CN202871485U - 一种光伏发电用干式变压器 - Google Patents

一种光伏发电用干式变压器 Download PDF

Info

Publication number
CN202871485U
CN202871485U CN 201220533653 CN201220533653U CN202871485U CN 202871485 U CN202871485 U CN 202871485U CN 201220533653 CN201220533653 CN 201220533653 CN 201220533653 U CN201220533653 U CN 201220533653U CN 202871485 U CN202871485 U CN 202871485U
Authority
CN
China
Prior art keywords
iron core
photovoltaic generation
dry type
pressure winding
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201220533653
Other languages
English (en)
Inventor
蒋志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tebian Electric Apparatus Stock Co Ltd
Original Assignee
Tebian Electric Apparatus Stock Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tebian Electric Apparatus Stock Co Ltd filed Critical Tebian Electric Apparatus Stock Co Ltd
Priority to CN 201220533653 priority Critical patent/CN202871485U/zh
Application granted granted Critical
Publication of CN202871485U publication Critical patent/CN202871485U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本实用新型公开了一种光伏发电用干式变压器,包括同心排列的低压绕组和高压绕组,低压绕组采用双分裂的排列结构,设置在所述光伏发电用干式变压器内部的铁芯为非晶合金铁芯。非晶合金的带材厚度小,因此,其涡流损耗很小,用非晶合金材料代替硅钢片制造变压器铁芯,非晶合金材料的单位损耗仅为硅钢片铁芯的20%~30%,所以,光伏发电用双分裂变压器采用导磁性能好的非晶合金带材制成铁芯,使光伏发电用双分裂干式变压器获得较低的空载电流,空载损耗较普通硅钢片铁芯变压器下降了约70%~80%,极大的提高了输电效率,减少了电能损失,提高了光伏发电系统整体的效率和效益。

Description

一种光伏发电用干式变压器
技术领域
本实用新型属于变压器领域,具体涉及一种光伏发电用干式变压器。 
背景技术
光伏发电有离网(独立电站)和并网(市电并网电站)两种工作方式,并网系统是将太阳能电池板发出的直流电通过汇流箱、逆变器、升压变压器直接馈入电网,从而将分散的电能最终汇入电网,实现后续的输送、分配和使用。目前,光伏电站为节约投资、节省安装空间,多选用两台逆变器共用一台双分裂变压器的方式(该方式相比一台逆变器配一台升压变压器将节约变压器投资近50%,安装空间将节约近一半),将两台逆变器逆变出的交流低压经由双分裂变压器的两路低压绕组分别输入升压变压器,再由升压变压器升为一路符合并网要求的高压,最终将太阳能电池板转化的电能汇入电网。 
由于国家对光伏发电上网电价执行特殊的补贴政策,目前光伏发电的上网电价,远远高于水电、火电的上网电价,因此,光伏电站的运营商更加关注光伏发电中各个环节的能效提升。太阳能电池板产生的涓涓细流几经周折最终在升压变压器处得以汇集、升压、送出,因此,变压器是流经电能最为集中的一个环节,该环节效率的提升对于整个太阳能电站的效率影响非常可观。 
目前,光伏电站所使用的双分裂变压器的铁芯均为传统的硅钢片铁芯,其缺点是变压器空载损耗高,效率低,使大量的太阳能电池板转化的绿色能源被白白消耗无法产生效益,不利于光伏发电系统整体效率、效益的提升。 
实用新型内容
本实用新型所要解决的技术问题是针对现有技术中存在的上述不足,提供一种光伏发电用干式变压器,该变压器可以有效的降低空载损耗和空载电流,提高光伏发电系统整体的效率和效益。 
解决本实用新型技术问题所采用的技术方案为提供一种光伏发电用干式变压器,包括同心排列的低压绕组和高压绕组,低压绕组采用双分裂的排列结构,设置在所述光伏发电用干式变压器内部的铁芯为非晶合金铁芯。 
优选的是,所述非晶合金铁芯为铁基非晶合金铁芯、铁镍非晶合金铁芯、钴基非晶合金铁芯中的任意一种。 
优选的是,所述铁芯为三相三柱结构或三相五柱结构。 
优选的是,所述铁芯结构采用叠环式卷铁芯、单环式卷铁芯、气隙分布式卷铁芯、搭接式卷铁芯和叠片式铁芯。 
优选的是,所述非晶合金铁芯的横截面采用矩形截面。 
优选的是,所述高压绕组与所述低压绕组之间设置有屏蔽绕组。 
优选的是,所述低压绕组采用幅向双分裂的排列结构,所述低压绕组分裂成两个分裂绕组,所述分裂绕组分别位于所述高压绕组的内外两侧。 
优选的是,所述低压绕组采用轴向双分裂的排列结构,所述低压绕组分裂成两个分裂绕组,所述高压绕组采用两个支路并联的结构,所述高压绕组的两个支路分别绕制在对应的分裂绕组的外侧。 
优选的是,所述高压绕组采用角接方式,所述低压绕组采用星接方式。低压侧中性点可引出,也可以不引出。 
优选的是,所述变压器为干式变流变压器。 
优选的是,变压器额定容量依据所配逆变器容量而定,高压侧电压等级多为10kV、35kV,两路低压绕组额定电压相同,电压值依据逆变器输出电压不同而不同。 
节能降耗是变压器发展的方向,采用非晶合金铁芯的光伏发 电用双分裂干式变压器是一种新型节能型变压器。非晶合金的带材厚度小,因此,其涡流损耗很小,用非晶合金材料代替硅钢片制造变压器铁芯,非晶合金材料的单位损耗仅为硅钢片铁芯的20%~30%,所以,光伏发电用双分裂变压器采用导磁性能好的非晶合金带材制成铁芯,使光伏发电用双分裂干式变压器获得较低的空载电流,空载损耗较普通硅钢片铁芯变压器下降了约70%~80%,极大的提高了输电效率,减少了电能损失,提高了光伏发电系统整体的效率和效益。 
附图说明
图1三相三柱非晶合金铁芯结构示意图; 
图2采用三相三柱非晶合金铁芯的光伏发电用干式变压器的外形图的正视图; 
图3采用三相三柱非晶合金铁芯的光伏发电用干式变压器的外形图的左视图; 
图4三相五柱非晶合金铁芯结构示意图; 
图5采用三相五柱非晶合金铁芯的伏发电用干式变压器的外形图的正视图; 
图6采用三相五柱非晶合金铁芯的光伏发电用干式变压器的外形图的左视图; 
图7光伏发电用干式变压器的接线原理图; 
图8采用三相三柱非晶合金铁芯的光伏发电用干式变压器的低压绕组轴向分裂图; 
图9采用三相五柱非晶合金铁芯的光伏发电用干式变压器的低压绕组幅向分裂图。 
图中:1,2,3,4,5,6,7-铁芯框;8,9,11,12-低压输入端;10,13-高压输出端;14,15-低压分裂绕组;16-低压绕组;17-高压绕组;18,19-高压绕组支路;20-三相三柱非晶合金铁芯;21-三相五柱非晶合金铁芯。 
具体实施方式
为使本领域技术人员更好地理解本实用新型的技术方案,下面结合附图和具体实施方式对本实用新型作进一步详细描述。 
实施例 
如图1至9所示,本实施例提供一种光伏发电用干式变压器,包括同心排列的低压绕组16和高压绕组17,低压绕组16采用双分裂的排列结构,设置在所述光伏发电用干式变压器内部的铁芯为非晶合金铁芯。 
优选的是,所述非晶合金铁芯为铁基非晶合金铁芯。当然,所述非晶合金铁芯也可以选用铁镍非晶合金铁芯或钴基非晶合金铁芯。 
变压器损耗由空载损耗和负载损耗两部分组成。变压器运行状态分为空载运行和负载运行两种运行状态,变压器空载运行时,所产生的损耗即为空载损耗;变压器负载运行时,所产生的损耗为空载损耗和负载损耗的和。光伏电站借助于阳光发电,白天有光照的时候,光伏发电用双分裂干式变压器投入运行将低压电转换成高压电,此时变压器所产生的损耗即为空载损耗和负载损耗之和;当夜晚没有光照的时候,变压器空载运行,此时变压器只有空载损耗。由此可见,在夜间光伏发电用变压器不工作,电站并不向电网输出电能,此时变压器仅消耗电网能量而不输出能量。因此,将变压器的空载损耗降到最低,对光伏电站整体的经济运行具有非常重要的意义,与普通的二十四小时均处于负载运行状态的配电变压器相比,针对于光伏电站用干式变压器进行的空载损耗的降低所取得的经济效益更明显。 
节能降耗是变压器发展的方向,采用非晶合金铁芯的光伏发电用双分裂干式变压器是一种新型节能型变压器。非晶合金的带材厚度小,因此,其涡流损耗很小,用非晶合金材料代替硅钢片制造变压器铁芯,非晶合金材料的单位损耗仅为硅钢片铁芯的20%~30%,所以,光伏发电用双分裂变压器采用导磁性能好的非 晶合金带材制成铁芯,使光伏发电用双分裂干式变压器获得较低的空载电流,空载损耗较普通硅钢片铁芯变压器下降了约70%~80%,极大的提高了输电效率,减少了电能损失,提高了光伏发电系统整体的效率和效益。 
非晶合金由于没有晶格和晶界的存在,因此,其磁化功率小,并具有良好的温度稳定性。由于非晶合金为无取向材料,所以使用非晶合金材料作为光伏发电用双分裂干式变压器的铁芯故可采用直接缝,且可不分级,使制造铁芯的工艺比较简单。 
优选的是,所述铁芯为三相三柱结构。当然,所述铁芯也可以优选为三相五柱结构。由于运输高度的限制,三相三柱铁芯不能满足运输要求,可以通过降低铁轭的高度,做成三相五柱铁芯。这种铁芯在三个中间的铁芯柱上缠绕A、B、C三相绕组,有三个心柱和两个各有垂直于水平部分的铁轭。容量较小时,一般采用三相五柱铁芯;容量较大时由于受到非品合金带材宽度的限制,一般采用8个卷铁芯分别前后两排叠放在一起,形成较大截面积的铁芯结构,采用这种个叠放结构,可以增大非晶合金铁芯变压器的容量。三相三柱铁芯的空载损耗比三相五柱铁芯的空载损耗低。如图1所示,三相三柱非晶合金铁芯20包含铁芯框1、铁芯款2和铁芯框3。铁芯框3为大框,铁芯框1和铁芯框2为小框,铁芯框1和铁芯框2并在一起,然后套在铁芯框3中,即构成铁芯结构。如图2、图3所示,采用三相三柱非晶合金铁芯20的光伏发电用变压器包括低压输入端8、低压输入端9和高压输出端10。如图4所示,三相五柱非晶合金铁芯21包含铁芯框4、铁芯框5、铁芯框6、铁芯框7,铁芯框5和铁芯框6的两个边框挨着形成一根柱子,铁芯框4和铁芯框5的两个边框挨着形成一根柱子,铁芯框6和铁芯框7的两个边框挨着形成一根柱子,铁芯框4的一个边框单独作为一根柱子,铁芯框7单独作为一根柱子,形成五根柱子,如图4所示中间的三根柱子套装线圈,最边上的柱子不套装线圈。其中,铁芯框5和铁芯框6稍小,铁芯框4和铁芯框7稍大。如图5和图6所示,采用三相五柱非晶合金铁芯21 的光伏发电用变压器包括低压输入端11、低压输入端12和高压输出端13。 
优选的是,所述铁芯结构采用叠环式卷铁芯。当然,所述铁芯结构也可以采用单环式卷铁芯、气隙分布式卷铁芯、搭接式卷铁芯或叠片式铁芯中的任意一种。其中,光伏发电用非晶合金干式变压器夹件为槽钢式,也可制作为折板式。 
优选的是,所述非晶合金铁芯的横截面采用矩形截面。非晶合金铁芯截面积要比同容量的硅钢片变压器的铁芯大,这是因为非晶合金带的工作磁密度比硅钢片的低。在截面积相同的条件下,矩形的周长比圆形长,因此,非晶合金变压器高低压线圈主空道的周长要比同容量硅钢片铁芯变压器长得多。 
优选的是,所述高压绕组17与所述低压绕组16之间设置有屏蔽绕组。 
如图7、8所示,优选的是,所述低压绕组16采用轴向双分裂的排列结构,所述低压绕组16分裂成两个分裂绕组,它们分别为低压分裂绕组14和低压分裂绕组15;所述高压绕组17采用两个支路并联的结构,这两个支路分别为高压绕组支路18和高压绕组支路19,所述高压绕组17的两个支路分别绕制在对应的分裂绕组的外侧。该光伏发电用干式变压的低压绕组16的轴向分裂,结构简单易设计,且能保证低压绕组对高压绕组的阻抗一致。当然,如图9所示,所述低压绕组16也可以采用幅向双分裂的排列结构,所述低压绕组16分裂成两个分裂绕组,所述分裂绕组分别位于所述高压绕组17的内外两侧。该光伏发电用干式变压器的低压绕组16的幅向分裂,可以有效降低铁芯的高度。 
优选的是,所述高压绕组17采用角接方式,所述低压绕组16采用星接方式。低压侧中性点可引出,也可以不引出。 
优选的是,所述变压器为干式变流变压器。 
优选的是,变压器额定容量依据所配逆变器容量而定,高压侧电压等级多为10kV、35kV,两路低压分裂绕组额定电压相同,电压值依据逆变器输出电压不同而不同。 
可以理解的是,以上实施方式仅仅是为了说明本实用新型的原理而采用的示例性实施方式,然而本实用新型并不局限于此。对于本领域内的普通技术人员而言,在不脱离本实用新型的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本实用新型的保护范围。 

Claims (10)

1.一种光伏发电用干式变压器,包括同心排列的低压绕组和高压绕组,低压绕组采用双分裂的排列结构,其特征在于,设置在所述光伏发电用干式变压器内部的铁芯为非晶合金铁芯。
2.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述非晶合金铁芯为铁基非晶合金铁芯、铁镍非晶合金铁芯、钻基非晶合金铁芯中的任意一种。
3.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述铁芯为三相三柱结构或三相五柱结构。
4.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述铁芯结构采用叠环式卷铁芯、单环式卷铁芯、气隙分布式卷铁芯、搭接式卷铁芯或叠片式铁芯中的任意一种。
5.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述非晶合金铁芯的横截面采用矩形截面。
6.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述高压绕组与所述低压绕组之间设置有屏蔽绕组。
7.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述低压绕组采用幅向双分裂的排列结构,所述低压绕组分裂成两个分裂绕组,所述分裂绕组分别位于所述高压绕组的内外两侧。
8.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述低压绕组采用轴向双分裂的排列结构,所述低压绕组分 裂成两个分裂绕组,所述高压绕组采用两个支路并联的结构,所述高压绕组的两个支路分别绕制在对应的分裂绕组的外侧。
9.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述高压绕组采用角接方式,所述低压绕组采用星接方式。
10.根据权利要求1所述的光伏发电用干式变压器,其特征在于,所述变压器为干式变流变压器。 
CN 201220533653 2012-10-18 2012-10-18 一种光伏发电用干式变压器 Expired - Fee Related CN202871485U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220533653 CN202871485U (zh) 2012-10-18 2012-10-18 一种光伏发电用干式变压器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220533653 CN202871485U (zh) 2012-10-18 2012-10-18 一种光伏发电用干式变压器

Publications (1)

Publication Number Publication Date
CN202871485U true CN202871485U (zh) 2013-04-10

Family

ID=48038181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220533653 Expired - Fee Related CN202871485U (zh) 2012-10-18 2012-10-18 一种光伏发电用干式变压器

Country Status (1)

Country Link
CN (1) CN202871485U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945740A (zh) * 2012-11-19 2013-02-27 江苏宏安变压器有限公司 一种三相三柱非晶合金太阳能发电专用变压器
CN103779051A (zh) * 2012-10-18 2014-05-07 特变电工股份有限公司 一种光伏发电用干式变压器
CN106504866A (zh) * 2016-12-19 2017-03-15 华城电机(武汉)有限公司 非晶合金变压器绕组结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779051A (zh) * 2012-10-18 2014-05-07 特变电工股份有限公司 一种光伏发电用干式变压器
CN102945740A (zh) * 2012-11-19 2013-02-27 江苏宏安变压器有限公司 一种三相三柱非晶合金太阳能发电专用变压器
CN106504866A (zh) * 2016-12-19 2017-03-15 华城电机(武汉)有限公司 非晶合金变压器绕组结构
CN106504866B (zh) * 2016-12-19 2018-06-26 华城电机(武汉)有限公司 非晶合金变压器绕组结构

Similar Documents

Publication Publication Date Title
CN202948822U (zh) 一种干式变压器
CN202049852U (zh) 光伏逆变器用变压器
CN103337344B (zh) 风电及光伏发电用双分裂环氧树脂绝缘干式升压变压器
CN203232785U (zh) 一种干式变压器
CN202871485U (zh) 一种光伏发电用干式变压器
CN103779051A (zh) 一种光伏发电用干式变压器
CN102568794B (zh) 多模块逆变输出分裂变压器
CN202159565U (zh) 用于光伏逆变器的变压器
CN203351361U (zh) 风电及光伏发电用双分裂环氧树脂绝缘干式升压变压器
CN202839279U (zh) 三相三绕组牵引电力混合变压器
CN202977126U (zh) 一种消除谐波的电力变压器绕组结构
CN206516457U (zh) 一种光伏逆变用共轭式双分裂升压干式变压器
US11587719B2 (en) Magnetic integrated hybrid distribution transformer
CN201741561U (zh) 壳式结构电力变压器
CN203895214U (zh) 共轭式三相电抗器
CN202093954U (zh) 一种移相整流变压器及串联拓扑变频器
CN201465735U (zh) 高性能节能环保型高压电力变压器
CN202332552U (zh) 一种高效节能三相变压器
CN202084409U (zh) 逆斯考特干式变压器
CN208126991U (zh) 一种双柱磁通直接耦合可控电抗器
CN206673826U (zh) 一种节能型光伏逆变一体机
CN201975222U (zh) 不对称接线平衡变压器
CN201122499Y (zh) 一种可调容的干式变压器
CN206849649U (zh) Svg变压器
CN201309433Y (zh) 一种电气化铁路功率控制器

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: Person in charge of patent of TBEA Co., Ltd

Document name: Notification of Termination of Patent Right

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130410

Termination date: 20191018