的光控太赫兹波开关,其特征在于:所述半导体基片为高阻硅、砷化镓或磷化铟。
9.根据权利要求7所述的光控太赫兹波开关,其特征在于:所述半导体基片为高阻硅、砷化镓或磷化铟。
CN 201320111593 2013-03-12 2013-03-12 光控太赫兹波开关 Withdrawn - After Issue CN203178621U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201320111593 CN203178621U (zh) 2013-03-12 2013-03-12 光控太赫兹波开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201320111593 CN203178621U (zh) 2013-03-12 2013-03-12 光控太赫兹波开关

Publications (1)

Publication Number Publication Date
CN203178621U true CN203178621U (zh) 2013-09-04

Family

ID=49075298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201320111593 Withdrawn - After Issue CN203178621U (zh) 2013-03-12 2013-03-12 光控太赫兹波开关

Country Status (1)

Country Link
CN (1) CN203178621U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135260A (zh) * 2013-03-12 2013-06-05 中国计量学院 一种光控太赫兹波开关
JP2016173554A (ja) * 2014-12-10 2016-09-29 ザ・ボーイング・カンパニーThe Boeing Company 光学的に調節可能な屈折率を有するマトリクスに基づく、高温域及び高ひずみ域で透明複合物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135260A (zh) * 2013-03-12 2013-06-05 中国计量学院 一种光控太赫兹波开关
CN103135260B (zh) * 2013-03-12 2015-02-25 中国计量学院 一种光控太赫兹波开关
JP2016173554A (ja) * 2014-12-10 2016-09-29 ザ・ボーイング・カンパニーThe Boeing Company 光学的に調節可能な屈折率を有するマトリクスに基づく、高温域及び高ひずみ域で透明複合物

Similar Documents

Publication Publication Date Title
CN108957876B (zh) 一种可调太赫兹波前调制器及其制备方法
Gu et al. High speed silicon photonic crystal waveguide modulator for low voltage operation
CN103135260B (zh) 一种光控太赫兹波开关
CN106918850A (zh) 一种柔性超表面结构
CN103984124B (zh) 一种多频响应太赫兹波调制器
CN109375390A (zh) 一种基于石墨烯的电光调制器
CN105388638B (zh) 一种硅波导热光调节结构
CN203178621U (zh) 光控太赫兹波开关
CN102621768B (zh) 基于微环谐振器的n位光学数模转换器
CN104111565A (zh) 一种基于表面等离激元法诺共振的微纳光开关及使用它的级联光开关
US8004747B2 (en) Multilayer light modulator
CN104020589B (zh) 一种石墨烯电光调制器结构
CN108732794A (zh) 基于周期性石墨烯结构吸收特性的太赫兹开关及控制方法
CN203674350U (zh) 一种可调谐的太赫兹波滤波装置
CN106405735B (zh) 硅阵列结构的太赫兹波偏振分束器
CN109273805A (zh) 一种基于石墨烯的可调滤波器
CN106970475A (zh) 硅基石墨烯栅层电光空间超快调制器
CN109541822A (zh) 一种石墨烯电光调制器及其制备方法
CN107942539A (zh) 一种基于石墨烯的反射型空间电光调制器
Ishibashi Calculation of Specific Heat in an Incommensurate Phase of the K2SeO4-Type Crystals
CN106526902A (zh) 基于石墨烯微细光纤的光空间超快调制器
CN208207473U (zh) 光子晶体全光可控式“与/或”逻辑门
Schätz et al. Laser beam modulator and pulse former with an adjustable transmission‐voltage characteristic provided by persistent spectral hole burning
CN208506453U (zh) 一种基于频率信号驱控的液晶聚光微镜阵列
CN101941745A (zh) 一种实验用太阳光强稳定装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20130904

Effective date of abandoning: 20150225

AV01 Patent right actively abandoned

Granted publication date: 20130904

Effective date of abandoning: 20150225

RGAV Abandon patent right to avoid regrant