CN202742768U - 一种太阳能电池背板 - Google Patents

一种太阳能电池背板 Download PDF

Info

Publication number
CN202742768U
CN202742768U CN2012203006773U CN201220300677U CN202742768U CN 202742768 U CN202742768 U CN 202742768U CN 2012203006773 U CN2012203006773 U CN 2012203006773U CN 201220300677 U CN201220300677 U CN 201220300677U CN 202742768 U CN202742768 U CN 202742768U
Authority
CN
China
Prior art keywords
thickness
layer
solar cell
microns
backboard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2012203006773U
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Solartron Technology Co Ltd
Original Assignee
Ningbo Solartron Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Solartron Technology Co Ltd filed Critical Ningbo Solartron Technology Co Ltd
Priority to CN2012203006773U priority Critical patent/CN202742768U/zh
Application granted granted Critical
Publication of CN202742768U publication Critical patent/CN202742768U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本实用新型涉及太阳能电池技术领域,尤其是涉及一种太阳能电池背板。现有太阳能电池背板的厚度高于300um,不利于液晶显示器的超薄化,为了提供厚度较低的太阳能电池背板,本实用新型提供一种太阳能电池背板,该背板包括结构增强层,所述结构增强层的下表面涂布有粘结层,所述结构增强层的上表面喷涂有耐候层;所述耐候层的厚度为30-40微米,所述结构增强层的厚度为150-180微米,所述粘结层材料的厚度为10-30微米。该太阳能电池背板耐候性好,厚度薄,成本低。

Description

一种太阳能电池背板
技术领域
本实用新型涉及太阳能光伏电池技术领域,尤其是涉及一种太阳能电池背板。
背景技术
太阳能作为一种绿色环保、取之不尽的能源,无疑是取代传统火力发电的最佳选择。由于太阳能电池组件需长期暴露在室外使用,所以光伏组件中的电池片必须要加以保护来防止大气中水汽、氧气、紫外线等环境因素的影响和侵蚀。太阳能电池背板是整个太阳能电池的配件之一,主要起力学支撑和保护电池片免受环境因素渗透的作用,因此对背板的耐候性的提高一直以来是该行业的焦点。
目前国内外对太阳能电池背板的研究也是层出不穷,但是最主流的主要是以下这几种:
1、通过PET聚酯薄膜和上下两层耐候层复合形成三明治结构来提高整个背板耐候性和阻隔性。其代表是欧洲的Isovolta公司的TPT背板,其中T是杜邦公司研发生产的Tedlar薄膜。Tedlar薄膜作为耐候层包覆中间一层PET聚酯薄膜复合而成。
2、由于氟材料的价格较为昂贵,所以为节省成本,美国Madico公司研制开发出的TPE太阳能电池背板。其结构和TPT基本一样还是三明治结构,但是采用乙烯-醋酸乙烯共聚(EVA)代替TPT中的内层耐候氟材料层。
3、和TPT类似的还有KPK太阳能电池背板。该背板也是采用三明治结构,通过3层复合来提高背板性能。其中K是法国阿科玛公司研发生产的Kynar膜,即聚偏氟二乙烯(PVDF)膜,中间包覆的也是PET聚酯薄膜。
从以上3种背板中可以看出,无论背板的结构如何改变,其最外层都是以氟材料为耐候层。氟材料以其优良的耐候性可以有效保护PET结构增强层长时间免受环境因素的侵袭,目前,太阳能电池背板的使用年限理论上为25年,但经过实际PCT老化实验及双85试验箱的湿热检测,其使用年限很难达到这个要求。更重要的是,氟材料会对环境造成污染,不利于环保。所以寻找一种耐水解且环保的背板耐候层是很有必要的。
聚醚醚酮(PEEK)是一种综合性能非常优秀的工程塑料,在力学性能上,室温时,PEEK的拉伸强度可达到110MPa以上,即便是在100℃时,拉伸强度也可以稳定在80MPa左右;在热学性能上,纯PEEK的热学性能极其稳定,其热变形温度高达160℃,相对温度指数(RTI)可达到250℃;在绝缘性能方面,PEEK是目前世界上绝缘性最好的高分子材料之一,其体积电阻高达4.9×1016欧姆,表面电阻也大于1015欧姆;PEEK的耐候性能优异,尤其是在抗水解方面,可以说PEEK是所有树脂中抗水解能力最好的树脂,PEEK在23℃时的饱和吸水率是0.5%,有测试表明,PEEK在100℃的热水中浸泡200天后,其力学性能没有明显下降。另外,在抗辐射方面,PEEK具有很好的抗紫外线、Y射线的性能,在Y射线辐射量高达1100Mrad(毫拉德,辐射剂量单位)时,PEEK仍能保持良好的绝缘性能和机械性能。由此可见,无论在力学性能、热学性能、电气绝缘性能还是耐候性能上,PEEK都是耐候层材料的良好的选择。
发明内容
为了进一步增强太阳能电池背板力学性能、热学性能、电气绝缘性能和耐候性能,延长其使用年限,本发明提供一种太阳能电池背板及其制备方法。该太阳能电池背板的结构简单、材料新颖、性能优异,远胜于常规背板,尤其是PEEK出色的耐候性足以保证背板顺利通过双85试验箱的湿热检测及PCT检测,且用PEEK作为耐候层有利于环保。本发明提供的太阳能电池背板的制备方法工艺简单,成本较低。
为达到上述要求,本发明的技术方案如下:
本发明提供一种太阳能电池背板,它的特点是,所述背板依次包括耐候层、结构增强层和粘结层;所述耐候层为聚醚醚酮薄膜层,厚度为30-50微米,所述结构增强层材料为聚酯,厚度为150-250微米,所述粘结层材料为粘结剂,厚度为10-30微米。
进一步的,所述聚醚醚酮薄膜层采用等离子喷涂工艺制得。
聚醚醚酮材料的重均分子量为30000-32000,密度为1.28-1.35g/cm3,如,密度为1.32g/cm3,熔体粘度为0.38-0.42kN·s/m2,玻璃化温度为143-147℃,熔点为336-343℃。
上述等离子喷涂工艺为现有的工艺。等离子喷涂一般采用非转移型弧、冷却中固体嘴口约束焰流并在焰流上送入待喷涂材料的粉料。喷涂工艺的参数的变化,会影响喷涂所得的耐候层的附着力,密度,耐候性(耐湿热老化性),水蒸气透过率。
进一步的,所述结构增强层材料选自PET、PBT或PTT,优选聚对苯二甲酸乙二醇酯(PET)。所用PET切片的相对分子量为16000-18000,密度为1.38-1.40g/cm3,特性粘度为0.52-0.65dl/g,玻璃化温度为82-85℃。
进一步的,所述结构增强层为双向拉伸聚酯薄膜。
进一步的,所述粘结层材料选自瞬干粘结剂、厌氧粘结剂、压敏粘结剂、热熔粘结剂、热固性树脂粘结剂、乳液与乳胶型粘结剂、耐高温粘结剂中的一种或至少两种的组合。
为了增加聚酯薄膜与粘结层的剥离强度,进一步的,所述粘结层材料选自聚醋酸乙烯酯、聚氨酯、聚丙烯酸酯、环氧树脂中的一种或至少两种的组合。
为了进一步增加粘结层的粘结强度,所述粘结层材料选自聚醋酸乙烯酯和聚氨酯的组合物;选自聚丙烯酸酯和环氧树脂的组合物;或选自聚丙烯酸酯和聚氨酯的组合物。
为了降低成本,同时获得较好的耐候性,本发明所述太阳能电池背板的各层可选择不同的厚度范围。
上述耐候层的厚度为35-45微米,36-42微米,40-50微米,30微米,35微米,40微米,45微米或50微米。
上述结构增强层的厚度为155-170微米,175-230微米,235-245微米,150微米,160微米,170微米,180微米,190微米,200微米,210微米,220微米,230微米或240微米。
上述粘结层的厚度为10-15微米,15-20微米,20-25微米,25-30微米,10微米,12微米,16微米,18微米,22微米,25微米,28微米,30微米。
优选的,所述耐候层的厚度为35-45微米,所述结构增强层的厚度为170-230微米,所述粘结层的厚度为12-25微米。
优选的,所述耐候层的厚度为36-42微米,所述结构增强层的厚度为180-210微米,所述粘结层的厚度为15-23微米。
优选的,所述耐候层的厚度为40微米,所述结构增强层的厚度为200微米,所述粘结层的厚度为15微米。
进一步的,所述耐候层的厚度为30-45微米,所述结构增强层的厚度为150-210微米,所述粘结层的厚度为10-20微米。
优选的,所述耐候层的厚度为38微米,所述结构增强层的厚度为190微米,所述粘结层的厚度为12微米。
优选的,所述耐候层的厚度为30微米,所述结构增强层的厚度为160微米,所述粘结层的厚度为10微米。
进一步的,所述耐候层的厚度为35-50微米,所述结构增强层的厚度为180-250微米,所述粘结层的厚度为15-25微米。
优选的,所述耐候层的厚度为42微米,所述结构增强层的厚度为210微米,所述粘结层的厚度为18微米。
优选的,所述耐候层的厚度为45微米,所述结构增强层的厚度为240微米,所述粘结层的厚度为25微米。
现有太阳能电池背板的厚度高于300um,不利于液晶显示器的超薄化,为了提供厚度较低的太阳能电池背板,本发明还提供下述技术方案:
一种太阳能电池背板,包括结构增强层,所述结构增强层的上表面喷涂有聚醚醚酮耐候层,所述结构增强层的下表面涂布有粘结层;所述耐候层的厚度为30-40微米,所述结构增强层的厚度为150-180微米,所述粘结层材料的厚度为10-30微米。
进一步的,上述耐候层的厚度为30-40微米,所述结构增强层的厚度为150-160微米,所述粘结层材料的厚度为10-20微米。
进一步的,上述耐候层的厚度为35微米,所述结构增强层的厚度为170微米,所述粘结层的厚度为25微米。
进一步的,上述耐候层的厚度为30微米,所述结构增强层的厚度为150微米,所述粘结层的厚度为10微米。
上述太阳能电池背板优化了耐候层,结构增强层,粘结层的厚度组合,耐候性好,厚度薄,成本低。
优选的,上述耐候层的厚度为30-40微米,所述结构增强层的厚度为150-160微米,所述粘结层材料的厚度为10-20微米;耐候层材料为聚醚醚酮,结构增强层材料为PET,粘结层材料为聚醋酸乙烯酯。该太阳能电池背板厚度薄,重量轻,同时,耐候性,及力学性能较好。
本发明还提供一种上述的太阳能电池背板的制备方法,它的特点是,所述制备方法包括如下步骤:
(1)制取双向拉伸聚酯薄膜,收卷后,在其下表面涂布粘结剂;
(2)在步骤(1)所得聚酯薄膜的上表面进行聚醚醚酮等离子喷涂,得到所述太阳能电池背板。
上述步骤(1)中的粘结剂在120℃至140℃的条件下热固化20-40min。
上述步骤(2)中所述的聚醚醚酮等离子喷涂工艺在低温下进行,温度控制在120-150℃。将PEEK粉末在150℃-170℃的条件下干燥2-3小时,然后放入送粉器,通电后,使喷嘴和阴极产生电弧,喷嘴直径为2.8-3.0mm,PEEK喷射时经过该电弧被熔融加速,以140-160m/s的速度喷射到聚酯薄膜的上表面,冷凝后形成薄膜层。优选的,上述喷涂工艺的温度控制在120℃、130℃、140℃或150℃;所述PEEK粉末在150℃、160℃,或170℃的条件下干燥2小时、或3小时;喷嘴直径可为2.8mm、2.9mm、或3.0mm;PEEK喷射时经过该电弧被熔融加速,以140m/s、150m/s、或160m/s的速度喷射到聚酯薄膜的上表面。
进一步的,上述步骤(2)中所述的聚醚醚酮等离子喷涂工艺在低温下进行,温度控制在120-150℃。将PEEK粉末在150℃的条件下干燥3小时,然后放入送粉器,通电后,使喷嘴和阴极产生电弧,喷嘴直径为2.8mm,PEEK喷射时经过该电弧被熔融加速,以150m/s的速度喷射到聚酯薄膜的上表面,冷凝后形成薄膜层。
进一步的,所述步骤(1)中,上述粘结剂的干燥过程中,在120℃至140℃的条件下热固化20-40分钟,粘结剂的交联度通常会达到40%-60%。上述温度可以为120℃,130℃,或140℃;热固化时间可以为20,30,或40分钟。
进一步的,所述步骤(2)中的等离子喷涂工艺所用的参数如下:等离子气体为N2,电弧功率为80-100kw,供粉速度为140-160m/s,喷涂距离为15-25cm,喷涂角度为70-100°,喷枪与薄膜相对运动速度为30-60cm/s,温度控制在120-150℃。优选的,前述电弧功率为80kw、85kw、90kw、或100kw;供粉速度为140m/s、150m/s、或160m/s;喷涂距离为15cm、20cm、或25cm,喷涂角度为70°、80°、90°、或100°,喷枪与薄膜相对运动速度为30cm/s、40cm/s、50cm/s、或60cm/s,温度控制在120℃、130℃、140℃、或150℃。
进一步的,所述步骤(2)中的等离子喷涂工艺所用的参数如下:等离子气体为N2,电弧功率为80kw,供粉速度为150m/s,喷涂距离为15-25cm,喷涂角度为90°,喷枪与薄膜相对运动速度为30-60cm/s,温度控制在120-150℃。
采用上述方法喷涂的耐候层牢固地与结构增强层粘接在一起,其耐候性,力学性能等综合性能较好,进而,所制得的太阳能电池背板具有优越的耐候性,力学性能等综合性能。
与现有技术相比,本发明提供的太阳能电池背板中由于含有PEEK涂层,所以力学性能远比传统的背板更佳,背板结构更加稳定,对整个太阳能电池片的支撑保护作用更加的突出,而且粘结强度和剥离强度也高于传统背板。本发明提供的背板在耐候性上也明显优于常规背板,使用寿命得以延长,其使用年限在理论上远超过25年。由于没有氟材料组分,本发明提供的背板成本较低,对环境不会产生任何污染,有助于环保。而且,由于PEEK密度较低,厚度也比传统氟膜薄,因此可以大幅度减小整个背板的密度和厚度,从而降低成本,增大经济效益。本发明提供的太阳能电池背板的制备方法工艺简单,成本较低。该方法采用等离子喷涂工艺制备耐候层,所得耐候层与结构增强层的粘结强度较高,结合得较牢固。
附图说明
图1为本发明提供的太阳能电池背板的剖面示意图。
其中,1为耐候层(聚醚醚酮层),2为结构增强层(聚酯薄膜层),3为粘结层。
具体实施方式
如图1所示,本发明提供的太阳能电池背板依次包括耐候层1、结构增强层2和粘结层3;所述耐候层1的厚度为30-50微米,所述结构增强层2的厚度为150-250微米,所述粘结层3的厚度为10-30微米。本发明提供的太阳能电池背板的耐候层材料为聚醚醚酮。
本发明提供的太阳能电池背板的制备方法包括如下步骤:
(1)采用流延法,在双向拉伸机上制取双向拉伸聚酯薄膜,收卷后,在其下表面涂布上粘结剂,在130℃的恒温条件下热固化30min。
(2)在步骤(1)所得聚酯薄膜的上表面进行聚醚醚酮等离子喷涂,采用低温等离子喷射工艺,将PEEK粉末在150℃的条件下干燥3小时,然后放入送粉器,通电后,使喷嘴和阴极产生电弧,喷嘴直径为2.8mm,PEEK喷射时经过该电弧被熔融加速,以150m/s的速度喷射到聚酯薄膜的上表面,冷凝后形成薄膜层,得到所述太阳能电池背板。
按照上述方法制备所得的太阳能电池背板,其性能测试方法如下:
拉伸强度和断裂伸长率:测试ASTMD-882标准,拉伸强度的测试设备为济南兰光机电技术有限公司生产的XLW薄膜拉力机;
耐候性(耐湿热老化):按照GB/T 2423.1-2001标准测试,环境温度85℃,环境湿度85%RH,采用SH-241环境试验箱测试;
水蒸气透过率:按照ASTM F 1249标准测试,采用TSY-W2水蒸气透过率测试仪对背膜进行测试;
热收缩率:采用ASTMD-1204标准;测试条件为150℃,30min。
剥离强度:采用ASTMD-1876标准,测试条件为180°剥离;
绝缘性:采用GB12802.2-2004标准,测试条件为工频交流。
下述实施例1-3中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯、聚氨酯、聚丙烯酸酯或环氧树脂。
实施例1:
按上述方法制备太阳能电池背板,其中耐候层的厚度为30μm,聚酯薄膜层的厚度为150μm,粘结层的厚度为10μm,所得背板的相关性能见表1。
实施例2:
按上述方法制备太阳能电池背板,其中耐候层的厚度为40μm,聚酯薄膜层的厚度为200μm,粘结层的厚度为15μm,所得背板的相关性能见表1。
实施例3:
按上述方法制备太阳能电池背板,其中耐候层的厚度为50μm,聚酯薄膜层的厚度为250μm,粘结层的厚度为20μm,所得背板的相关性能见表1。
表1
Figure BDA00001798852900091
实施例4:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;
耐候层的厚度为50μm,聚酯薄膜层的厚度为250μm,粘结层的厚度为30μm,所得背板的相关性能见表2。
实施例5:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚氨酯;
耐候层的厚度为35μm,聚酯薄膜层的厚度为170μm,粘结层的厚度为12μm,所得背板的相关性能见表2。
实施例6:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PTT,粘结层材料为聚丙烯酸酯;
耐候层的厚度为45μm,聚酯薄膜层的厚度为230μm,粘结层的厚度为25μm,所得背板的相关性能见表2。
实施例7:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PBT,粘结层材料为环氧树脂;
耐候层的厚度为36μm,聚酯薄膜层的厚度为180μm,粘结层的厚度为15μm,所得背板的相关性能见表2。
实施例8:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯和环氧树脂(聚醋酸乙烯酯和环氧树脂的重量比为1∶1);
耐候层的厚度为42μm,聚酯薄膜层的厚度为210μm,粘结层的厚度为23μm,所得背板的相关性能见表2。
表2
Figure BDA00001798852900111
实施例9:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为环氧树脂和聚丙烯酸酯的组合物(环氧树脂和聚丙烯酸酯的重量比为1∶1);
耐候层的厚度为45μm,聚酯薄膜层的厚度为210μm,粘结层的厚度为20μm,所得背板的相关性能见表3。
实施例10:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PBT,粘结层材料为聚氨酯和聚丙烯酸酯的组合物(聚氨酯和聚丙烯酸酯的重量比为1∶1);
耐候层的厚度为38μm,聚酯薄膜层的厚度为190μm,粘结层的厚度为12μm,所得背板的相关性能见表3。
实施例11:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PTT,粘结层材料为聚氨酯;
耐候层的厚度为30μm,聚酯薄膜层的厚度为160μm,粘结层的厚度为10μm,所得背板的相关性能见表3。
实施例12:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PBT,粘结层材料为聚丙烯酸酯和聚醋酸乙烯酯的组合物(聚丙烯酸酯和聚醋酸乙烯酯的重量比为1∶1);
耐候层的厚度为40μm,聚酯薄膜层的厚度为180μm,粘结层的厚度为10μm,所得背板的相关性能见表3。
实施例13:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;
耐候层的厚度为32μm,聚酯薄膜层的厚度为170μm,粘结层的厚度为18μm,所得背板的相关性能见表3。
表3
Figure BDA00001798852900121
Figure BDA00001798852900131
实施例14:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚氨酯和聚醋酸乙烯酯的组合物(聚氨酯和聚醋酸乙烯酯的重量比为1∶1);
耐候层的厚度为35μm,聚酯薄膜层的厚度为180μm,粘结层的厚度为15μm,所得背板的相关性能见表4。
实施例15:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PTT,粘结层材料为聚氨酯和聚丙烯酸酯的组合物(聚氨酯和聚丙烯酸酯的重量比为1∶1);
耐候层的厚度为50μm,聚酯薄膜层的厚度为250μm,粘结层的厚度为25μm,所得背板的相关性能见表4。
实施例16:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PBT,粘结层材料为聚氨酯;
耐候层的厚度为42μm,聚酯薄膜层的厚度为210μm,粘结层的厚度为18μm,所得背板的相关性能见表4。
实施例17:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料聚丙烯酸酯;
耐候层的厚度为45μm,聚酯薄膜层的厚度为240μm,粘结层的厚度为25μm,所得背板的相关性能见表4。
实施例18:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;
耐候层的厚度为37μm,聚酯薄膜层的厚度为220μm,粘结层的厚度为20μm,所得背板的相关性能见表4。
表4
Figure BDA00001798852900141
Figure BDA00001798852900151
实施例19:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;所述耐候层的厚度为30微米,所述结构增强层的厚度为150微米,所述粘结层的厚度为15微米,所得背板的相关性能见表5。
实施例20:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;所述耐候层的厚度为40微米,所述结构增强层的厚度为180微米,所述粘结层的厚度为30微米,所得背板的相关性能见表5。
实施例21:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;所述耐候层的厚度为40微米,所述结构增强层的厚度为160微米,所述粘结层的厚度为20微米,所得背板的相关性能见表5。
实施例22:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;所述耐候层的厚度为35微米,所述结构增强层的厚度为170微米,所述粘结层的厚度为25微米,所得背板的相关性能见表5。
实施例23:
按上述方法制备太阳能电池背板,其中,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;所述耐候层的厚度为35微米,所述结构增强层的厚度为150微米,所述粘结层的厚度为10微米,所得背板的相关性能见表5。
表5
Figure BDA00001798852900161
对比例1:
现有的太阳能电池背板,耐候层材料为聚偏氟乙烯,其中,聚酯薄膜层材料为PET,粘结层材料为聚氨酯;
耐候层的厚度为30μm,聚酯薄膜层的厚度为150μm。粘结层的厚度为10μm,所得背板的相关性能见表6。
对比例2:
现有的太阳能电池背板,耐候层材料为聚醚酰亚胺,其中,聚酯薄膜层材料为PET,粘结层材料为聚丙烯酸酯;
耐候层的厚度为40μm,聚酯薄膜层的厚度为200μm。粘结层的厚度为15μm,所得背板的相关性能见表6。
对比例3:
采用流延法,在双向拉伸机上制取双向拉伸聚酯薄膜,收卷后,在其下表面涂布粘结剂,在130℃的恒温条件下热固化30min;聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;
聚酯薄膜层的厚度为300μm,粘结层的厚度为20μm,所得背板的相关性能见表6。
对比例4:
按上述方法制备太阳能电池背板,其中,耐候层材料为聚醚醚酮,聚酯薄膜层材料为PET,粘结层材料为聚氨酯;
耐候层的厚度为60μm,聚酯薄膜层的厚度为280μm。粘结层的厚度为20μm,所得背板的相关性能见表6。
对比例5:
按上述方法制备太阳能电池背板,其中,耐候层材料为聚醚醚酮,聚酯薄膜层材料为PET,粘结层材料为聚醋酸乙烯酯;
耐候层的厚度为20μm,聚酯薄膜层的厚度为120μm。粘结层的厚度为10μm,所得背板的相关性能见表6。
表6
Figure BDA00001798852900171
Figure BDA00001798852900181
上述表1至表6中的厚度指实施例制得的耐候性聚酯薄膜的总厚度,为耐候层,聚酯薄膜层,粘结层的厚度之和。
由表1-5中的测试数据可以得出本发明提供的太阳能电池背板具有优异的力学性能和热学性能,耐湿热老化性能良好,绝缘性和水蒸气透过率良好。
由表6中的测试数据可得出,对比例1中的太阳能电池背板的耐候层为聚偏氟乙烯,该太阳能电池背板的拉伸强度和断裂伸长率的数据较低,表明该背板力学性能较差;对比例2中的太阳能电池背板的耐候层为聚醚酰亚胺,该太阳能电池背板的拉伸强度和断裂伸长率的数据较低,表明该背板力学性能较差;对比例3中的太阳能电池背板没有耐候层,该太阳能电池背板的综合性能较差;对比例4中的太阳能电池背板的耐候层和聚酯薄膜层的厚度过大,该太阳能电池背板的断裂伸长率,热收缩性,聚酯薄膜与粘结剂剥离强度的数据较低,综合性能较差;对比例5中的太阳能电池背板的耐候层和聚酯薄膜层的厚度过小,该太阳能电池背板的力学性能,耐候性能,绝缘性能等综合性能较差。
将表1至表5中的测试数据与表6中的测试数据进行比较,可以得出,本发明提供的太阳能电池背板具有优越的综合性能。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡是根据本发明内容所做的均等变化与修饰,均涵盖在本发明的专利范围内。

Claims (4)

1.一种太阳能电池背板,其特征在于,所述太阳能电池背板包括结构增强层,所述结构增强层的下表面涂布有粘结层,所述结构增强层的上表面喷涂有耐候层;所述耐候层的厚度为30-40微米,所述结构增强层的厚度为150-180微米,所述粘结层材料的厚度为10-30微米。
2.根据权利要求1所述的太阳能电池背板,其特征在于,所述耐候层的厚度为30-40微米,所述结构增强层的厚度为150-160微米,所述粘结层材料的厚度为10-20微米。
3.根据权利要求1所述的太阳能电池背板,其特征在于,所述耐候层的厚度为35微米,所述结构增强层的厚度为170微米,所述粘结层的厚度为25微米。
4.根据权利要求1所述的太阳能电池背板,其特征在于,所述耐候层的厚度为30微米,所述结构增强层的厚度为150微米,所述粘结层的厚度为10微米。
CN2012203006773U 2012-06-21 2012-06-21 一种太阳能电池背板 Expired - Fee Related CN202742768U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012203006773U CN202742768U (zh) 2012-06-21 2012-06-21 一种太阳能电池背板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012203006773U CN202742768U (zh) 2012-06-21 2012-06-21 一种太阳能电池背板

Publications (1)

Publication Number Publication Date
CN202742768U true CN202742768U (zh) 2013-02-20

Family

ID=47702213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012203006773U Expired - Fee Related CN202742768U (zh) 2012-06-21 2012-06-21 一种太阳能电池背板

Country Status (1)

Country Link
CN (1) CN202742768U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113002A (zh) * 2018-03-30 2019-08-09 康维明工程薄膜(张家港)有限公司 一种光伏背板粘接面耐紫外性能测试方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113002A (zh) * 2018-03-30 2019-08-09 康维明工程薄膜(张家港)有限公司 一种光伏背板粘接面耐紫外性能测试方法
CN110113002B (zh) * 2018-03-30 2020-08-04 康维明工程薄膜(张家港)有限公司 一种光伏背板粘接面耐紫外性能测试方法

Similar Documents

Publication Publication Date Title
CN102501514B (zh) 一种太阳能电池背板的制备方法
CN101931012B (zh) 一种太阳能电池背板及其制备方法以及使用该背板的太阳能电池组件
CN108022989A (zh) 一种晶硅太阳能电池柔性芯板、双面玻璃光伏建材构件及其制备方法
CN101359695A (zh) 一种太阳能电池背板
CN106159014B (zh) 高性能耐候性复合材料封装光伏组件及其制备方法
CN101814542A (zh) 高水汽阻隔率太阳能背膜及其制作方法
CN103072349A (zh) 一种太阳能电池背板复合膜
CN101515603A (zh) 一种太阳能电池背板
CN102476492B (zh) 一种太阳能电池背板及其制备方法以及一种太阳能电池组件
CN102376805A (zh) 一种太阳能电池背板及其制备方法
CN203205441U (zh) 一种太阳能电池背板及一种太阳能电池组件
CN102709368B (zh) 一种太阳能电池背板及其制备方法
CN103280479A (zh) 新型无氟多层共挤太阳能电池背板及其制备方法
CN104124300A (zh) 一种太阳能电池背板及太阳能电池组件
CN106784095A (zh) 一种无框薄膜光伏电池组件
CN201812840U (zh) 一种带有绝缘层的光伏组件背板
CN208507702U (zh) 一种光伏复合背板及其应用的光伏组件
CN202742768U (zh) 一种太阳能电池背板
CN202473968U (zh) 光伏电池背板及使用该背板的光伏电池
CN202225507U (zh) 一种高耐电压型太阳能电池背板
CN102862344B (zh) 太阳能电池背板
CN103522658A (zh) 一种金属穿孔式太阳能电池用背板及其制备方法
CN110757916A (zh) 一种高耐候、高水汽阻隔型太阳能电池背膜及其制备方法
CN102610679B (zh) 一种太阳能电池背板及其制备方法
CN206116421U (zh) 高性能耐候性复合材料封装光伏组件

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130220

Termination date: 20140621

EXPY Termination of patent right or utility model