CN202772782U - Non-contact magnetic transmission clutch synchronizing device - Google Patents

Non-contact magnetic transmission clutch synchronizing device Download PDF

Info

Publication number
CN202772782U
CN202772782U CN 201220515270 CN201220515270U CN202772782U CN 202772782 U CN202772782 U CN 202772782U CN 201220515270 CN201220515270 CN 201220515270 CN 201220515270 U CN201220515270 U CN 201220515270U CN 202772782 U CN202772782 U CN 202772782U
Authority
CN
China
Prior art keywords
driven pulley
driving wheel
magnetic field
driven
distributes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 201220515270
Other languages
Chinese (zh)
Inventor
张宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG WEITAI AUTO PARTS CO Ltd
Original Assignee
ZHEJIANG WEITAI AUTO PARTS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG WEITAI AUTO PARTS CO Ltd filed Critical ZHEJIANG WEITAI AUTO PARTS CO Ltd
Priority to CN 201220515270 priority Critical patent/CN202772782U/en
Application granted granted Critical
Publication of CN202772782U publication Critical patent/CN202772782U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pulleys (AREA)

Abstract

The utility model provides a non-contact magnetic transmission clutch synchronizing device, which comprises two groups of drive wheels and driven wheels which are matched with each other, wherein the two driven wheels are fixedly connected together through a synchronizing shaft and are arranged between the two drive wheels, a gap is arranged between each group of drive wheels and driven wheels which are matched with each other, the drive wheels and the driven wheels can be close or far away from each other, one of each group of drive wheels and driven wheels which are matched with each other has magnetism and is not uniformly distributed in magnetic field, the other one of each group of drive wheels and driven wheels which are matched with each other has magnetism and is not uniformly distributed in magnetic field or is provided with ferromagnetic metals which are not uniformly distributed, and the driven wheels are driven by the drive wheels to rotate through magneticaction. The non-contact magnetic transmission clutch synchronizing device does not need rigid connection by utilizing non-contact magnetic transmission when the driven wheels are driven by the drive wheels to rotate, the drive wheels and the driven wheels can rotate non-synchronously, and the two rotating driven wheels are rigidly connected, thereby being capable of guaranteeing workpiece which are respectively driven by the driven wheels to rotate synchronously.

Description

A kind of non-contact type magnetic transmission clutch synchronizer
Technical field
The utility model relates to a kind of non-contact type magnetic transmission clutch synchronizer.
Background technology
Traditional actuating force transmission device relies on mechanical rigid to connect, require very high to driving wheel and driven pulley centering, often because of vibration abrasion, affect its useful life, continue to connect-to remove the production process of connection-connect again for needs, employing is rigidly connected, and the process complexity of clutch operation is loaded down with trivial details, inefficiency.Iff the needs transfer motion power, the non-contact type magnetic transmission clutch can satisfy functional requirement, when there being two groups of non-contact type magnetic transmission clutch to drive separately workpiece rotating, and two workpiece just need to consider the stationary problem of workpiece rotating need to mesh assembling the time.
Summary of the invention
Technical problem to be solved in the utility model is to provide a kind of non-contact type magnetic transmission clutch synchronizer, utilize the non-contact type magnetic transmission, driving wheel drives the driven pulley rotation not to be needed to be rigidly connected, driving wheel and driven pulley rotation can be asynchronous, be rigidly connected between the driven pulley of two rotations, can guarantee the workpiece synchronous rotary that driven pulley drives separately.
For solving above-mentioned existing technical problem, the utility model adopts following scheme: a kind of non-contact type magnetic transmission clutch synchronizer, comprise two groups of driving wheels that cooperatively interact and driven pulley, two driven pulleys are fixed together by a synchronizing shaft and between two driving wheels, every group of driving wheel that cooperatively interacts and follower shaft between gapped, described driving wheel and driven pulley can be mutually near or away from, one has magnetic and Magnetic field inhomogeneity distributes in every group of driving wheel that cooperatively interacts and the driven pulley, another one has magnetic and Magnetic field inhomogeneity distributes, perhaps in every group of driving wheel that cooperatively interacts and the driven pulley one have magnetic and Magnetic field inhomogeneity distributes, another one is provided with the ferromagnetic metalloid of uneven distribution, and described driving wheel drives driven pulley by magneticaction and rotates.
As preferably, driving wheel in described two groups of driving wheels that cooperatively interact and the driven pulley in any one group towards a side of driven pulley be provided with active magnet that Magnetic field inhomogeneity distributes, driven pulley towards a side of driving wheel be equipped with that Magnetic field inhomogeneity distributes from moving magnet, the active magnet that cooperatively interacts is with relative from the moving magnet homopolarity or heteropole is relative.
As preferably, any one group driving wheel is equipped with the ferromagnetic metalloid that is equipped with uneven distribution on active magnet that Magnetic field inhomogeneity distributes, the driven pulley in described two groups of driving wheels that cooperatively interact and the driven pulley towards a side of driven pulley, the ferromagnetic metalloid, driven pulley that perhaps is equipped with uneven distribution on the driving wheel towards a side of driving wheel be equipped with that Magnetic field inhomogeneity distributes from moving magnet; Perhaps in described two groups of driving wheels that cooperatively interact and the driven pulley wherein one group driving wheel be provided with the ferromagnetic metalloid that active magnet, driven pulley that Magnetic field inhomogeneity distributes are provided with uneven distribution towards a side of driven pulley, the ferromagnetic metalloid, driven pulley that other one group driving wheel is provided with uneven distribution towards a side of driving wheel be provided with that Magnetic field inhomogeneity distributes from moving magnet.
As preferably, in described two groups of driving wheels that cooperatively interact and the driven pulley wherein in one group, driving wheel is provided with the ferromagnetic metalloid that is equipped with uneven distribution on active magnet that Magnetic field inhomogeneity distributes, the driven pulley towards a side of driven pulley, the ferromagnetic metalloid, driven pulley that perhaps is equipped with uneven distribution on the driving wheel towards a side of driving wheel be equipped with that Magnetic field inhomogeneity distributes from moving magnet; Other one group driving wheel is provided with active magnet, the driven pulley that Magnetic field inhomogeneity distributes towards a side of driven pulley and is provided with from moving magnet towards a side of driving wheel, and the active magnet that cooperatively interacts is with relative from the moving magnet homopolarity or heteropole is relative.
As preferably, each driving wheel is respectively transferred on a driving wheel support by a rotating shaft, two driven pulleys by the synchronizing shaft switching on the driven pulley support, the relative driving wheel support of described driven pulley support near or away from make the relative driving wheel of driven pulley near or away from.
As preferably, two driving wheel supports maintain static, and described driven pulley frame bottom is provided with slide rail, described two driven pulleys by the driven pulley support slide rail slide realize near or away from two driving wheels.
As preferably, described slide rail perpendicular to rotating shaft axially.
As preferably, described driven pulley support is motionless, and two driving wheel frame bottom are equipped with slide rail, described two driving wheels by the driving wheel support slide rail slide realize near or away from two driven pulleys.
As preferably, described slide rail perpendicular to synchronizing shaft axially.
As preferably, the rotating shaft of described two driving wheels is located on the same straight line.
Beneficial effect:
A kind of non-contact type magnetic transmission clutch synchronizer that the utility model adopts technique scheme to provide, utilize the non-contact type magnetic transmission, driving wheel drives the driven pulley rotation not to be needed to be rigidly connected, driving wheel and driven pulley rotation can be asynchronous, be rigidly connected between the driven pulley of two rotations, can guarantee the workpiece synchronous rotary that driven pulley drives separately.
Description of drawings
Fig. 1 is the attracting state schematic diagram of the utility model embodiment one;
Fig. 2 is the disengaged position schematic diagram of the utility model embodiment one;
Fig. 3 is the structural representation of driving wheel of the present utility model.
Embodiment
Embodiment one:
As shown in Figures 1 to 3, a kind of non-contact type magnetic transmission clutch synchronizer, comprise two groups of driving wheels that cooperatively interact 1 and driven pulley 3, two driven pulleys 3 are fixed together by a synchronizing shaft 5 and between two driving wheels 1, every group of driving wheel that cooperatively interacts 1 and driven pulley 3 are gapped between axially, described driving wheel 1 and driven pulley 3 can be mutually near or away from, every group of driving wheel that cooperatively interacts 1 and driven pulley 3 all have magnetic and Magnetic field inhomogeneity distributes, and described driving wheel 1 drives driven pulley 3 by magneticaction and rotates.Driving wheel 1 in described two groups of driving wheels that cooperatively interact 1 and the driven pulley 3 in any one group towards a side of driven pulley 3 be provided with active magnet 2 that Magnetic field inhomogeneity distributes, driven pulley 3 towards a side of driving wheel 1 be equipped with that Magnetic field inhomogeneity distributes from moving magnet 4, the active magnet 2 that cooperatively interacts is with relative from moving magnet 4 homopolarities or heteropole is relative.Each driving wheel 1 is respectively transferred on a driving wheel support 6 by a rotating shaft 7, two driven pulleys 3 by synchronizing shaft 5 switchings on driven pulley support 8, described driven pulley support 8 relative driving wheel supports 6 near or away from make relative driving wheels of driven pulley 31 close or away from.Two driving wheel supports 6 maintain static, and described driven pulley support 8 bottoms are provided with slide rail 9, and described two driven pulleys 3 slide at slide rail 9 by driven pulley support 8, and realization is close or away from two driving wheels 1, described slide rail 9 is axial perpendicular to rotating shaft 7.The rotating shaft 7 of described two driving wheels 1 is located on the same straight line.
In this structure, two driving wheels 1 are installed in respectively on the driving wheel support 6, two driven pulleys 3 connect into integral body by synchronizing shaft 5 and are installed on the driven pulley support 8, leave the gap between driving wheel 1 and the driven pulley 3, two driving wheels 1 drive rotation by power set, on every group driving wheel 1 and the driven pulley 3 the relative active magnet 2 of homopolarity is installed all in two groups of driving wheels that cooperatively interact 1 and the driven pulley 3 and from moving magnet 4, or on every group driving wheel 1 and the driven pulley 3 the relative active magnet 2 of heteropole is installed all in two groups of driving wheels that cooperatively interact 1 and the driven pulley 3 and from moving magnet 4, or on driving wheel 1 and the driven pulley 3 the relative active magnet 2 of homopolarity is installed in one group of driving wheel that cooperatively interacts 1 and the driven pulley 3 and from moving magnet 4, on driving wheel 1 and the driven pulley 3 the relative active magnet 2 of heteropole is installed in the driving wheel 1 that another group group cooperatively interacts and the driven pulley 3 and from moving magnet 4.Driven pulley 3 is when needs rotate, and driven pulley support 8 slides near driving wheel 1 at slide rail 9, by attraction or repulsive force drive driven pulley 3 rotations of driving wheel 1 by magnet, as shown in Figure 1; After rotation a period of time, driven pulley 3 need to enter next process, then by driven pulley support 8 being applied the external force greater than magnetic pull or repulsive force, makes driven pulley 3 break away from driving wheel 1, as shown in Figure 2; After next process was complete, driven pulley support 8 made driven pulley 3 get back to original position and driving wheel 1 adhesive again under the promotion of external force, and so forth circulation.Because be rigidly connected with synchronizing shaft 5 between the driven pulley 3, guaranteed two driven pulley 3 synchronous rotaries, thereby provide assurance for meshing assembly precision.
Embodiment two:
Be with the difference of embodiment one: described driven pulley support 8 is motionless, two driving wheel support 6 bottoms are equipped with slide rail 9, described two driving wheels 1 slide at slide rail 9 by driving wheel support 6, and realization is close or away from two driven pulleys 3, described slide rail 9 is axial perpendicular to synchronizing shaft 5.
Embodiment three:
Be with the difference of embodiment one: two driving wheel supports 6 and driven pulley support 8 are equipped with slide rail 9, described two driving wheels 1 by driving wheel support 6 slide at slide rail 9, driven pulley 3 by driven pulley support 8 slide rail 9 slide realize driving wheels 1 and driven pulley 3 mutually near or away from.
Embodiment four:
Be with the difference of embodiment one: in described two groups of driving wheels that cooperatively interact 1 and the driven pulley 3 in any one group, driving wheel 1 is equipped with the ferromagnetic metalloid that is equipped with uneven distribution on active magnet 2 that Magnetic field inhomogeneity distributes, the driven pulley 3 towards a side of driven pulley 3, the ferromagnetic metalloid, driven pulley 3 that perhaps is equipped with uneven distribution on the driving wheel 1 towards a side of driving wheel 1 be equipped with that Magnetic field inhomogeneity distributes from moving magnet 4; Perhaps in described two groups of driving wheels that cooperatively interact 1 and the driven pulley 3 wherein one group driving wheel 1 be provided with the active magnet 2 that Magnetic field inhomogeneity distributes, the ferromagnetic metalloid that driven pulley 3 is provided with uneven distribution towards a side of driven pulley 3, other one group driving wheel 1 be provided with the ferromagnetic metalloid of uneven distribution, driven pulley 3 towards a side of driving wheel 1 be provided with that Magnetic field inhomogeneity distributes from moving magnet 4.
Embodiment five:
Be with the difference of embodiment one: in described two groups of driving wheels that cooperatively interact 1 and the driven pulley 3 wherein in one group, driving wheel 1 is provided with the ferromagnetic metalloid that is equipped with uneven distribution on active magnet 2 that Magnetic field inhomogeneity distributes, the driven pulley 3 towards a side of driven pulley 3, the ferromagnetic metalloid, driven pulley 3 that perhaps is equipped with uneven distribution on the driving wheel 1 towards a side of driving wheel 1 be equipped with that Magnetic field inhomogeneity distributes from moving magnet 4; Other one group driving wheel 1 is provided with active magnet 2, the driven pulley 3 that Magnetic field inhomogeneity distributes towards a side of driven pulley 3 and is provided with from moving magnet 4 towards a side of driving wheel 1, and the active magnet 2 that cooperatively interacts is with relative from moving magnet 4 homopolarities or heteropole is relative.
The utility model utilizes the non-contact type magnetic transmission, driving wheel drives the driven pulley rotation not to be needed to be rigidly connected, driving wheel and driven pulley rotation can be asynchronous, are rigidly connected between the driven pulley of two rotations, can guarantee the workpiece synchronous rotary that driven pulley drives separately.

Claims (10)

1. non-contact type magnetic transmission clutch synchronizer, comprise two groups of driving wheels that cooperatively interact (1) and driven pulley (3), it is characterized in that: two driven pulleys (3) are fixed together by a synchronizing shaft (5) and are positioned between two driving wheels (1), it is gapped between every group of driving wheel that cooperatively interacts (1) and driven pulley (3) are axial, described driving wheel (1) and driven pulley (3) can be mutually near or away from, one has magnetic and Magnetic field inhomogeneity distribution in every group of driving wheel that cooperatively interacts (1) and the driven pulley (3), another one has magnetic and Magnetic field inhomogeneity distributes, perhaps in every group of driving wheel that cooperatively interacts (1) and the driven pulley (3) one have magnetic and Magnetic field inhomogeneity and distribute, another one is provided with the ferromagnetic metalloid of uneven distribution, and described driving wheel (1) drives driven pulley (3) by magneticaction and rotates.
2. a kind of non-contact type magnetic transmission clutch synchronizer according to claim 1, it is characterized in that: the driving wheel (1) in described two groups of driving wheels that cooperatively interact (1) and the driven pulley (3) in any a group towards a side of driven pulley (3) be provided with active magnet (2) that Magnetic field inhomogeneity distributes, driven pulley (3) towards a side of driving wheel (1) be equipped with that Magnetic field inhomogeneity distributes from moving magnet (4), the active magnet (2) that cooperatively interacts is with relative from moving magnet (4) homopolarity or heteropole is relative.
3. a kind of non-contact type magnetic transmission clutch synchronizer according to claim 1, it is characterized in that: any one group driving wheel (1) is equipped with the ferromagnetic metalloid that is equipped with uneven distribution on active magnet (2) that Magnetic field inhomogeneity distributes, the driven pulley (3) in described two groups of driving wheels that cooperatively interact (1) and the driven pulley (3) towards a side of driven pulley (3), the ferromagnetic metalloid, driven pulley (3) that perhaps is equipped with uneven distribution on the driving wheel (1) towards a side of driving wheel (1) be equipped with that Magnetic field inhomogeneity distributes from moving magnet (4); Perhaps in described two groups of driving wheels that cooperatively interact (1) and the driven pulley (3) wherein one group driving wheel (1) be provided with the active magnet (2) that Magnetic field inhomogeneity distributes, the ferromagnetic metalloid that driven pulley (3) is provided with uneven distribution towards a side of driven pulley (3), the ferromagnetic metalloid, driven pulley (3) that other one group driving wheel (1) is provided with uneven distribution towards a side of driving wheel (1) be provided with that Magnetic field inhomogeneity distributes from moving magnet (4).
4. a kind of non-contact type magnetic transmission clutch synchronizer according to claim 1, it is characterized in that: in described two groups of driving wheels that cooperatively interact (1) and the driven pulley (3) wherein in one group, driving wheel (1) is provided with the active magnet (2) that Magnetic field inhomogeneity distributes towards a side of driven pulley (3), be equipped with the ferromagnetic metalloid of uneven distribution on the driven pulley (3), perhaps be equipped with the ferromagnetic metalloid of uneven distribution on the driving wheel (1), driven pulley (3) towards a side of driving wheel (1) be equipped with that Magnetic field inhomogeneity distributes from moving magnet (4); Other one group driving wheel (1) is provided with active magnet (2), the driven pulley (3) that Magnetic field inhomogeneity distributes towards a side of driven pulley (3) and is provided with from moving magnet (4) towards a side of driving wheel (1), and the active magnet (2) that cooperatively interacts is with relative from moving magnet (4) homopolarity or heteropole is relative.
5. according to claim 1 to 4 arbitrary described a kind of non-contact type magnetic transmission clutch synchronizers, it is characterized in that: each driving wheel (1) is respectively transferred on a driving wheel support (6) by a rotating shaft (7), two driven pulleys (3) by synchronizing shaft (5) switching on driven pulley support (8), described driven pulley support (8) relatively driving wheel support (6) near or away from make driven pulley (3) relatively driving wheel (1) near or away from.
6. a kind of non-contact type magnetic transmission clutch synchronizer according to claim 5, it is characterized in that: two driving wheel supports (6) maintain static, described driven pulley support (8) bottom is provided with slide rail (9), and described two driven pulleys (3) slide at slide rail (9) by driven pulley support (8) and realize close or away from two driving wheels (1).
7. a kind of non-contact type magnetic transmission clutch synchronizer according to claim 6 is characterized in that: described slide rail (9) perpendicular to rotating shaft (7) axially.
8. a kind of non-contact type magnetic transmission clutch synchronizer according to claim 5, it is characterized in that: described driven pulley support (8) is motionless, two driving wheel supports (6) bottoms is equipped with slide rail (9), and described two driving wheels (1) slide at slide rail (9) by driving wheel support (6) and realize close or away from two driven pulleys (3).
9. a kind of non-contact type magnetic transmission clutch synchronizer according to claim 8 is characterized in that: described slide rail (9) perpendicular to synchronizing shaft (5) axially.
10. a kind of non-contact type magnetic transmission clutch synchronizer according to claim 5, it is characterized in that: the rotating shaft (7) of described two driving wheels (1) is located on the same straight line.
CN 201220515270 2012-09-29 2012-09-29 Non-contact magnetic transmission clutch synchronizing device Expired - Lifetime CN202772782U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220515270 CN202772782U (en) 2012-09-29 2012-09-29 Non-contact magnetic transmission clutch synchronizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220515270 CN202772782U (en) 2012-09-29 2012-09-29 Non-contact magnetic transmission clutch synchronizing device

Publications (1)

Publication Number Publication Date
CN202772782U true CN202772782U (en) 2013-03-06

Family

ID=47779324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220515270 Expired - Lifetime CN202772782U (en) 2012-09-29 2012-09-29 Non-contact magnetic transmission clutch synchronizing device

Country Status (1)

Country Link
CN (1) CN202772782U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891587A (en) * 2012-09-29 2013-01-23 浙江威泰汽配有限公司 Non-contact magnetic transmission on-off synchronizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891587A (en) * 2012-09-29 2013-01-23 浙江威泰汽配有限公司 Non-contact magnetic transmission on-off synchronizer

Similar Documents

Publication Publication Date Title
MY168002A (en) Non-contact magnetic drive assembly with mechanical stop elements
CN103780051A (en) Double-edge structure speed regulating permanent magnet coupler
CN102891587A (en) Non-contact magnetic transmission on-off synchronizer
CN202772782U (en) Non-contact magnetic transmission clutch synchronizing device
CN103567998B (en) A kind of lifting shelf deposited for gear
CN204103702U (en) One takes out dress generator amature piston shoes structure
CN102882436A (en) Noncontact type magnetic transmission clutch device
RU2014108740A (en) ELECTRICALLY RECEIVABLE MOTOR
CN202818172U (en) Non-contact type magnetic transmission clutch device
CN103787037B (en) A kind of economical permanent magnetism noncontact driving device
CN202007841U (en) Clutch
CN209057097U (en) A kind of parallel type non-contact magnetically force actuators
CN109302043A (en) A kind of parallel type non-contact magnetically force actuators
CN203714693U (en) Economical permanent magnet non-contact driving device
CN202639951U (en) Gantry type machining center magazine tool ATC (automatic tool changer)
CN203176268U (en) Synchronizer
CN201994820U (en) Disc type magnetic motor
CN203473250U (en) Mechanical electromagnetic launch device
CN202276273U (en) Magnetic coupler capable of changing gaps between magnetic rotors and copper rotors automatically
CN203863561U (en) Traction type linear displacement and clamping device for batch process equipment
CN203067685U (en) Synchronous transmission separation device
CN103203653B (en) Multi-object synchronous aggregating mechanism
CN203413066U (en) Intermittent type magnetic coupling driver
CN202971793U (en) Synchronous transmission device
CN102485616B (en) Conveying system

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20130306