CN202661045U - 基于少量空间点的莫尔条纹高倍细分设备 - Google Patents

基于少量空间点的莫尔条纹高倍细分设备 Download PDF

Info

Publication number
CN202661045U
CN202661045U CN 201220256335 CN201220256335U CN202661045U CN 202661045 U CN202661045 U CN 202661045U CN 201220256335 CN201220256335 CN 201220256335 CN 201220256335 U CN201220256335 U CN 201220256335U CN 202661045 U CN202661045 U CN 202661045U
Authority
CN
China
Prior art keywords
moire fringe
magnification
fpga
subdivision
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201220256335
Other languages
English (en)
Inventor
常丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN 201220256335 priority Critical patent/CN202661045U/zh
Application granted granted Critical
Publication of CN202661045U publication Critical patent/CN202661045U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

本实用新型公开了一种基于少量空间点的莫尔条纹高倍细分设备,该设备包括光栅传感器、仪器放大器、抗混叠滤波器、模数转换器和基于FPGA的SOPC系统,可以应用在大量程位移快速精密测量、定位与控制中。在某一时刻利用光栅传感器输出的四路空间信号确定光栅的位置,两次相邻时刻的位置差累加获得总位移。采用高精度高速度数据采集系统和空间少量点细分算法获得高分辨力的高倍细分。该方法充分利用空间莫尔条纹周期性、正弦性的特点,并采用FPGA实现算法,具有运算量小、速度快、细分数高等特点,可解决光栅大量程精密位移测控中高分辨力、高速度、大量程之间的矛盾问题。

Description

基于少量空间点的莫尔条纹高倍细分设备
技术领域
 本实用新型主要涉及精密位移测量中的光栅莫尔条纹细分方法和精密位移测量装置,提出了一种可达到纳米分辨力的光栅莫尔条纹高倍细分方法。
背景技术
光栅莫尔条纹细分及位移测量
国外研究条纹及其在光栅传感器中应用最知名机构是德国HEIDENHAIN,其高品质技术和产品是在精湛的光刻工艺、优质材料和先进的实验生产条件基础上实现的,其产品已达纳米级,但对国内禁售。英国RENISHAW 也是国际上具有影响力的光栅数显企业,其研制的创新非接触式光学结构的光栅系统在实现精确测量、高分辨力和零机械磁滞的同时有很强的抗污能力。日本MITUTOYO、西班牙FAGOR、美国microE等也是世界著名光栅尺和数显制造商。目前国外产品垄断着市场。国内研究主要是在提高刻线密度、光学细分、电子细分三个方面。在提高光刻工艺方面:国家支持的重大科研装备研制项目“大型高精度衍射光栅刻划系统”目标是实现大尺寸高精密的刻划,打破国外的垄断和限制。在光学细分方面:主要包括二次莫尔条纹信号细分、等腰闪耀光栅的光学细分、合成波长条纹细分等方法。光刻法和光学细分法造价昂贵,细分数和量程提高空间有限。在电子细分方面:主要包括动态跟踪细分、CMOS、CCD细分、神经网络细分、锁相细分等。目前电子细分方法存在的主要问题是高细分、高速度、大量程之间的矛盾问题。因此需要提高有效的细分数,有效的细分方法是在获得高细分的同时还要实现高速度。
发明内容
实用新型目的:本实用新型提供一种基于少量空间点的莫尔条纹高倍细分设备,其目的是解决以往的方法效果不理想的问题。
技术方案:本实用新型专利是通过以下技术方案来实现的:
基于少量空间点的莫尔条纹高倍细分设备,其特征在于:该设备包括光栅传感器、仪器放大器、抗混叠滤波器、模数转换器和基于FPGA的SOPC系统;光栅传感器连接至仪器放大器,仪器放大器连接至抗混叠滤波器,抗混叠滤波器连接至模数转换器,模数转换器连接至基于FPGA的SOPC系统。
该设备还包括键盘和显示单元,键盘和显示单元连接至基于FPGA的SOPC系统。
基于FPGA的SOPC系统内设置有并行数据采集单元、并行数据处理单元和同步控制脉冲单元;同步控制脉冲单元分别连接至并行数据采集单元、并行数据处理单元和模数转换器,模数转换器连接至并行数据采集单元,并行数据处理单元连接键盘和显示单元。
优点及效果:本实用新型提供的基于少量空间点的莫尔条纹高倍细分方法,其优点及效果如下:
1)自适应各种国内外光栅传感器,易于实现产品化。
2)基于空间两点及以上的细分算法计算量少、速度快。
3)该细分方法能够满足高分辨力、高速度、大量程光栅位移测量与控制需要。
附图说明:
图1为基于少量空间点的莫尔条纹高倍细分设备框图;
图2为基于少量空间点的莫尔条纹细分工作流程图。
具体实施方式:下面结合附图对本实用新型专利做进一步的描述:
如图1所示为本实用新型的基于少量空间点的莫尔条纹高倍细分设备,该设备中光栅传感器连接至仪器放大器,仪器放大器连接至抗混叠滤波器,抗混叠滤波器连接至模数转换器,模数转换器连接至基于FPGA的SOPC系统;该基于少量空间点的莫尔条纹高倍细分设备中还包括有键盘和显示单元,键盘和显示单元连接至基于FPGA的SOPC系统。
基于FPGA的SOPC系统内设置有并行数据采集单元、并行数据处理单元和同步控制脉冲单元;同步控制脉冲单元分别连接至并行数据采集单元、并行数据处理单元和模数转换器,模数转换器连接至并行数据采集单元,并行数据处理单元连接键盘和显示单元。
莫尔条纹信号空间与时间的采集是直接利用光栅传感器内置的光电转换器或采用CCD或CMOS及模数转换器。利用光栅传感器输出的四路空间信号确定在某一时刻光栅的位置,两次相邻时刻的位置差累加后为总位移。采用高精度高速度数据采集系统和空间少量点算法获得高分辨力,可实现纳米级高倍细分。目前国内外的光栅传感器普遍为四路信号输出,本申请适用于目前各类国内外传感器,易于实现产品化。该方法是基于空间莫尔条纹周期性、正弦性分布的特点,具有细分数高、运算量小、速度快,可用于基于条纹原理的各类精密位移测量、定位与控制中。
莫尔条纹空间信号采集:一种方法是直接采集光栅传感器输出的四路信号,另一种方法是增加空间光电管数量或采用CCD、CMOS替代光电管提高空间点数和空间分辨力,设光栅莫尔条纹间距为L,则该条纹在频率域中的基频为:
由采样定理可知,要使采样后莫尔条纹信号的频谱不发生混叠,则要求条纹的空间采样频率满足下式:
因此在一个莫尔条纹信号周期之内至少放置两个光电管以保证采集后莫尔条纹的频谱不发生混叠。 
莫尔条纹时间信号采集:首先采用仪器放大器和滤波器对信号去噪、抗混叠滤波处理,然后搭建高速高精度同步数据采集系统同时采集传感器输出的莫尔条纹信号,采用基于FPGA的SOPC对采集系统进行控制、实现细分算法;采集的幅值分辨力决定空间位置的精度,采集的速度决定两次位置差的精度即位移的分辨力,根据实际的精度和速度的要求与应用场合,可以选择不同的AD,指标计算如下:
针对栅距20um,跟踪速度为2m/s的常用传感器,对应信号的最高输出频率为100KHz,采用250MHz的16位AD,可达到纳米级分辨力,对应的细分数为2500,提高采样速度、选择高质量传感器和低指标要求时将进一步提高细分数和分辨力;
如图2所示,光栅莫尔条纹细分原理及实现:
某一时刻的空间位置确定:一个周期空间莫尔条纹成正弦型分布,利用空间采集点拟合莫尔条纹正弦信号,对正弦信号抽样的原则是抽样频率应为信号频率的整数倍,抽样点数应包含整周期。当正弦信号相位未知时,抽样频率至少应取正弦频率的三倍。当相位已知时,仅抽样两个不为零点,即可重建原信号。这时正弦信号的抽样满足抽样定理,当用DFT做频谱分析时,频域不会发生泄漏。因为在实际工作中相位可能是未知的;对正弦信号的抽样不宜补零;对DFT做快速计算时,又希望数据点数N最好为2的整次幂。因此,对正弦信号抽样时,一个周期内最好抽四个点。光栅传感器输出的空间四路信号在同一时刻构成一个空间周期,即对光栅莫尔条纹空间正弦信号均匀采集了四点,满足上述要求,因此完全可以由这四点构造出正弦函数。
设空间四点的坐标为(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4),构造的正弦函数为:
Figure DEST_PATH_IMAGE006
y为电压值,A为峰值, x为位置值, x 0 为初值位置、d为光栅栅距
通过下列表达式可以确定初始位置、峰值、栅距:
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE012
上式是取了四个坐标中的三点,这三点可以任取四点坐标中三点坐标,解上式就可以确定初始位置、峰值、栅距。
当栅距d已知时:通过下列表达式可以确定初始位置
Figure DEST_PATH_IMAGE014
当d已知时且当空间四点的坐标(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4) 相差90度时,确定初始位置表达式简化为:
这样任取四点坐标中两点坐标就可以确定初始位置。
因此利用空间四点拟合正弦信号,由其初相即可确定出某一时刻的空间位置。
实现某一时刻的相位及空间位置的确定还可以利用插值函数sinc进行正弦函数拟合,即可确定相位得到空间初始位置,拟合公式为:
Figure DEST_PATH_IMAGE018
    N 为选取的空间点数,D s 为空间采样周期。
实现某一时刻的相位及空间位置的确定还可以采用傅里叶变换、小波变换将信号变换到频域F(k),利用虚部和实部的反正切关系也能够确定相位,进而得到空间位置x 0i
Figure DEST_PATH_IMAGE020
,并可采用傅里叶变换快速算法FFT、小波变换快速算法mallat或提升小波变换实现,能够提高跟踪速度,易于FPGA实现。
虽然光栅传感器输出的时间信号是非正弦的随机信号,但某一时刻的空间信号是正弦信号,且周期固定相位不同,两次相邻时刻的相位差对应位移值,为了提高细分数和速度,一方面采用高速AD,另一方面采用逐点递进的处理方法,每一时刻提取出这一时刻所对应得信号的初相,在光栅传感器运行中,相邻两次相位差对应相邻时刻的位置差:
Figure DEST_PATH_IMAGE022
。差值符号对应位移的方向,相邻时刻的位置差累加获得总位移。还可利用相关法直接获得位置差。由相关函数公式
Figure DEST_PATH_IMAGE024
计算出n即可获得位置差,并可采用快速算法FFT实现,能够提高跟踪速度。
本实用新型采用快速算法提高处理速度,且采用具有并行处理能力的FPGA实现可进一步提高位移测量的跟踪速度,保证高细分的前提下具有高速度,能够满足大量程高速高精度位移测控领域的需求。

Claims (3)

1. 基于少量空间点的莫尔条纹高倍细分设备,其特征在于:该设备包括光栅传感器、仪器放大器、抗混叠滤波器、模数转换器和基于FPGA的SOPC系统;光栅传感器连接至仪器放大器,仪器放大器连接至抗混叠滤波器,抗混叠滤波器连接至模数转换器,模数转换器连接至基于FPGA的SOPC系统。
2.根据权利要求1所述的基于少量空间点的莫尔条纹高倍细分设备,其特征在于:该设备还包括键盘和显示单元,键盘和显示单元连接至基于FPGA的SOPC系统。
3.根据权利要求2所述的基于少量空间点的莫尔条纹高倍细分设备,其特征在于:基于FPGA的SOPC系统内设置有并行数据采集单元、并行数据处理单元和同步控制脉冲单元;同步控制脉冲单元分别连接至并行数据采集单元、并行数据处理单元和模数转换器,模数转换器连接至并行数据采集单元,并行数据处理单元连接键盘和显示单元。
CN 201220256335 2012-06-01 2012-06-01 基于少量空间点的莫尔条纹高倍细分设备 Expired - Fee Related CN202661045U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201220256335 CN202661045U (zh) 2012-06-01 2012-06-01 基于少量空间点的莫尔条纹高倍细分设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201220256335 CN202661045U (zh) 2012-06-01 2012-06-01 基于少量空间点的莫尔条纹高倍细分设备

Publications (1)

Publication Number Publication Date
CN202661045U true CN202661045U (zh) 2013-01-09

Family

ID=47455948

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201220256335 Expired - Fee Related CN202661045U (zh) 2012-06-01 2012-06-01 基于少量空间点的莫尔条纹高倍细分设备

Country Status (1)

Country Link
CN (1) CN202661045U (zh)

Similar Documents

Publication Publication Date Title
CN102679888B (zh) 基于少量空间点的莫尔条纹高倍细分方法及设备
CN109357621B (zh) 基于线阵相机和位感条纹的三维振动位移测量装置与方法
JP2546823B2 (ja) 位置検出方法および装置
CN110160770B (zh) 高速旋转主轴实时检测装置及其检测方法
CN105300317A (zh) 基于正弦和三角波条纹投影的三维测量方法
CN103398675B (zh) 一种基于条纹周期校正的复杂大物体三维测量方法
CN106595728A (zh) 一种转子轴向位移、转速及倾斜角度的径向集成测量方法
CN103063345B (zh) 一种检测轴销所承受径向力的方法
CN107084662A (zh) 基于fpga的正交信号实时处理方法
CN103398732B (zh) 基于频谱非线性效应色散补偿的低相干干涉解调方法
JP2002532706A (ja) 光学式エンコーダ用位置センサ及び回路
CN108692668B (zh) 基于光纤光栅传感的三维形状检测系统及方法
CN107796310A (zh) 光栅位移传感器单周期计量误差的装置及其测量方法
CN104698217B (zh) 非接触式微分差相关瞬时速度传感方法
CN202661045U (zh) 基于少量空间点的莫尔条纹高倍细分设备
CN102636127B (zh) 轨迹跟踪式干涉信号计数细分装置及方法
CN116594070B (zh) 一种量子重力梯度仪的重力加速度重力梯度同步解算方法
CN104237561A (zh) 基于光纤光栅曲率感知网络的空间加速度测量方法和装置
Yin et al. Exact straightness reconstruction for on-machine measuring precision workpiece
CN103267485A (zh) 一种点衍射三维绝对位移测量方法
CN104132609A (zh) 一种电磁栅尺结构及其位移信息读取方法
CN104279956A (zh) 一种岩石结构面表面基准面的确定方法
CN108253897A (zh) 一种大范围高精度的点衍射干涉三维坐标测量方法
CN102564355B (zh) 干涉式高密度圆光栅偏心检测方法
CN108088372A (zh) 一种基于新型计量光栅的位移测量系统及方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130109

Termination date: 20160601