CN202490568U - Device for preparing and supplying denitration reducing agent by urea compound decomposition method - Google Patents

Device for preparing and supplying denitration reducing agent by urea compound decomposition method Download PDF

Info

Publication number
CN202490568U
CN202490568U CN2012201090321U CN201220109032U CN202490568U CN 202490568 U CN202490568 U CN 202490568U CN 2012201090321 U CN2012201090321 U CN 2012201090321U CN 201220109032 U CN201220109032 U CN 201220109032U CN 202490568 U CN202490568 U CN 202490568U
Authority
CN
China
Prior art keywords
input port
urea
compound decomposition
control valve
delivery outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2012201090321U
Other languages
Chinese (zh)
Inventor
侯蔚然
吕健
李培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING XISHAN XINGANXIAN DEDUSTING AND DESULFIDATION EQUIPMENT Co Ltd
Original Assignee
BEIJING XISHAN XINGANXIAN DEDUSTING AND DESULFIDATION EQUIPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING XISHAN XINGANXIAN DEDUSTING AND DESULFIDATION EQUIPMENT Co Ltd filed Critical BEIJING XISHAN XINGANXIAN DEDUSTING AND DESULFIDATION EQUIPMENT Co Ltd
Priority to CN2012201090321U priority Critical patent/CN202490568U/en
Application granted granted Critical
Publication of CN202490568U publication Critical patent/CN202490568U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

The utility model discloses a device for preparing and supplying a denitration reducing agent by a urea compound decomposition method. The device comprises a dissolving tank, wherein the output port of the dissolving tank is connected with an input port of a shunt valve through a urea pump; the reflux port of the shunt valve is connected with the reflux input port of the dissolving tank; the output port of a liquid storage tank is connected with the input port of the liquid storage tank of a flow distribution device through a solution circulating pump and a backpressure control valve; the reflux port of the backpressure control valve is connected with the reflux input port of the liquid storage tank; the output port of the flow distribution device is connected with a plurality of urea solution atomization nozzles in a compound dissolving tank; a plurality of hot air jet pipes are arranged in the compound dissolving tank and the urea solution atomization nozzles; and input ports of the air jet pipes are connected with the air input port through an air flow control valve, an electric heater and a fan. According to the device, an ammonia reducing agent required in smoke denitration reaction of a denitration system of combustion equipment can be prepared quickly by the urea compound decomposition method, and the supply is timely and quick.

Description

The compound decomposition method denitrification reducing agent of urea prepares feeding mechanism
Technical field
The utility model relates to preparation of a kind of reducing agent and feeding mechanism, refers to a kind of through the compound decomposition method preparation of urea and the supply denitration device with the ammonia reducing agent especially.
Background technology
Denitrating system in the combustion apparatus needs a large amount of ammonia reducing agents when carrying out the denitrating flue gas reaction, and in the different periods, the demand of ammonia reducing agent is different; Yet; For present existing ammonia reducing agent prepared feedway, because the preparation flow of ammonia reducing agent is complicated, have many dangerous hidden danger in the preparation process, the speed of preparation ammonia reducing agent was generally all slower; Therefore; Can't realize following the tracks of the denitrating system of combustion apparatus, the variation of the demand of ammonia reducing agent in time supplied with an amount of ammonia reducing agent to denitrating system apace, greatly reduce the operating efficiency of combustion apparatus according to denitrating system.
The utility model content
The purpose of the utility model is to provide the compound decomposition method denitrification reducing agent of a kind of urea to prepare feeding mechanism, and this device can be prepared the denitrating system of supplying with in the combustion apparatus fast through the compound decomposition method of urea and carry out the required denitration of denitrating flue gas reaction and use the ammonia reducing agent.
To achieve these goals, the utility model has adopted following technical scheme:
The compound decomposition method denitrification reducing agent of a kind of urea prepares feeding mechanism; It is characterized in that: it comprises dissolving tank, flow divider, fluid reservoir, back pressure control valve, flow distribution device, compound decomposition jar, electric heater, air flow control valve; Wherein: this dissolving tank is provided with urea input port, water input; The delivery outlet of this dissolving tank is connected with the input port of urea pump via pipeline; The delivery outlet of this urea pump is connected with the input port of this flow divider via pipeline; The refluxing opening of this flow divider is connected with the backflow input port of this dissolving tank via pipeline; The delivery outlet of this flow divider is connected with the input port of this fluid reservoir via pipeline; The delivery outlet of this fluid reservoir is connected with the input port of solution circulation pump via pipeline, and the delivery outlet of this solution circulation pump is connected via the input port of pipeline with this back pressure control valve, and the refluxing opening of this back pressure control valve is connected with the backflow input port of this fluid reservoir via pipeline; The delivery outlet of this back pressure control valve is connected with the input port of this flow distribution device via pipeline; The delivery outlet of this flow distribution device is connected via the input port of pipeline with a plurality of urea liquid atomizers, and these a plurality of urea liquid atomizers are arranged in this compound decomposition jar, in this compound decomposition jar, these a plurality of urea liquid atomizers above be provided with a plurality of hot blast jet pipes; The input port of these a plurality of hot blast jet pipes is connected via the delivery outlet of pipeline with this air flow control valve; The input port of this air flow control valve is connected with the delivery outlet of this electric heater via pipeline, and the input port of this electric heater is connected with the delivery outlet of blower fan via pipeline, and the input port of this blower fan is connected with air-in via pipeline; The bottom of this compound decomposition jar is provided with the delivery outlet of output denitration with the ammonia reducing agent, and the control end of this urea pump, flow divider, solution circulation pump, back pressure control valve, flow distribution device, blower fan, electric heater, air flow control valve is connected with the corresponding controling end of control system respectively.
Said a plurality of hot blast jet pipe is arranged on the top in the said compound decomposition jar.
Said a plurality of hot blast jet pipe is arranged in ring-type and is arranged on the inwall of said compound decomposition jar, and said a plurality of urea liquid atomizer is arranged in ring-type and is arranged on the inwall of said compound decomposition jar.
Said urea pump, said solution circulation pump are circulating pump.
Said compound decomposition jar adopts stainless steel material to process.
The utility model has the advantages that:
The utility model can be prepared the denitrating system of supplying with in the combustion apparatus fast through the compound decomposition method of urea and carry out the required denitration of denitrating flue gas reaction and use the ammonia reducing agent; Supply with in time, fast; The denitrating system denitrating flue gas reaction that can satisfy in the combustion apparatus is required, guarantees denitration efficiency.
Description of drawings
Fig. 1 is the composition sketch map of the utility model.
The specific embodiment
Like Fig. 1; The compound decomposition method denitrification reducing agent of the utility model urea prepares feeding mechanism and comprises dissolving tank 1, flow divider 3, fluid reservoir 4, back pressure control valve 6, flow distribution device 7, compound decomposition jar 12, electric heater 10, air flow control valve 14; Wherein: this dissolving tank 1 is provided with urea input port, water input; The delivery outlet of this dissolving tank 1 is connected via the input port of pipeline with urea pump 2; The delivery outlet of this urea pump 2 is connected via the input port of pipeline with this flow divider 3; The refluxing opening of this flow divider 3 is connected with the backflow input port of this dissolving tank 1 via pipeline; The delivery outlet of this flow divider 3 is connected via the input port of pipeline with this fluid reservoir 4; The delivery outlet of this fluid reservoir 4 is connected via the input port of pipeline with solution circulation pump 5; The delivery outlet of this solution circulation pump 5 is connected via the input port of pipeline with this back pressure control valve 6, and the refluxing opening of this back pressure control valve 6 is connected with the backflow input port of this fluid reservoir 4 via pipeline, and the delivery outlet of this back pressure control valve 6 is connected via the input port of pipeline with this flow distribution device 7; The delivery outlet of this flow distribution device 7 is connected via the input port of pipeline with a plurality of urea liquid atomizers 8; These a plurality of urea liquid atomizers 8 are arranged in this compound decomposition jar 12, are used for (as being tilted to down) jet atomization urea liquid downwards, in this compound decomposition jar 12, these a plurality of urea liquid atomizers 8 above be provided with a plurality of hot blast jet pipes 11; These a plurality of hot blast jet pipes 11 are used for spraying high temperature air downwards; The input port of these a plurality of hot blast jet pipes 11 is connected via the delivery outlet of pipeline with this air flow control valve 14, and the input port of this air flow control valve 14 is connected via the delivery outlet of pipeline with this electric heater 10, and the input port of this electric heater 10 is connected via the delivery outlet of pipeline with blower fan 9; The input port of this blower fan 9 is connected with air-in 13 via pipeline; The bottom of this compound decomposition jar 12 is provided with the output denitration with the delivery outlet of ammonia reducing agent, this output denitration with the delivery outlet of ammonia reducing agent via ammonia injector 15 with combustion apparatus in the inlet of denitrating system (not shown) be connected, the control end of this urea pump 2, flow divider 3, solution circulation pump 5, back pressure control valve 6, flow distribution device 7, blower fan 9, electric heater 10, air flow control valve 14 is connected with the corresponding controling end of the system of control (not shown) respectively.
Like Fig. 1; In actual design; These a plurality of hot blast jet pipes 11 can be arranged on the top in the compound decomposition jar 12; And in actual design, a plurality of hot blast jet pipes 11 can be arranged in ring-type and be arranged on the inwall of compound decomposition jar 12, and a plurality of urea liquid atomizer 8 can be arranged in ring-type and is arranged on the inwall of compound decomposition jar 12.
In actual design, for the corrosion to compound decomposition jar 12 of the strong acid that prevents to generate in the compound decomposition reaction process of urea, compound decomposition jar 12 adopts anti-corrosion material such as stainless steels to make.And; Carry out smoothly fast in order to make the compound decomposition reaction of urea; The height of compound decomposition jar 12 and width can come appropriate design according to the speed of hot blast jet pipe 11 injection high temperature airs and the speed of urea liquid atomizer 8 jet atomization urea liquids, so that the height of compound decomposition jar 12 and width help carrying out smoothly fast of the compound decomposition reaction of urea.
In actual design, the control system can adopt ammonia reducing agent preparation technology to follow the tracks of combustion apparatus load variations control and regulation technology, Self Adaptive Control and preceding feedback control technology fast, so that the utility model can be followed the tracks of the load variations and the flue gas NO of combustion apparatus xContent is come in time adjustment urea liquid addition and ammonia reducing agent injection rate, the ammonia reducing agent that the utility model is prepared through the compound decomposition method of urea can satisfy at any time denitrating system in the combustion apparatus carry out denitrating flue gas when reacting reality to the aequum of ammonia reducing agent.
In the utility model; Urea pump 2, solution circulation pump 5 are circulating pump; Dissolving tank 1, flow divider 3, fluid reservoir 4, back pressure control valve 6, flow distribution device 7, compound decomposition jar 12, electric heater 10, air flow control valve 14 are known device; The control system belongs to known electronic technology, so their concrete formation no longer here details.
Operation principle of the utility model and process are:
Like Fig. 1; Urea granules (solid) is from urea input port input dissolving tank 1; Water is from water input input dissolving tank 1, and in dissolving tank 1, water and urea granules are dissolved into urea liquid after mixing; This urea liquid back and forth is back to the part urea liquid in the dissolving tank 1 via flow divider 3; Make the urea liquid in the dissolving tank 1 stir, when the urea liquid of dissolving tank 1 output reaches setting mass concentration (for example mass concentration is 40~50%), reach the urea liquid of setting mass concentration and be admitted to storage in the fluid reservoir 4 via urea pump 2, flow divider 3.Then, the urea liquid of storage is admitted to urea liquid atomizer 8 via solution circulation pump 5, back pressure control valve 6, flow distribution device 7 in the fluid reservoir 4, and urea liquid atomizer 8 is with urea liquid atomizing ejection downwards.In practical application, flow distribution device 7 can be controlled the urea liquid flow in the input urea liquid atomizer 8 according to actual fabrication ammonia reducing agent aequum.And take when the urea liquid flow surpasses actual institute, through the back pressure control of 7 pairs of back pressure control valves 6 of flow distribution device, unnecessary urea liquid can be back in the fluid reservoir 4 via back pressure control valve 6.
Like Fig. 1; Air gets into from air-in 13; And being admitted in the electric heater 10 heating via blower fan 9, output then reaches the high temperature air (for example, being heated to be 400~650 ℃ hot-air) of design temperature; This high temperature air carries out being admitted to hot blast jet pipe 11 after the flow-control via air flow control valve 14, and hot blast jet pipe 11 is with the ejection downwards of high temperature air atomizing back.
So; In compound decomposition jar 12, high temperature air mixes with urea liquid, carries out following formula 1 rapidly, continuously) pyrolytic reaction and the formula 2 that illustrate) hydrolysis that illustrates; That is, make the urea that under the proper temperature condition, is in activated state resolve into NH through pyrolysis rapidly 3And HNCO (isocyanic acid), the rapid again and water reaction of HNCO then finally generates NH through hydrolysis 3And CO 2(the compound decomposition of pyrolysis-hydrolysis); From the delivery outlet output high temperature air of compound decomposition jar 12 bottoms and the mist of ammonia; Be that the ammonia reducing agent is used in denitration; Thereby this denitration is in time sent in the denitrating system in the combustion apparatus through ammonia-spraying grid via ammonia injector 15 with the ammonia reducing agent, is used to accomplish denitration reaction.
CO(NH 2) 2→NH 3+HNCO 1)
HNCO+H 2O→NH 3+CO 2 2)
The utility model has the advantages that:
1, the utility model can be prepared the denitrating system of supplying with in the combustion apparatus fast through the compound decomposition method of urea and carries out the required denitration of denitrating flue gas reaction and use the ammonia reducing agent; Supply with in time, fast; The denitrating system denitrating flue gas reaction that can satisfy in the combustion apparatus is required, guarantees denitration efficiency.
2, the utility model easy operating, switching speed is fast, stable and reliable operation.
3, to prepare the chemical reaction process of ammonia reducing agent rapid for the utility model, can effectively avoid the side effect of pilot process, and it is resident not have ammonia, effectively avoided the ammonia leakage.
4, the utility model does not have high-tension apparatus, has exempted ammonia and has fired hidden danger, and need not to be provided with fire prevention and safe spacing, and floor space is little.
The above is preferred embodiment of the utility model and the know-why of being used thereof; For a person skilled in the art; Under the situation of spirit that does not deviate from the utility model and scope; Any based on conspicuous changes such as the equivalent transformation on the utility model technical scheme basis, simple replacements, all belong within the utility model protection domain.

Claims (5)

1. the compound decomposition method denitrification reducing agent of urea prepares feeding mechanism, it is characterized in that: it comprises dissolving tank, flow divider, fluid reservoir, back pressure control valve, flow distribution device, compound decomposition jar, electric heater, air flow control valve, wherein:
This dissolving tank is provided with urea input port, water input; The delivery outlet of this dissolving tank is connected with the input port of urea pump via pipeline; The delivery outlet of this urea pump is connected with the input port of this flow divider via pipeline; The refluxing opening of this flow divider is connected with the backflow input port of this dissolving tank via pipeline; The delivery outlet of this flow divider is connected with the input port of this fluid reservoir via pipeline; The delivery outlet of this fluid reservoir is connected with the input port of solution circulation pump via pipeline, and the delivery outlet of this solution circulation pump is connected via the input port of pipeline with this back pressure control valve, and the refluxing opening of this back pressure control valve is connected with the backflow input port of this fluid reservoir via pipeline; The delivery outlet of this back pressure control valve is connected with the input port of this flow distribution device via pipeline; The delivery outlet of this flow distribution device is connected via the input port of pipeline with a plurality of urea liquid atomizers, and these a plurality of urea liquid atomizers are arranged in this compound decomposition jar, in this compound decomposition jar, these a plurality of urea liquid atomizers above be provided with a plurality of hot blast jet pipes; The input port of these a plurality of hot blast jet pipes is connected via the delivery outlet of pipeline with this air flow control valve; The input port of this air flow control valve is connected with the delivery outlet of this electric heater via pipeline, and the input port of this electric heater is connected with the delivery outlet of blower fan via pipeline, and the input port of this blower fan is connected with air-in via pipeline; The bottom of this compound decomposition jar is provided with the delivery outlet of output denitration with the ammonia reducing agent, and the control end of this urea pump, flow divider, solution circulation pump, back pressure control valve, flow distribution device, blower fan, electric heater, air flow control valve is connected with the corresponding controling end of control system respectively.
2. the compound decomposition method denitrification reducing agent of urea as claimed in claim 1 prepares feeding mechanism, it is characterized in that: said a plurality of hot blast jet pipes are arranged on the top in the said compound decomposition jar.
3. according to claim 1 or claim 2 the compound decomposition method denitrification reducing agent of urea prepares feeding mechanism; It is characterized in that: said a plurality of hot blast jet pipes are arranged in ring-type and are arranged on the inwall of said compound decomposition jar, and said a plurality of urea liquid atomizer is arranged in ring-type and is arranged on the inwall of said compound decomposition jar.
4. the compound decomposition method denitrification reducing agent of urea as claimed in claim 1 prepares feeding mechanism, it is characterized in that: said urea pump, said solution circulation pump are circulating pump.
5. the compound decomposition method denitrification reducing agent of urea as claimed in claim 1 prepares feeding mechanism, it is characterized in that: said compound decomposition jar adopts stainless steel material to process.
CN2012201090321U 2012-03-21 2012-03-21 Device for preparing and supplying denitration reducing agent by urea compound decomposition method Expired - Fee Related CN202490568U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012201090321U CN202490568U (en) 2012-03-21 2012-03-21 Device for preparing and supplying denitration reducing agent by urea compound decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012201090321U CN202490568U (en) 2012-03-21 2012-03-21 Device for preparing and supplying denitration reducing agent by urea compound decomposition method

Publications (1)

Publication Number Publication Date
CN202490568U true CN202490568U (en) 2012-10-17

Family

ID=46996812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012201090321U Expired - Fee Related CN202490568U (en) 2012-03-21 2012-03-21 Device for preparing and supplying denitration reducing agent by urea compound decomposition method

Country Status (1)

Country Link
CN (1) CN202490568U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949148A (en) * 2014-05-20 2014-07-30 国家电网公司 Enhanced absorption device in wet desulfurization absorption tower and wet desulfurization absorption tower
CN107344723A (en) * 2017-07-07 2017-11-14 山东奥能电力科技有限公司 A kind of vertical urea composite catalyzing hydrolysising reacting system of denitration
CN108939903A (en) * 2018-06-26 2018-12-07 中国成达工程有限公司 A kind of online elimination device and method for the crystallization of SCR urea method denitration nozzle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949148A (en) * 2014-05-20 2014-07-30 国家电网公司 Enhanced absorption device in wet desulfurization absorption tower and wet desulfurization absorption tower
CN103949148B (en) * 2014-05-20 2017-03-08 国家电网公司 Strengthening absorption plant and wet desulphurization absorption tower in a kind of wet desulphurization absorption tower
CN107344723A (en) * 2017-07-07 2017-11-14 山东奥能电力科技有限公司 A kind of vertical urea composite catalyzing hydrolysising reacting system of denitration
CN107344723B (en) * 2017-07-07 2023-07-04 山东奥淼科技发展有限公司 Vertical urea composite catalytic hydrolysis reaction system for denitration
CN108939903A (en) * 2018-06-26 2018-12-07 中国成达工程有限公司 A kind of online elimination device and method for the crystallization of SCR urea method denitration nozzle
CN108939903B (en) * 2018-06-26 2020-06-12 中国成达工程有限公司 Online eliminating device and method for SCR urea method denitration nozzle crystallization

Similar Documents

Publication Publication Date Title
CN202700347U (en) Smoke selective non-catalytic reduction (SNCR) denitration complete plant
CN102794106A (en) Method and device for spraying reducing agent used for selective catalytic reduction (SCR) of NOx
CN103657385A (en) Double-atomization spray gun for SNCR (selective non-catalytic reduction) denitration system
CN202844886U (en) Direct ammonia water injection type flue gas denitration device for waste heat boiler
JP6338323B2 (en) Denitration equipment
CN202490568U (en) Device for preparing and supplying denitration reducing agent by urea compound decomposition method
CN106823800A (en) A kind of urea pyrolysis SCR denitration device
CN202921159U (en) Double-atomization spray gun for SNCR (selective non-catalytic reduction) denitration system
CN107051169A (en) A kind of SNCR denitration device
CN203342646U (en) Fluidized bed boiler flue gas denitrating device adopting urea hydrolysis SNCR (selective non-catalytic reduction)
US20150093315A1 (en) Tunable AIG for Improved SCR Performance
CN102824841B (en) Selective non-catalytic reduction (SNCR) denitration system of coal-fired circulating fluidized bed boiler
CN206965521U (en) A kind of denitrification apparatus quoted high-temperature flue gas and carry out urea pyrolysis ammonia
CN213492988U (en) Ammonia water vaporization ammonia preparation device
CN202762311U (en) Spraying device for selective catalytic reduction (SCR) denitration reducing agent
CN112774436A (en) Device and method for preparing SCR denitration reducing agent with flue gas heating system
CN106823799A (en) Urea pyrolysis SCR denitration device
CN112915769A (en) Halogen injection system for collaborative mercury removal of flue gas of coal-fired power plant
CN202497821U (en) Indirect heat exchange type denitration reducing agent preparation supply device
CN206881512U (en) A kind of urea pyrolysis SCR denitration device
CN106823757A (en) Chain furnace composite denitration equipment
CN208839375U (en) A kind of SCR denitration urea pyrolysis furnace set technique device
CN208066097U (en) A kind of polymeric powder state reducing agent direct-injection denitrification apparatus
CN206660945U (en) Sncr denitration device
CN211896058U (en) Urea pyrolysis system

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of utility model: Device for preparing and supplying denitration reducing agent by urea compound decomposition method

Effective date of registration: 20140108

Granted publication date: 20121017

Pledgee: Industrial Commercial Bank of China Ltd Beijing Fangshan branch

Pledgor: Beijing Xishan Xinganxian Dedusting And Desulfidation Equipment Co., Ltd.

Registration number: 2014990000020

PLDC Enforcement, change and cancellation of contracts on pledge of patent right or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121017

Termination date: 20180321

CF01 Termination of patent right due to non-payment of annual fee