CN202524136U - Device for charging lithium battery of purely electric vehicle - Google Patents

Device for charging lithium battery of purely electric vehicle Download PDF

Info

Publication number
CN202524136U
CN202524136U CN2012201687953U CN201220168795U CN202524136U CN 202524136 U CN202524136 U CN 202524136U CN 2012201687953 U CN2012201687953 U CN 2012201687953U CN 201220168795 U CN201220168795 U CN 201220168795U CN 202524136 U CN202524136 U CN 202524136U
Authority
CN
China
Prior art keywords
unit
voltage
lithium battery
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2012201687953U
Other languages
Chinese (zh)
Inventor
蒋伟荣
梅建伟
程登良
张凯
王思山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUBEI DIANYUAN ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Original Assignee
HUBEI DIANYUAN ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUBEI DIANYUAN ELECTRONIC INFORMATION TECHNOLOGY Co Ltd filed Critical HUBEI DIANYUAN ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Priority to CN2012201687953U priority Critical patent/CN202524136U/en
Application granted granted Critical
Publication of CN202524136U publication Critical patent/CN202524136U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The utility model relates to a device for charging a lithium battery of a purely electric vehicle. According to the device, a modularized constructing method is adopted; the device comprises two single units which are connected in parallel on the basis of a control area network (CAN) master-slave mode; the two single units have consistent structures, and the change rates of the output current and the output voltage are kept consistent; and an active power factor adjustment unit and a resonance unit are arranged in a single unit loop. The device for charging the lithium battery of the purely electric vehicle is applicable for charging various lithium batteries of electric vehicles with different powers; and an active power-based adjustment technology, a parallel resonance soft switching technology, a hardware current and voltage proportion integration differentiation (PID) regulation technology, and a high-frequency inversion, rectification and filter technology are adopted, so that the device for charging the lithium battery is wide in input, high in efficiency and power, and reliable in performance, and actively promotes the industrialization progress of the electric vehicle.

Description

The pure electric automobile lithium battery charging device
Technical field
The utility model belongs to the electric vehicle engineering field, relates to a kind of charging device of pure electric automobile lithium battery, utilizes this device that the battery of pure electric automobile is charged, and can realize lithium battery syllogic charge mode, improves battery life and charge efficiency.
Background technology
Along with Chinese economic development, the volume of production and marketing of automobile and recoverable amount are all keeping the stable developing state of high speed.Have the expert to point out, according to present development speed, the fuel oil production of China will face bigger pressure, and the pressure of energy supply and environment is becoming the restraining factors of automobile industry development.In the future of China's automobile industry, must walk the more energy-conservation road of cleaning of development.Electric automobile with cleaning, the reproducible energy is power, will become the important member in the automobile big family.
The power supply of pure electric automobile is a battery; Receive the restriction of battery capacity, volume and cost, once the continual mileage of charging is shorter, and along with driving cycle is different; Once the continual mileage of charging also can change, and therefore is equipped with the development trend that the vehicle-mounted charge machine is a pure electric automobile.
Because of the scope range of the fluctuation of voltage of series battery big; And the amount of batteries of power supply unit is different; Scope range of the fluctuation of voltage is different; Simultaneously in order to improve battery life and charge efficiency, require the vehicle-mounted charge machine to adjust output voltage and electric current in real time and can realize the no disturbance switching of constant voltage, constant current according to the voltage and current of battery.In view of vehicle-mounted special use occasion, require this charger must possess due design function and performance, and will satisfy specific (special) requirements aspects such as volume, efficient, weight, reliability, electromagnetic interference and anti-interference, hot property, noises.
Along with the pure electric automobile popularity rate is increasing, the charging electric motor vehicles machine is more and more serious to the influence of electrical network, to the vehicle-mounted charge machine require increasingly high.In conjunction with of the specific (special) requirements of modern pure electric automobile to vehicle-mounted charging device; Absorb the advantage of conventional electric-powered automobile with charger; Adopt multisection type charging modes, active power adjustment technology, parallel resonance soft switch technique and based on the unit parallel technology of CAN; Realize the vehicle-mounted charge machine that power is big, volume is little, efficient is high, power factor (PF) is high, can improve the reliability and the cost performance of system greatly.
Therefore; Research is under the certain situation of vehicle mounted dynamic battery; Based on active power adjustment technology, parallel resonance soft switch technique with based on the lithium battery charging device of the unit parallel technology of CAN, to operational efficiency that improves electric automobile and the obviously important meaning of applying that promotes electric automobile.
Summary of the invention
The utility model is in order to address the above problem, and designs a kind of based on active power adjustment, parallel resonance soft switch technique with based on the lithium battery charging device of the unit parallel technology of CAN to pure electric automobile.This device can be applicable to the various pure electric automobiles that are used for different model, different capacity; Can satisfy of the requirement of various lithium battery electrical automobiles through removable parts element and setting section parameter, and guarantee that this charger has high power factor, high efficiency and high reliability the vehicle-mounted charge machine.
The utility model is realized through following scheme:
Above-mentioned pure electric automobile lithium battery charging device adopts modular building method, comprises two units based on the parallel connection of CAN master slave mode; Two said unit structures are consistent, and the rate of change of output current and voltage is consistent.
Described pure electric automobile lithium battery charging device, wherein: said unit mainly is made up of the EMI module that electrically connects, input control switch, rectification unit, active power factor adjustment unit, high-frequency inversion unit, resonant element, high-frequency isolation unit, output filter unit, detection module and control and protected location; Said EMI module comprises input EMI unit, EMI processing unit and output EMI unit; Said input EMI unit suppresses the interference of input to charger; Said EMI processing unit and output EMI unit suppress the conducted interference of Circuit Fault on Secondary Transformer respectively; Said rectification module comprises uncontrollable rectification unit of power frequency and the uncontrollable rectification unit of output; The uncontrollable rectification unit of said power frequency becomes single-phase alternating current into the less direct current of pulsation; The uncontrollable rectification unit of said output utilizes the uncontrollable rectification circuit of single-phase bridge to realize high-frequency alternating current is transformed into the less direct current of pulsation; Said detection module comprises load signal detecting unit and electric current and voltage detecting unit; The voltage and current signal of said load signal detection battery is judged charger and battery status; The output voltage of the inductive current of said electric current and voltage detection active power factor adjustment unit, busbar voltage and the uncontrollable rectification unit of said power frequency.
Described pure electric automobile lithium battery charging device; Wherein: said active power factor adjustment unit adopts active PFC principle; Utilize the Boost converter, improve the busbar voltage of inverter bridge simultaneously in the power factor (PF) of regulating charger, and possess automatic constant-pressure and current-limiting function.
Described pure electric automobile lithium battery charging device, wherein: said input control switch is switch closure in the normal back of state-detection, cut-off switch during fault.
Described pure electric automobile lithium battery charging device, wherein: said resonant element is made up of electric capacity and inductance, realizes that switch tube zero voltage is open-minded, forms the parallel resonance soft switch technique.
Described pure electric automobile lithium battery charging device, wherein: said high-frequency inversion unit is realized constant DC voltage is transformed into high frequency square wave voltage through voltage source inverter.
Described pure electric automobile lithium battery charging device, wherein: the isolation of input voltage and output voltage is realized in said high-frequency isolation unit through high frequency transformer.
Described pure electric automobile lithium battery charging device, wherein: said output filter unit utilizes passive filter circuit to realize Rectified alternating current is transformed into constant DC.
Described pure electric automobile lithium battery charging device, wherein: said control and protected location are mainly realized generation, constant voltage, constant current, input overvoltage protection, input under-voltage protection, overcurrent protection, short-circuit protection, overtemperature protection, charging process control and the output battery status measuring ability of pwm pulse.
Beneficial effect:
The pure electric automobile lithium battery charging device of the utility model adopts modular building method; The power supply of two platform independent is together in parallel based on the CAN master slave mode; Improve power output; The output current of every power supply and the rate of change of voltage are consistent when guaranteeing parallel connection, reach current-sharing effect preferably;
Adopt active PFC principle, utilize the Boost converter, make the power factor (PF) of AC side can reach more than 95%, the busbar voltage of inverter bridge is elevated to 380V simultaneously, and possesses automatic constant-pressure and current-limiting function;
Through in major loop, increasing the resonance link, utilize electric capacity and inductance to produce quasi-resonance, realize that the no-voltage of switching tube on the inverter bridge is open-minded, thereby reduce switching loss, improve the efficient of charger.
This charging device of the utility model is applicable to the lithium cell charging of the electric automobile of various different capacities; Owing to adopt based on active power adjustment technology, parallel resonance soft switch technique, hardware electric current and voltage PID regulation technology, high-frequency inversion, rectification and filtering technique; The input of charging machine width, high efficiency, high power factor have been realized; Dependable performance has been actively promoted the industrialization process of electric automobile.
Description of drawings
Fig. 1 is the parallel operation structured flowchart of the utility model pure electric automobile lithium battery charging device.
Fig. 2 is the unit structured flowchart of the utility model pure electric automobile lithium battery charging device.
Embodiment
As shown in Figure 1, the pure electric automobile lithium battery charging device of the utility model adopts modular building method, comprises two units of parallel connection, and these two units are based on CAN master slave mode parallel connection, forms main unit A and from unit B; Main unit A is with consistent from the structure of unit B, and the rate of change of output current and voltage is consistent.
Because main unit A with consistent from the structure of unit B, is an example with main unit A below, specifies its concrete formation.
As shown in Figure 2, main unit A mainly is made up of the uncontrollable rectification unit of the uncontrollable rectification unit in the input EMI unit 1 that electrically connects, input control switch 2, power frequency 3, active power factor adjustment unit 4, high-frequency inversion unit 5, resonant element 6, high-frequency isolation unit 7, output 8, EMI processing unit 9, output filter unit 10, output EMI unit 11, load signal detecting unit 12, electric current and voltage detecting unit 13 and control and protected location 14.
Input EMI unit 1, EMI processing unit 9 and output EMI unit 11 constitute the EMI module; Wherein import EMI unit 1 and suppress the interference of input charger; EMI processing unit 9 and output EMI unit 11 suppress the conducted interference of Circuit Fault on Secondary Transformer respectively.
Input control switch 2 is switch closure in the normal back of state-detection, cut-off switch during fault.
The uncontrollable rectification unit 3 of power frequency constitutes rectification module with the uncontrollable rectification unit 8 of output; Wherein the uncontrollable rectification unit 3 of power frequency becomes single-phase alternating current into the less direct current of pulsation; Exporting uncontrollable rectification unit 8 utilizes the uncontrollable rectification circuit of single-phase bridge to realize high-frequency alternating current is transformed into the less direct current of pulsation.
Active power factor adjustment unit 4 improves the busbar voltage of inverter bridge simultaneously in the power factor (PF) of regulating charger; Adopt active PFC principle; Utilize the Boost converter; Make the power factor (PF) of AC side can reach more than 95%, the busbar voltage of inverter bridge is elevated to 380V simultaneously, and possesses automatic constant-pressure and current-limiting function.
High-frequency inversion unit 5 is realized constant DC voltage is transformed into high frequency square wave voltage through voltage source inverter.
Resonant element 6 is made up of electric capacity and inductance, realizes that switch tube zero voltage is open-minded, forms the parallel resonance soft switch technique; Through in major loop, increasing the resonance link, utilize electric capacity and inductance to produce quasi-resonance, realize that the no-voltage of switching tube on the inverter bridge is open-minded, thereby reduce switching loss, improve the efficient of charger.
The isolation of input voltage and output voltage is realized in high-frequency isolation unit 7 through high frequency transformer;
Output filter unit 9 utilizes passive filter circuit to realize Rectified alternating current is transformed into constant DC.
Load signal detecting unit 12 constitutes detection module with electric current and voltage detecting unit 13, and wherein load signal detecting unit 12 detects the voltage and current signal of battery, judges charger and battery status; Electric current and voltage detecting unit 13 detects the output voltage of the uncontrollable rectification unit 302 of inductive current, busbar voltage and power frequency of active power factor adjustment unit;
Control and protected location 14 main generation, constant voltage, constant current, input overvoltage protection, input under-voltage protection, overcurrent protection, short-circuit protection, overtemperature protection, charging process control and the output battery status measuring abilities of realizing pwm pulse.
The course of work:
Electric automobile stops; After charger input control switch 2 closes; Control and protected location 14 get into self-diagnosable system; Load signal detecting unit 12 through detecting unit 9 and electric current and voltage detecting unit 13 detect supply power voltages whether normal, detect whether charger output battery connects, whether reversal connection of battery, export whether normally whether short circuit, output voltage detect with output current, whether the inverter bridge busbar voltage normal; If normally import control switch 2 close with, if there is one to break down then system does not start, and give the display message that is out of order with the light form.
After self-diagnosable system was confirmed normally, input relay closed, and got into normal mode of operation.Input voltage provides constant DC bus-bar voltage through the uncontrollable rectification unit in input EMI unit 1, power frequency 3, active power factor adjustment unit 4 for inverter bridge; High-frequency inversion unit 5, resonant element 6 and high-frequency isolation unit 7 are transformed into the alternating current of high frequency with constant DC, high-frequency alternating current is transformed into direct current gives lithium cell charging through exporting uncontrollable rectification unit 8, EMI processing unit 9, output filter unit 9 and output EMI unit 11.In the charging process, control and protected location 14 detect the state of battery in real time, according to charging output convert charging pattern, control charging flow.
In the course of the work; Control and protected location 14 are through load signal detecting unit 12 situation such as whether 13 detections have the output overvoltage of appearance, output overcurrent with the electric current and voltage detecting unit, charger is overheated, battery wire is loosening, input voltage is undesired of detecting unit 9, in case occur then entering protection mode of operation.In the protection mode of operation, when this type of fault occurring, control and protected location 14 get into error protection work of treatment flow process, and through after the time-delay of certain hour, if fault is got rid of, system recovers to get into normal mode of operation automatically.
The lithium battery charging device of the utility model is used for the Car Battery charging of lithium battery electrical automobile, has following characteristics:
1, based on the unit parallel technology of CAN
The unit output parameter can not meet the demands, and the vehicle-mounted charge machine that satisfies this requirement exists design, debugging and bulky trouble, certainly will increase cost like this.The application adopts modular building method, and the power supply of two platform independent is together in parallel, and improves power output; Based on the CAN master slave mode, the output current of every power supply and the rate of change of voltage are consistent when guaranteeing parallel connection, reach current-sharing effect preferably during parallel connection;
2, adopt based on the active power factor adjustment technology
Adopt active PFC principle, utilize the Boost converter, make the power factor (PF) of AC side can reach more than 95%, the busbar voltage of inverter bridge is elevated to 380V simultaneously, and possesses automatic constant-pressure and current-limiting function;
3, parallel resonance soft switch technique
Through in major loop, increasing the resonance link, utilize electric capacity and inductance to produce quasi-resonance, realize that the no-voltage of switching tube on the inverter bridge is open-minded, thereby reduce switching loss, improve the efficient of charger.
This charging device of the utility model is applicable to the lithium cell charging of the electric automobile of various different capacities; These characteristics that has and employing based on active power adjustment technology, parallel resonance soft switch technique, hardware electric current and voltage PID regulation technology, high-frequency inversion, rectification and filtering technique; The input of charging machine width, high efficiency, high power factor have been realized; Dependable performance has been actively promoted the industrialization process of electric automobile.

Claims (9)

1. pure electric automobile lithium battery charging device, it is characterized in that: said device adopts modular building method, comprises two units based on the parallel connection of CAN master slave mode; Two said unit structures are consistent, and the rate of change of output current and voltage is consistent.
2. pure electric automobile lithium battery charging device as claimed in claim 1 is characterized in that: said unit mainly is made up of the EMI module that electrically connects, input control switch, rectification unit, active power factor adjustment unit, high-frequency inversion unit, resonant element, high-frequency isolation unit, output filter unit, detection module and control and protected location;
Said EMI module comprises input EMI unit, EMI processing unit and output EMI unit; Said input EMI unit suppresses the interference of input to charger; Said EMI processing unit and output EMI unit suppress the conducted interference of Circuit Fault on Secondary Transformer respectively;
Said rectification module comprises uncontrollable rectification unit of power frequency and the uncontrollable rectification unit of output; The uncontrollable rectification unit of said power frequency becomes single-phase alternating current into the less direct current of pulsation; The uncontrollable rectification unit of said output utilizes the uncontrollable rectification circuit of single-phase bridge to realize high-frequency alternating current is transformed into the less direct current of pulsation;
Said detection module comprises load signal detecting unit and electric current and voltage detecting unit; The voltage and current signal of said load signal detection battery is judged charger and battery status; The output voltage of the inductive current of said electric current and voltage detection active power factor adjustment unit, busbar voltage and the uncontrollable rectification unit of said power frequency.
3. pure electric automobile lithium battery charging device as claimed in claim 2; It is characterized in that: said active power factor adjustment unit adopts active PFC principle; Utilize the Boost converter; Power factor (PF) regulating charger improves the busbar voltage of inverter bridge simultaneously, and possesses automatic constant-pressure and current-limiting function.
4. pure electric automobile lithium battery charging device as claimed in claim 2 is characterized in that: said input control switch is switch closure in the normal back of state-detection, cut-off switch during fault.
5. pure electric automobile lithium battery charging device as claimed in claim 2 is characterized in that: said resonant element is made up of electric capacity and inductance, realizes that switch tube zero voltage is open-minded, forms the parallel resonance soft switch technique.
6. pure electric automobile lithium battery charging device as claimed in claim 2 is characterized in that: said high-frequency inversion unit is realized constant DC voltage is transformed into high frequency square wave voltage through voltage source inverter.
7. pure electric automobile lithium battery charging device as claimed in claim 2 is characterized in that: the isolation of input voltage and output voltage is realized in said high-frequency isolation unit through high frequency transformer.
8. pure electric automobile lithium battery charging device as claimed in claim 2 is characterized in that: said output filter unit utilizes passive filter circuit to realize Rectified alternating current is transformed into constant DC.
9. pure electric automobile lithium battery charging device as claimed in claim 2 is characterized in that: said control and protected location are mainly realized generation, constant voltage, constant current, input overvoltage protection, input under-voltage protection, overcurrent protection, short-circuit protection, overtemperature protection, charging process control and the output battery status measuring ability of pwm pulse.
CN2012201687953U 2012-04-20 2012-04-20 Device for charging lithium battery of purely electric vehicle Expired - Fee Related CN202524136U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012201687953U CN202524136U (en) 2012-04-20 2012-04-20 Device for charging lithium battery of purely electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012201687953U CN202524136U (en) 2012-04-20 2012-04-20 Device for charging lithium battery of purely electric vehicle

Publications (1)

Publication Number Publication Date
CN202524136U true CN202524136U (en) 2012-11-07

Family

ID=47107065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012201687953U Expired - Fee Related CN202524136U (en) 2012-04-20 2012-04-20 Device for charging lithium battery of purely electric vehicle

Country Status (1)

Country Link
CN (1) CN202524136U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647006A (en) * 2012-04-20 2012-08-22 湖北点元电子信息技术有限公司 Charging device for lithium battery of pure electric vehicle
CN107017692A (en) * 2017-06-02 2017-08-04 广东万城万充电动车运营股份有限公司 A kind of high power DC charger
CN107069891A (en) * 2017-06-02 2017-08-18 广东万城万充电动车运营股份有限公司 A kind of electric automobile charging station based on high withstand voltage IGBT DC distributions
CN107231032A (en) * 2017-06-02 2017-10-03 广东万城万充电动车运营股份有限公司 A kind of DC charging module of concentration radiating high-power

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647006A (en) * 2012-04-20 2012-08-22 湖北点元电子信息技术有限公司 Charging device for lithium battery of pure electric vehicle
CN102647006B (en) * 2012-04-20 2014-11-12 湖北点元电子信息技术有限公司 Charging device for lithium battery of pure electric vehicle
CN107017692A (en) * 2017-06-02 2017-08-04 广东万城万充电动车运营股份有限公司 A kind of high power DC charger
CN107069891A (en) * 2017-06-02 2017-08-18 广东万城万充电动车运营股份有限公司 A kind of electric automobile charging station based on high withstand voltage IGBT DC distributions
CN107231032A (en) * 2017-06-02 2017-10-03 广东万城万充电动车运营股份有限公司 A kind of DC charging module of concentration radiating high-power

Similar Documents

Publication Publication Date Title
CN102647006B (en) Charging device for lithium battery of pure electric vehicle
CN201312133Y (en) Charging device, energy-storing device and charging station
CN201726182U (en) High voltage ultracapacitor power battery charger
CN205901410U (en) Modular emergent guarantee power
CN105059133B (en) A kind of fuel cell hybrid car system
CN201388079Y (en) Hybrid electric vehicle charger
CN201466775U (en) Storage battery charging and discharging device
CN101697458A (en) Three-phase auxiliary inverter
CN105790398A (en) Semi vehicle-mounted rapid charging method and charging device of power-driven bus
CN103490524A (en) Large-scale hybrid energy storage system and control strategy thereof
CN105425071B (en) A kind of super capacitor energy storage device test platform and test method
CN205945204U (en) Modular emergent guarantee power
CN202906547U (en) Vehicle-mounted battery charging device
CN202524136U (en) Device for charging lithium battery of purely electric vehicle
CN103138355A (en) Charge-discharge control system
CN203617729U (en) Modularization emergency power supply unit
CN105610190B (en) Rail traffic vehicles renewable sources of energy feedback comprehensive utilization device and system
CN103532162B (en) Based on the topological structure and the starting method that control the Hybrid HVDC system switched
CN103532163B (en) The Hybrid HVDC system topology switched based on polarity and starting method
CN204179732U (en) Based on the multifunctional vehicle mounted charge and discharge electrical equipment of V2G
CN202840644U (en) Charging system
CN103078537B (en) Auxiliary converter cabinet circuit applicable to electric storage type subway engineering maintenance vehicle
CN209608359U (en) Electric car energy-storage system
CN202586744U (en) Vehicle direct current converter
CN205945101U (en) Modular super battery

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121107

Termination date: 20130420