CN202655586U - Continuous casting device for large-section hollow tube blank - Google Patents
Continuous casting device for large-section hollow tube blank Download PDFInfo
- Publication number
- CN202655586U CN202655586U CN 201220276766 CN201220276766U CN202655586U CN 202655586 U CN202655586 U CN 202655586U CN 201220276766 CN201220276766 CN 201220276766 CN 201220276766 U CN201220276766 U CN 201220276766U CN 202655586 U CN202655586 U CN 202655586U
- Authority
- CN
- China
- Prior art keywords
- water
- crystallizer
- upper cover
- conduit
- flange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009749 continuous casting Methods 0.000 title claims abstract description 44
- 230000007246 mechanism Effects 0.000 claims abstract description 100
- 238000005266 casting Methods 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 183
- 238000001816 cooling Methods 0.000 claims description 47
- 239000002893 slag Substances 0.000 claims description 28
- 230000006698 induction Effects 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 239000007921 spray Substances 0.000 claims description 14
- 239000000498 cooling water Substances 0.000 claims description 13
- 238000009413 insulation Methods 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 238000005192 partition Methods 0.000 claims description 10
- 230000035515 penetration Effects 0.000 claims description 10
- 230000000712 assembly Effects 0.000 claims description 8
- 238000000429 assembly Methods 0.000 claims description 8
- 239000011449 brick Substances 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000011819 refractory material Substances 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 4
- 238000011084 recovery Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 16
- 229910000831 Steel Inorganic materials 0.000 description 15
- 239000010959 steel Substances 0.000 description 15
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 238000002955 isolation Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004321 preservation Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
技术领域 technical field
本实用新型是有关于一种大断面空心管坯连续铸造装置。The utility model relates to a continuous casting device for a large-section hollow billet.
背景技术 Background technique
随着石油、化工、风电、核电等行业的发展,大直径管状坯料、筒状坯料、环状坯料以及大断面高质量实心锭坯料需求不断增加,传统铸锭锻造冲孔、扩孔技术无法满足质量、效率、成本的需求,随着铸件断面直径的加大,中心疏松、缩孔、偏析恶化,出品率低(50-65%)、生产效率低下等严重制约着该行业的发展。With the development of petroleum, chemical, wind power, nuclear power and other industries, the demand for large-diameter tubular billets, cylindrical billets, ring billets, and large-section high-quality solid ingot billets continues to increase, which cannot be met by traditional ingot forging punching and hole expansion technologies. The demand for quality, efficiency, and cost, along with the increase of casting section diameter, central looseness, shrinkage cavity, segregation deterioration, low yield (50-65%), and low production efficiency seriously restrict the development of this industry.
而连续铸造技术,由于受到大断面传热的影响,铸坯内部质量与生产效率也随断面直径的加大显著降低,即使液芯轻压下技术随着直径的进一步增大,圆形坯表层变形向中心的传递变得越来越弱,以致直径1000mm以上的实心连铸坯成了连续铸造难于逾越的禁区。In continuous casting technology, due to the influence of large cross-section heat transfer, the internal quality and production efficiency of the billet also decrease significantly with the increase of the cross-section diameter. The transmission of deformation to the center becomes weaker and weaker, so that the solid continuous casting slab with a diameter of more than 1000mm has become an insurmountable forbidden zone for continuous casting.
大断面铸坯的连续铸管技术也是如此,传统成熟技术的连续铸管多采用水平铸造方法,中心铸孔采用具有较小拔模斜度的实心石墨棒,通常铸管直径不超过Φ500mm,同时壁厚也较薄不超过100mm。随着直径的加大,凝固过程杂质、析出性气体、偏析等缺陷向上部积聚,质量会严重恶化,因此限制了水平铸造的可能性。The same is true for the continuous casting pipe technology of large cross-section casting slabs. The continuous casting pipe of traditional mature technology mostly adopts the horizontal casting method, and the central casting hole adopts a solid graphite rod with a small draft angle. The wall thickness is also thinner and does not exceed 100mm. As the diameter increases, impurities such as solidification process impurities, precipitated gases, and segregation accumulate upward, and the quality will seriously deteriorate, thus limiting the possibility of horizontal casting.
实用新型内容 Utility model content
本实用新型的目的是,提供一种大断面空心管坯连续铸造装置,其可适合大规格的空心管坯的制造。The purpose of the utility model is to provide a large-section hollow billet continuous casting device, which is suitable for the manufacture of large-sized hollow billets.
本实用新型的上述目的可采用下列技术方案来实现:Above-mentioned purpose of the utility model can adopt following technical scheme to realize:
一种大断面空心管坯连续铸造装置,所述铸造装置包括内结晶器,外结晶器,上盖机构,基座机构,断面为圆环状的圆环筒形引锭器,带加热的中间包和铸流分配器;基座机构与上盖机构的内部相互连通,上盖机构和基座机构上下固定连接;外结晶器固定连接在所述基座机构的下方;所述内结晶器为柱状结构,内结晶器固定连接在所述上盖机构上,且内结晶器的下方穿设于所述上盖机构和基座机构的内部,使所述内结晶器的下部位于所述外结晶器的内侧,并被所述外结晶器同心环绕设置,所述铸流分配器将中间包内的金属液分配为一流或多流导入上盖机构内,所述内结晶器和外结晶器之间填充有金属液;在开浇初期,所述圆环筒形引锭器设置在所述内、外结晶器之间的环形腔体的底部,所述金属液经过内、外结晶器的冷却形成凝固的空心管坯,所述空心管坯位于圆环筒形引锭器上。A large-section hollow billet continuous casting device, the casting device includes an inner mold, an outer mold, an upper cover mechanism, a base mechanism, a circular cylindrical dummy with a circular section, and a heated intermediate ladle and strand distributor; the base mechanism and the inside of the upper cover mechanism communicate with each other, and the upper cover mechanism and the base mechanism are fixedly connected up and down; the outer mold is fixedly connected below the base mechanism; the inner mold is Columnar structure, the inner crystallizer is fixedly connected to the upper cover mechanism, and the lower part of the inner crystallizer is penetrated inside the upper cover mechanism and the base mechanism, so that the lower part of the inner crystallizer is located in the outer crystallizer The inner side of the mold is arranged concentrically around the outer mold. The strand distributor distributes the molten metal in the tundish into one or more streams and guides it into the upper cover mechanism. Between the inner mold and the outer mold The gap is filled with molten metal; at the initial stage of pouring, the circular cylindrical dummy is set at the bottom of the annular cavity between the inner and outer molds, and the molten metal is cooled by the inner and outer molds A solidified hollow shell is formed which rests on a circular cylindrical dummy.
本实用新型实施例的特点和优点是:其采用内结晶器与外结晶器相结合,对铸坯进行双向冷却,使铸坯冷却和凝固可适应的有效断面和壁厚大大增加,从而可适合大规格的空心管坯的制造,此外,本实用新型实施例还可实现连续和半连续铸造。The characteristics and advantages of the embodiment of the utility model are: it adopts the combination of the inner crystallizer and the outer molder to cool the slab in two directions, so that the effective section and wall thickness that can be adapted to the cooling and solidification of the slab are greatly increased, so that it can be suitable for In addition, the embodiment of the utility model can also realize continuous and semi-continuous casting.
附图说明 Description of drawings
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the accompanying drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some implementations of the present invention. For example, those of ordinary skill in the art can also obtain other drawings based on these drawings on the premise of not paying creative efforts.
图1是本实用新型实施例的大断面空心管坯连续铸造装置的结构断面示意图;Fig. 1 is a structural cross-sectional schematic diagram of a large-section hollow billet continuous casting device according to an embodiment of the present invention;
图2是本实用新型实施例的大断面空心管坯连续铸造装置的连铸机部件的装配过程示意图;Fig. 2 is a schematic diagram of the assembly process of the continuous casting machine parts of the large-section hollow billet continuous casting device of the embodiment of the present invention;
图3是本实用新型实施例的大断面空心管坯连续铸造装置的为了显示外晶器的局部放大示意图;Fig. 3 is a partial enlarged schematic diagram of the large-section hollow billet continuous casting device for displaying the outer mold of the utility model embodiment;
图4是本实用新型实施例的大断面空心管坯连续铸造装置的为了显示第二水冷系统的局部放大示意图;Fig. 4 is a partially enlarged schematic diagram showing the second water cooling system of the large-section hollow billet continuous casting device of the embodiment of the present invention;
图5是本实用新型实施例的大断面空心管坯连续铸造装置的内结晶器的结构示意图;Fig. 5 is a schematic structural view of the inner crystallizer of the large-section hollow billet continuous casting device of the embodiment of the present invention;
图6是本实用新型实施例的大断面空心管坯连续铸造装置的内结晶器的各部件的装配过程示意图;Fig. 6 is a schematic diagram of the assembly process of each part of the inner mold of the large-section hollow billet continuous casting device according to the embodiment of the present invention;
图7是本实用新型实施例的大断面空心管坯连续铸造装置的上盖机构的仰视示意图;Fig. 7 is a schematic bottom view of the upper cover mechanism of the large-section hollow billet continuous casting device according to the embodiment of the present invention;
图8是沿着图7的A-O-A线剖面示意图;Fig. 8 is a schematic cross-sectional view along the A-O-A line of Fig. 7;
图9是本实用新型实施例的大断面空心管坯连续铸造装置的基座机构的仰视示意图;Fig. 9 is a schematic bottom view of the base mechanism of the large-section hollow billet continuous casting device according to the embodiment of the present invention;
图10是沿着图9的B-O-O1-B线剖面示意图;Fig. 10 is a schematic cross-sectional view along the line B-O-O1-B of Fig. 9;
图11是本实用新型实施例的大断面空心管坯连续铸造装置的超大断面空心大断面铸坯的连铸缺陷仿真预测结果示意图。Fig. 11 is a schematic diagram of the simulation prediction results of continuous casting defects of the super-large-section hollow large-section billet of the large-section hollow billet continuous casting device of the embodiment of the present invention.
具体实施方式 Detailed ways
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. example. Based on the embodiments of the present utility model, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of the present utility model.
实施方式一
如图1至图5所示,本实用新型实施例提出的大断面空心管坯连续铸造装置,其包括内结晶器1、外结晶器2、上盖机构5、基座机构6,断面为圆环状的圆环筒形引锭器10,带加热的中间包7和铸流分配器8。所述上盖机构5和基座机构6的内部相互连通,上盖机构5和基座机构6上下固定连接,并构成了环形金属液熔池3。所述外结晶器2固定连接在所述基座机构6的下方;所述内结晶器1为柱状结构,内结晶器1固定连接在所述上盖机构5上,且内结晶器1的下方穿设于所述上盖机构5和基座机构6的内部,使所述内结晶器1的下部位于所述外结晶器2的内侧,并被所述外结晶器2同心环绕设置,铸流分配器8将中间包7内的金属液分配为一流或多流导入上盖机构5内,内结晶器1和外结晶器2之间填充有金属液。在开浇初期,所述圆环筒形引锭器10设置在所述内、外结晶器1、2之间的环形腔体的底部,所述金属液经过内、外结晶器1、2的冷却形成凝固的空心管坯4,所述空心管坯4位于圆环筒形引锭器10上。As shown in Figures 1 to 5, the large-section hollow billet continuous casting device proposed by the embodiment of the present invention includes an
本实施例中,内结晶器1的下部设置在外结晶器2的内侧中心处,内结晶器1和外结晶器2之间填充有金属液,即,金属液在内结晶器1和外结晶器2之间被两个结晶器实施双向冷却,在冷却之后以凝固的空心管坯4从两结晶器的下方被拉出。进一步而言,本实施例采用内结晶器1与外结晶器2相结合,对空心管坯4进行双向冷却,使空心管坯4冷却和凝固可适应的有效厚度大大增加,从而可适合更大规格的铸坯的制造。In this embodiment, the lower part of the
本实施例中,上述内结晶器1和外结晶器2通过上盖机构5和基座机构6而固定连接在一起,以此使内、外结晶器固定、同心设置,如此使得各部件的更换变得更加容易方便。此外,本实施例通过更换不同外径尺寸可生产不同壁厚规格的大直径管坯。In this embodiment, the above-mentioned
参见图5所示,所述内结晶器1包括进水直导管1h,回水导管1i和冷却水回路。回水导管1i间隔地围设在所述进水直导管1h外,所述回水导管1i包括上下连接的回水直导管1j和内结晶器外套1k,内结晶器外套1k呈柱型,所述回水导管1i的外部包覆有第一隔热套1g;冷却水回路设置在所述内结晶器1的内部。所述冷却水回路包括进水回路1a,回水回路1b和水孔1c。所述进水回路1a位于所述进水直导管1h内,所述进水回路1a的上端为进水口1d;所述进水直导管1h与回水导管1i之间的间隙构成所述回水回路1b,所述回水回路1b的上端为回水口1e;水孔1c设置在所述进水直导管1h的下端与所述内结晶器外套1k之间,所述进水回路1a和回水回路1b通过水孔1c相连通。Referring to Fig. 5, the
本实施例中,冷却水从进水口1d进入进水回路1a,接着通过水孔1c流入回水回路1b,再从回水口1e流出。其中,进水口1d和回水口1e均位于内结晶器1的上端,水孔位于内结晶器1的下端,如此冷却水在内结晶器1内流动,可充分地冷却环形金属液熔池3中的内结晶器1附近的金属液。In this embodiment, the cooling water enters the water inlet circuit 1a from the
进一步而言,所述回水直导管1j还包括回水法兰13a,回水法兰13a的内侧端连接在所述进水直导管1h上,外侧端连接在回水直导管1j的底部;所述内结晶器外套1k包括外套管13b和连接在外套管13b顶部的外套法兰13c,外套法兰13c的内侧端连接在所述进水直导管1h上;Further, the straight
所述内结晶器1还包括内结晶器内套13d,所述内结晶器内套13d包括内套管13e和连接在内套管13e顶部的内套上法兰13f,内套上法兰13f的内侧端连接在所述进水直导管1h上,所述内套管13e间隔地设置在所述外套管13b的内部;所述回水法兰13a,外套法兰13c和内套上法兰13f上下依次固定连接在一起;所述内套管13e下部还设有隔板13g和内套端面盖板13h,内套端面盖板13h位于隔板13g的下方,所述隔板13g、内套端面盖板13h的内侧端均连接在所述进水直导管1h上,外侧端均连接在内套管13e上;The
所述水孔包括第一水孔13i,第二水孔13j,第三水孔13k和第四水孔13m,所述第一水孔13i径向贯穿所述进水直导管1h的下部,所述第二水孔13j径向贯穿所述内套管13e的下端,且所述第一、二水孔13i、13j均位于所述隔板13g与内套端面盖板13h之间,所述第三水孔13k径向贯穿所述内套管13e的上端,第三水孔13k位于所述隔板13g的上方,所述第四水孔13m纵向贯穿所述回水法兰13a,外套法兰13c和内套上法兰13f。The water holes include a first water hole 13i, a
本实施例中,如图5中的箭头方向所示,冷却水从进水口1d进入进水直导管1h中,接着从第一、二水孔13i、13j进入外套管13b和内套管13e之间的间隙中,接着从第三水孔13k进入内套管13e和进水直导管1h之间的间隙中,再从第四水孔13m流入回水直导管1m和进水直导管1h之间的间隙,接着从回水口1e流出。In this embodiment, as shown in the direction of the arrow in Figure 5, the cooling water enters the water inlet
所述第一隔热套1g包括高温耐火管1m和高强度石墨1n,所述高温耐火管1m包覆在所述回水直导管1j的外部,所述高强度石墨1n包覆所述内结晶器外套1k的外部。本实施例中,回水直导管1j外围设高温耐火管1m将外部高温过热的金属液与回水直导管1j隔开,高强度石墨1n围设于内结晶器外套1k外,将内结晶器外套1k与金属液隔开起到传热同时保护内结晶器的作用。The first
所述内结晶器1的上方具有内结晶器法兰1f,所述内结晶器1通过所述内结晶器法兰1f而固定在所述上盖机构5上,即,内结晶器1中在内结晶器法兰1f位置下方的部位处于环形金属液熔池3内,在内结晶器法兰1f位置上方的部位处于环形金属液熔池3外。The top of the
进一步而言,所述回水导管1i还包括回水冒导管1p,所述回水冒导管1p间隔地套设在所述进水直导管的外部,并连接在回水直导管1j的顶部,所述回水冒导管与进水直导管之间的间隙与所述回水回路相连通,所述回水口1e设置在回水冒导管1p上,所述内结晶器法兰1f位于所述回水直导管1j的顶部。其中,所述回水冒导管1p可直接与回水直导管1j直接连接,例如焊接;或者,如图6所示,回水冒导管1p的下端连接回水冒法兰1q,回水冒法兰1q与内结晶器法兰1f配合连接,进而使回水冒导管1p与回水直导管1j连接。Further, the return water conduit 1i also includes a return
配合图1和图3所示,所述外结晶器2包括从外至内依次间隔设置的外结晶器外套2a、外结晶器内套2b和结晶器铜管2c,所述外结晶器内套2b和外结晶器外套2a之间连接有横向放置的隔离板2d,所述隔离板2d的内侧端连接外结晶器内套2b,外侧端连接外结晶器外套2a,隔离板2d可位于外结晶器内套2b在高度方向的中间位置上;所述外结晶器内、外套2b、2a之间具有电磁搅拌器2e,所述电磁搅拌器2e位于所述隔离板2d的上方;所述外结晶器外套2a上分别设有入水口2f和出水口2g,所述入水口2f位于所述隔离板2d的下方,出水口2g位于隔离板2d的上方;所述外结晶器内套2b的上、下端分别贯穿有水流孔2h;所述外结晶器2上与所述铸坯4连接处设有第二隔热套2i,即第二隔热套2i位于外结晶器2的内侧。As shown in Figures 1 and 3, the
其中,所述外结晶器2可通过外结晶器法兰2j而连接在所述基座机构6上,在此处,外结晶器法兰2j连接在结晶器铜管2c的顶端,外结晶器法兰2j与第二基座法兰6g结合,以将外结晶器2连接在基座机构6上。所述第二隔热套2i可为高强度石墨。电磁搅拌器2e配置于外结晶器2内,可对晶粒进行破碎、搅拌以形成大量晶核。Wherein, the
本实施例中,外结晶器内、外套2b、2a之间具有间隙,隔离板2d将内、外套2b、2a之间的间隔分隔成上下两个独立的空间;外结晶器内套2a与结晶器铜管2c之间具有间隙。如图4中的箭头方向所示,冷却水从入水口2f进入外结晶器内、外套2b、2a之间的下方的间隙中,接着从外结晶器内2a下端的水流孔2h流入外结晶器内套2a与结晶器铜管2c之间的间隙,接着通过外结晶器内2a上端的水流孔2h流入内、外套2b、2a之间的上方的间隙中,再接着从出水口2g流出。冷却水在外结晶器2内流动,与外结晶器2内部的金属液进行热交换后,从出水口2g流出热水。In the present embodiment, there is a gap between the inner and
根据本实用新型的实施方式,如图7和图8所示,所述上盖机构5包括呈冂形的上盖壳体5a,所述上盖壳体5a的底部外侧连接有第一上盖法兰5b,用来连接所述基座机构6。所述上盖壳体5a的内腔砌筑有绝热保温衬体5c。所述上盖机构5的中心轴向贯穿设有内结晶器穿孔5d,所述上盖机构5上轴向贯穿设有水口穿入孔5e,所述水口穿入孔5e位于所述内结晶器穿孔5d的外侧,所述上盖壳体5a的顶部对应内结晶器穿孔5d的位置设有第二上盖法兰5f,用来连接所述内结晶器1。本实施例中,内结晶器1穿过内结晶器穿孔5d而固定在第二上盖法兰5f上,使内结晶器1与上盖机构5结合在一起,金属液从水口穿入孔5e流入上盖机构5内,同时,水口穿入孔5e可以用来观察液面的情况。在此处,在内结晶器穿孔5d的四周设有两个均匀分布的水口穿入孔5e。According to the embodiment of the present utility model, as shown in Fig. 7 and Fig. 8, the
在所述绝热保温衬体5c的底部,从所述内结晶器穿孔5d的边缘向外侧沿切线方向延伸设有挡渣板5g,挡渣板5g将分布在环形金属液熔池3内的金属液与上层浮渣进行分离,如图9所示,在此处具有两个挡渣板5g。所述上盖机构5上轴向贯穿设有放散孔5h,所述放散孔5h位于所述内结晶器穿孔5d的外侧,在所述上盖壳体5a的上部设有盖在所述放散孔5h上端的绝热盖板5i,绝热盖板5i 可避免环形金属液熔池3内的热量从放散孔5h扩散。在此处,在内结晶器穿孔5d的四周设有两个均匀分布的放散孔5h,放散孔5h用于排放浇铸初期和浇铸过程中环形金属液熔池3型腔内产生和带入的气体,此外,放散孔还可以作为观察、测温孔等。At the bottom of the
如图8所示,所述绝热保温衬体5c包括耐火打结料5j和绝热耐火内衬5k,所述绝热耐火内衬5k连接在所述上盖壳体5a的内腔的底部,所述上盖壳体5a与所述绝热耐火内衬5k之间填充所述耐火打结料5j。当内结晶器1插入内结晶器穿孔5d后,耐火打结料5j和绝热耐火内衬5k分别呈上下位置地包围在内结晶器1处于上盖机构5中的部位。As shown in Fig. 8, the
如图9和图10所示,所述基座机构6包括呈凹字形的基座壳体6a,所述基座壳体的顶部外侧连接有用来连接所述上盖机构的第一基座法兰6b,所述第一基座法兰与所述第一上盖法兰5b通过紧固连接件固定结合,进而将上盖机构5和基座机构6固定连接在一起,其中,紧固连接件可例如为法兰螺栓5m和法兰螺母6j的组合。所述基座壳体6a上设有耐火衬体6c,所述基座机构6的中心轴向贯穿设有基座中心孔6d,所述基座壳体6a的底部对应基座中心孔6d的位置设有用来连接所述外结晶器2的第二基座法兰6g。As shown in Figures 9 and 10, the base mechanism 6 includes a recessed
所述基座机构6上部开设有与所述基座中心孔切向布置的切线内浇道6h,所述切线内浇道的外端与上述水口穿入孔5e相对应,内端与所述基座中心孔6d相连通。The upper part of the base mechanism 6 is provided with a tangential inrunner 6h arranged tangentially to the central hole of the base. The outer end of the tangential inrunner corresponds to the above-mentioned
所述基座机构下部,位于所述外结晶器上部环设有变频感应线圈6e,变频感应线圈环绕在所述基座中心孔6d的外侧,变频感应线圈6e之外设有线圈保护罩6f。其中,变频感应线圈6e与金属液间可由耐火衬体6c隔开。在正常拉坯过程,变频感应线圈6e采用低频有辅助搅拌、破碎初生晶粒、均匀化内外温度及向外传热,并将形核核心传递到芯部的作用,在拉坯后期,采用工频或中频,用于剩余钢液加热、保温作用。此外,在变频感应线圈6e外部并在线圈保护罩6f内部还可围设有磁砈导磁体6p。The lower part of the base mechanism is located on the upper part of the outer crystallizer and is provided with a frequency
所述基座机构6上轴向设有排渣口3a,所述排渣口与上述放散孔5h相对应,在所述排渣口与所述基座中心孔6d之间连接有排渣沟6i。在此处,具有两个均匀分布的切线内浇道6h,且具有两个均匀分布的排渣沟6i。The base mechanism 6 is axially provided with a
本实施例中,进入上盖机构5的金属液从切线内浇道6h进入基座机构6,切线内浇道6h将金属液从垂直方向改为沿环形腔体的切线方向,后沿环形腔体做圆周运动,漂浮在金属液上方的液态渣在随同金属液旋转过程中被上盖机构5上的挡渣板5g挡住,并顺着排渣沟6i流出排渣口3a。In this embodiment, the molten metal entering the
此外,其中,如图1和图2所示,安装时,可将基座机构6安装在钢结构基础3b上,在钢结构基础3b上对应排渣口3a的位置可放置储渣盘3c,使得从排渣口3a排出的浮渣落入储渣盘3c中。In addition, as shown in Figures 1 and 2, during installation, the base mechanism 6 can be installed on the
所述耐火衬体6c包括高温耐火衬6k,碳素耐火砖内衬6m和打结耐火料6n,所述高温耐火衬6k设于所述基座壳体6a的内腔的上部,所述碳素耐火砖内衬6m设于所述高温耐火衬6k的下部并位于所述基座中心孔6d周围,所述打结耐火料6n填充于所述高温耐火衬6k和基座壳体6a之间,并位于所述线圈保护罩6f的外部。也就是说,本实施例中,高温耐火衬6k和碳素耐火砖内衬6m均与高温金属液接触,碳素耐火砖内衬6m的下端与外结晶器2相邻,变频感应线圈6e设于碳素耐火砖内衬6m的外围,并被线圈保护罩6f保护;高温耐火衬6k和碳素耐火砖内衬6m构成基座内层工作衬,基座壳体6a与基座内层工作衬之间由打结耐火料6n填充。The
如图5所示,所述铸造装置还包括第二水冷系统9,所述第二水冷系统9连接在所述外结晶器2的下方,第二水冷系统9包括外二水冷喷射组件9a,二冷段足辊9e和内二水冷喷射组件9f。所述外二水冷喷射组件9a包括沿着铸坯4轴向设置的多排外二冷喷嘴环组9b,每排外二冷喷嘴环组9b具有沿铸坯外圆周均布的多个外二水冷喷嘴9c,在外二水冷喷射组件9a外部设有蒸汽回收箱9d。二冷段足辊9e设置在上下相邻的两个外二水冷喷嘴环组9b之间,以使外二水冷喷嘴9c喷射出的水流尽可能多地喷向铸坯4,而不会被二冷段足辊9e挡住,二冷段足辊9e可用来夹持带有液芯的红热铸坯4。所述内二水冷喷射组件9f包括中心喷水管9g和沿着中心喷水管轴向设置的多排内二水冷喷嘴组9j,所述中心喷水管9g通过所述异径接头9h与所述进水直导管1h内插设的喷嘴导管9i相连接,所述喷嘴导管9i的上端穿出所述进水直导管1h而外露,下端位于所述进水直导管1h内。其中,各内二水冷喷嘴组9j的上下位置与各外二水冷喷嘴组9b可相对应。As shown in Figure 5, the casting device also includes a second water-cooling
此外,可使中心喷水管9g与喷嘴导管9i相连通,并在喷嘴导管9i的上端设置水量控制开关9k,用于控制内二水冷喷嘴组9j的喷水量;或者,使喷嘴导管9i为可旋转设置,喷嘴导管9i的底端设有阀门,当需要内二水冷喷嘴组9j喷水时,开启阀门,使喷嘴导管9i的水流入中心喷水管9g中,当不需要内二水冷喷嘴组9j喷水时,关闭阀门,喷嘴导管9i的水无法流入中心喷水管9g中。In addition, the central
本实施例的内二水冷喷射组件9f用于继续冷却出内、外结晶器1、2的空心铸管坯4的内壁。The two inner water-cooling
本实施例中,外二水冷喷射组件9a的外二水冷喷嘴9c用于继续冷却出结晶器的铸坯外表面,外二水冷喷射组件9a包括了沿着铸坯4的长度方向设置的六排外二水冷喷嘴环组9b,图只是示意,喷嘴数视冷却长度可在5~50排,每个外二水冷喷嘴环组9b具有多个外二水冷喷嘴9c,外二水冷喷嘴9c的数量可根据需要以及铸坯4的直径大小来决定,在此处,每个外二水冷喷嘴环组9b具有6~12个外二水冷喷嘴9c。In this embodiment, the outer two water-cooling
如图1所示,所述中间包7可为采用电磁加热的中间包,中间包7的底部有个出钢液口;铸流分配器8的顶部具有一个接钢液口,铸流分配器8的下部可均匀分布有1至4个分流管8a,分流管8a的数量与上盖机构5的水口穿入孔5e的数量相同,在此处,具有两个分流管8a,即,在此处,铸流分配器8将中间包7内的水流分配为对称180°两流导入上盖机构5内;当然,根据需要,铸流分配器8还可将中间包7内的水流分配为一流、三流或三流以上导入上盖机构5内。As shown in Figure 1, the tundish 7 can be a tundish that adopts electromagnetic heating, and the bottom of the tundish 7 has a molten steel opening; the top of the
在所述外结晶器2下方环设有多排夹持导向辊12,用来夹持由内结晶器1和外结晶器2出来的带有液芯的红热铸坯4。A plurality of rows of clamping
所述铸造装置还包括升降推杆11,所述升降推杆11连接在圆环筒形引锭器10的底部,带动圆环筒形引锭器10上下移动。本实施例中,在开浇初期,圆环筒形引锭器10将内、外结晶器1、2下方的圆环形腔体的底部封住,随着浇铸的进行,升降推杆11向下拖动圆环筒形引锭器10的同时做周期性上下振动,使铸坯坯壳相对内、外结晶器1、2做上下运动,起到铸坯坯壳与内、外结晶器1、2脱壳之目的。The casting device also includes a lifting
此外,铸坯坯壳分别与内、外结晶器1、2做上下相对运动,除了上述升降推杆11带动圆环筒形引锭器10上下移动之外,还可具有下述方法:In addition, the slab shell and the inner and
在圆环筒形引锭器10上设置拉坯机构,拉坯机构带动圆环筒形引锭器10做上下运动来实现,上部的内、外结晶器1、2连同基座机构6、上盖机构5不动;或者,A billet drawing mechanism is set on the circular
在钢结构基础3b间安装液压振动机构,通过液压振动机构拖动基座机构6与内、外结晶器1、2进行上下周期运动实现。A hydraulic vibration mechanism is installed between the
其中,拉坯机构和液压振动机构为本领域技术人员所熟知,在此不再赘述。Wherein, the drawing mechanism and the hydraulic vibration mechanism are well known to those skilled in the art, and will not be repeated here.
图11显示了本实用新型的一个实际案例仿真缺陷预测分析结果,实验方案为外径Φ1800mm、壁厚500mm、高度11000mm、内孔直径Φ1000mm、试验材质Q345R容器钢的空心管坯半连续铸造。如图11所示,试验结果:铸坯铸造出品率90%以上;中心无缩孔类缺陷;中心有轻微的可以锻造轧合的疏松类缺陷。当拉坯长度为20000mm时,可实现连续铸造,此时铸坯铸造出品率可达95%~98%。Fig. 11 shows the results of simulation defect prediction and analysis of an actual case of the present invention. The experimental scheme is semi-continuous casting of a hollow billet with an outer diameter of Φ1800mm, a wall thickness of 500mm, a height of 11000mm, an inner hole diameter of Φ1000mm, and a test material of Q345R container steel. As shown in Figure 11, the test results: the slab casting yield is over 90%; there is no shrinkage cavity defect in the center; there is a slight loose defect in the center that can be forged and rolled. When the casting length is 20,000mm, continuous casting can be realized, and the casting yield can reach 95% to 98%.
如图1所示,下面说明本实用新型实施例的操作过程:As shown in Figure 1, the operation process of the utility model embodiment is illustrated below:
(1)装配:如图2和图6所示,完成各部件装配工作,并将引锭器10设置在内结晶器1和外结晶器2的下方环形腔体中,并处理周边缝隙,即可待料浇铸;(1) Assembly: As shown in Figure 2 and Figure 6, complete the assembly work of each component, and set the
(2)浇铸:将合格钢水吊至中间包7上方,打开钢水包水口控制系统,待中间包7内的钢水量达到80%后开启中间包7的出液口,钢液从中间包7的出钢液口经由铸流分配器8分别引入互为180度的上盖机构5的水口穿入孔5e中,钢液接着由切线内浇道6h旋转着进入基座机构6的圆坯铸腔内,金属液在铸腔内做圆周运动,漂浮在金属液面上的浮渣在旋转过程中靠比重差实现钢、渣分离,并被安装在上盖机构5上的挡渣板5g分离而进入排渣沟6i,从排渣口3a排出;(2) Casting: Lift the qualified molten steel to the top of the tundish 7, open the ladle nozzle control system, and open the liquid outlet of the tundish 7 after the amount of molten steel in the tundish 7 reaches 80%, and the molten steel flows from the tundish 7 The molten steel outlets are respectively introduced into the
金属液受到内结晶器1和外结晶器2的冷却凝固并形成坯壳,坯壳通过引锭器10在向下拉坯的同时,升降推杆11带动引锭器、铸坯相对结晶器1、2做上下振动,使坯壳与结晶器脱离,在拉坯速度下逐渐向下移动,同时有效断面和壁厚逐渐增大,在结晶器内形成沿内、外结晶器1、2两侧的凝固坯壳及芯部液芯;当坯壳拉出内、外结晶器瞬间,红热的坯壳暴露在空气当中,进入第二水冷系统9;The molten metal is cooled and solidified by the
(3)冷却控制:进入第二水冷系统9的带有液芯的红热大断面管坯,外表面受到来自外结晶器2下方的外二水冷喷嘴9c的冷却,内表面受到内二水冷喷嘴的冷却,温度逐渐下降,液芯比例逐渐减小至V型底部完全形成固体;(3) Cooling control: the red-hot large-section tube blank with liquid core entering the second
(4)电磁搅拌与加热停浇:过热金属液注入型腔后,受内结晶器1和外结晶器2上的冷却水回路以及变频感应线圈6e的冷却温度下降,在圆柱面内腔上形成微弱的凝固层或过冷金属层;(4) Electromagnetic stirring and heating stop pouring: After the superheated molten metal is injected into the cavity, the cooling water circuit on the
在正常浇铸过程,变频感应线圈6e主要使用周期性低频交变磁场对过冷金属层实施搅拌,将过冷金属液与液体中部较高温的液体进行混合,增进金属液内非均匀核心数量;浇铸后期,配合拉速逐渐降低,直至停止拉拔,上方补缩液体仅用来补充V型液芯凝固所需的等同于冒口的那部分时,变频感应线圈6e的工作频率改为工频或中频持续供电,此时水冷变频感应线圈6e充当感应加热保温炉作用,起到冒口保温加热效果;In the normal casting process, the frequency
随后,随着液芯不断减少,液芯末端逐步进入结晶器内时,逐步减小内结晶器1内的冷却水,并缓慢提升内结晶器1直至变频感应线圈6e内剩余金属液全部进入坯壳内,完全拔出内结晶器1,在剩余金属液上方覆盖保温材料,直至完全凝固;Subsequently, as the liquid core decreases and the end of the liquid core gradually enters the mold, the cooling water in the
(5)脱锭:在完全凝固区下端在正常连续铸造过程,通过热钜将已凝固钢坯从浇铸系统中取出,实现连续铸坯;也可以连续铸造一定长度后,停止浇铸直至剩余金属液完全凝固为止(如上述第(4)中的停浇步骤),最后将整个锭坯一次取出,实现半连续铸坯。(5) Stripping: In the normal continuous casting process at the lower end of the completely solidified area, the solidified billet is taken out from the casting system through the heat sink to realize continuous casting; after a certain length of continuous casting, the casting is stopped until the remaining molten metal is completely Until it is solidified (as in the step of stopping pouring in (4) above), the whole billet is finally taken out at one time to realize semi-continuous billet casting.
本实用新型实施例与传统方法相比具有以下优点:Compared with the traditional method, the utility model embodiment has the following advantages:
1、由于本实用新型实施例采用上盖机构5、基座机构6与中心内结晶器1的特殊固定方式,使内、外结晶器1、2的固定、同心更换变得更加容易方便。1. Since the embodiment of the utility model adopts the special fixing method of the
2、由于本实用新型实施例采用内、外结晶器1、2对铸坯的双向冷却,使铸坯冷却、凝固可适应的有效厚度大大增加,可铸造的铸坯厚度增厚近一倍。2. Since the embodiment of the utility model adopts the two-way cooling of the inner and
3、由于本实用新型实施例的管坯铸造系统采用了内外喷水的第二水冷系统,相对单外表面喷水的传统机构冷却强度高,铸坯液芯短、产品致密度高、偏析轻、质量好。3. Since the billet casting system of the embodiment of the utility model adopts the second water-cooling system of spraying water inside and outside, compared with the traditional mechanism of spraying water on a single outer surface, the cooling intensity is higher, the liquid core of the billet is short, the product is high in density, and the segregation is light ,Good quality.
4、由于本实用新型实施例采用立式浇铸拉坯方法,避免了大断面圆周上下凝固不一致,杂质或偏析在上半部分聚集的不足,保证了整个铸坯质量的一致性。4. Since the embodiment of the utility model adopts the vertical casting casting method, it avoids the inconsistency of solidification in the upper and lower sides of the circumference of the large section, and the accumulation of impurities or segregation in the upper part, which ensures the consistency of the quality of the entire billet.
5、由于本实用新型实施例浇铸系统采用了双切线式内浇口结构,金属液从切线内浇道6h旋转进入型腔,避免了整个断面特别是超大断面铸造的温度、凝固不一致现象,同时还有利用钢渣比重差分离钢渣作用。5. Since the casting system of the embodiment of the utility model adopts a double tangential ingate structure, the molten metal enters the mold cavity from the tangential ingate 6 hours, which avoids the temperature and solidification inconsistency of the entire section, especially the super large section casting, and at the same time There is also the effect of separating steel slag by using the difference in specific gravity of steel slag.
6、由于本实用新型实施例在上盖金属液旋转的轨迹上设置了渣铁分离挡板机构,即具有挡渣板5g,可以有效的实现浮渣与纯净金属液的分离、排出。6. Since the embodiment of the utility model is equipped with a slag-iron separation baffle mechanism on the track of the liquid metal rotation on the upper cover, that is, a
7、由于本实用新型实施例内、外结晶器1、2均采用了高强度石墨复合工作衬,可有效的起到保护铜套结晶器作用、有润滑脱壳辅助功效,可实现无保护渣铸造。7. Since the inner and
8、由于本实用新型实施例设置了变频感应线圈6e,实现了正常生产过程电磁搅拌、细化晶粒、调整腔内金属液温度的有利作用,配合尾坯拉坯速度的变化,同时起到了尾坯冒口加热保温,缩短尾坯缩孔、缩管,提高铸坯成材率的重要效果。8. Since the embodiment of the utility model is equipped with a frequency
综上所述,由于以上措施的应用,使得本实用新型实施例的超大直径、厚壁的空心管坯连铸得以实现,内外结晶器冷却系统、内外表面喷水的第二水冷系统以及半固相捣固方法、变频感应线圈尾坯加热保温作用,起到了提高铸件质量、提高成材率的作用。In summary, due to the application of the above measures, the continuous casting of the super-large diameter and thick-walled hollow billets in the embodiment of the present invention can be realized. The phase tamping method and the heating and heat preservation effect of the tail blank of the frequency conversion induction coil have played a role in improving the quality of the casting and increasing the yield of the finished product.
以上所述仅为本实用新型的几个实施例,本领域的技术人员依据申请文件公开的可以对本实用新型实施例进行各种改动或变型而不脱离本实用新型的精神和范围。The above are only a few embodiments of the present utility model, and those skilled in the art can make various changes or modifications to the embodiments of the present utility model according to the disclosure of the application documents without departing from the spirit and scope of the present utility model.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220276766 CN202655586U (en) | 2012-06-12 | 2012-06-12 | Continuous casting device for large-section hollow tube blank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201220276766 CN202655586U (en) | 2012-06-12 | 2012-06-12 | Continuous casting device for large-section hollow tube blank |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202655586U true CN202655586U (en) | 2013-01-09 |
Family
ID=47450519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201220276766 Expired - Lifetime CN202655586U (en) | 2012-06-12 | 2012-06-12 | Continuous casting device for large-section hollow tube blank |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202655586U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102773430A (en) * | 2012-06-12 | 2012-11-14 | 中冶京诚工程技术有限公司 | Continuous casting device and method for large-section hollow pipe blank |
CN107159854A (en) * | 2017-04-28 | 2017-09-15 | 重庆市永川区益锐机械有限责任公司 | Large diameter copper pipe casts draw-off gear |
-
2012
- 2012-06-12 CN CN 201220276766 patent/CN202655586U/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102773430A (en) * | 2012-06-12 | 2012-11-14 | 中冶京诚工程技术有限公司 | Continuous casting device and method for large-section hollow pipe blank |
CN107159854A (en) * | 2017-04-28 | 2017-09-15 | 重庆市永川区益锐机械有限责任公司 | Large diameter copper pipe casts draw-off gear |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102773427B (en) | Continuous casting device and method for large-section round billet | |
CN102773428B (en) | Casting device and method for large-section continuous casting billet | |
CN102626771B (en) | Water-cooling casting method and device for hollow pipe blank | |
CN100560250C (en) | On the circular-arc type continuous casting machine of R12~14m, produce the continuous casting process of super large standard round billet | |
CN102773430B (en) | Continuous casting device and method for large-section hollow pipe blank | |
CN101332493B (en) | Device and method for rapid continuous casting of gas film under the action of static magnetic field | |
CN102380588B (en) | Intermediate Frequency Induction Directional Solidification Ingot Casting Method and Device | |
CN108637200B (en) | Semi-continuous casting device for long slabs of large-scale magnesium alloys | |
CN102310174B (en) | Method and device for improving metal solidification defects and refining solidification textures | |
CN110405171B (en) | Electromagnetic semi-continuous casting device and method whose cooling process can be precisely matched and adjusted | |
CN108405821B (en) | Casting device and method for large-size magnesium alloy flat ingot without cracks | |
CN101791682A (en) | Manufacturing device for super-large extra-thick plate rectangular billet | |
CN101279359A (en) | A method for manufacturing a composite core low-segregation large-scale hollow steel ingot | |
CN102228986A (en) | Tundish with electromagnetically heated nozzle | |
CN109261916B (en) | Molten pool stirring device and method for metal semi-continuous casting crystallizer | |
CN202655586U (en) | Continuous casting device for large-section hollow tube blank | |
CN202571213U (en) | Continuous casting device for large-section round billets | |
CN203900416U (en) | Crystallizer | |
CN103014366B (en) | Large-scale electroslag remelting steel ingot enhancement cooling apparatus and method thereof | |
CN202683988U (en) | Casting device for large-section continuous casting billet | |
CN202106027U (en) | Tundish with electromagnetically heated nozzle | |
CN202571216U (en) | Special inner crystallizer device for continuous casting | |
CN105033217B (en) | A kind of continuous cast method | |
CN204975244U (en) | Compound layer circle base electromagnetism casting machine of bimetal | |
CN111730036A (en) | A horizontal electromagnetic casting device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20130109 |
|
CX01 | Expiry of patent term |