CN202420674U - 一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 - Google Patents
一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 Download PDFInfo
- Publication number
- CN202420674U CN202420674U CN 201120526385 CN201120526385U CN202420674U CN 202420674 U CN202420674 U CN 202420674U CN 201120526385 CN201120526385 CN 201120526385 CN 201120526385 U CN201120526385 U CN 201120526385U CN 202420674 U CN202420674 U CN 202420674U
- Authority
- CN
- China
- Prior art keywords
- image
- lens
- module
- wavelength
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 41
- 238000012634 optical imaging Methods 0.000 title claims description 29
- 210000001747 pupil Anatomy 0.000 claims abstract description 17
- 230000003595 spectral effect Effects 0.000 claims description 46
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 230000003321 amplification Effects 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 7
- 230000009471 action Effects 0.000 abstract description 3
- 238000000701 chemical imaging Methods 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域
本实用新型涉及光学成像技术,尤其涉及一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪。
背景技术
光谱成像技术是将光学成像技术和光谱分析技术相结合而得到的一种成像技术,利用光谱成像技术可以获得目标的二维空间图像和一维光谱曲线。获取的二维空间图像和一维光谱曲线能综合反映出被测物体的儿何影像利理化属性,所以利用光谱成像技术可以对目标的特征进行精确感知和识别,该技术在在航空航天遥感、工农业检测、环境监测和资源探测等领域得到了十分广泛的应用。
根据分光原理的不同,可以将成像光谱仪分为色散型光谱仪、干涉型光谱仪和滤光型光谱仪三个种类。目前,常用的色散型成像光谱仪一般利用棱镜或光栅对光线的横向色散作用,将不同波长的光线沿着焦平面中的一个方向进行分离。
现有技术中有利用衍射光学元件的轴向色散功能进行光谱成像的方法,衍射光学元件是一种兼具成像利色散功能的器件,它将不同波长的光线沿着光轴方向进行分离,分离后的光线分别会聚到不同焦距位置的焦平面上,利用探测器沿着光轴进行移动扫描成像,在每个焦距位置获得的图像是某个波段的在焦图像和其他波段的离焦图像的叠加。利用信号处理技术,去除离焦波段图像的混叠,就可以得到在焦波段的目标图像。因此,衍射光学成像光谱仪需要利用机械调焦和多次曝光成像的方式,获取目标的包含完整二维图像信息利一维光谱信息的三维数据立方体。
由上可见,上述光谱成像技术要求该光谱成像系统的机械调焦结构中必须包含运动部件,才能将探测器沿着光轴移动进行扫描成像,这样必然增加了结构的复杂度,且该运动部件的引入降低了系统的稳定性,使得该光谱成像技术难以运用在手持环境利运动平台中。此外,要对所有会聚到不同焦距位置的焦平面上的光线进行扫描成像,需要多次调整机械调焦结构中的运动部件进行多次扫描成像,需要较长的扫描成像时间,该光谱成像技术难以准确探测高速运动目标或者形态属性发生瞬变的目标。
实用新型内容
有鉴于此,本实用新型实施例提供一种衍射光学成像系统,用于降低系统结构的复杂度,增强系统的稳定性。
本实用新型实施例提供一种衍射光学成像系统,包括:衍射透镜、透镜阵列和探测器,其中所述衍射透镜、透镜阵列利探测器之间的位置满足如下关系:其中,为透镜阵列和衍射透镜之间的距离,s为透镜阵列和探测器之间的距离,f是所述透镜阵列中每个单元透镜的焦距。
在本实用新型一较佳实施例中,所述透镜阵列为微透镜阵列或者针孔透镜阵列。
在本实用新型一较佳实施例中,所述探测器为电荷耦合元件、互补金属氧化物半导体或胶片。
本实用新型另一实施例提供一种包括上述衍射光学成像系统的成像光谱仪,包括:上述的衍射光学成像系统、图像转换模块、像平面位置确定模块、像平面图像获取模块、离焦图像去除模块、光谱图像缩放模块和三维数据重构模块,其中
所述衍射光学成像系统,用于对目标物体进行成像,得到探测器图像;
所述图像转换模块,用于从所述衍射光学成像系统获取所述探测器图像,将所述探测器图像转换为四维光束分布矩阵;
所述像平面位置确定模块,用于计算各波长所对应的像平面位置;
所述像平面图像获取模块,用于从所述图像转换模块获取所述四维光束分布矩阵,从所述像平面位置确定模块获取所述各波长对应的像平面位置,在所述各波长所对应的像平面位置处对所述四维光束分布矩阵进行求和,得到各波长的像平面图像;
所述离焦图像去除模块,用于从所述像平面图像获取模块接收各波长的像平面图像,依次对每一波长的像平面图像进行卷积处理,去除当前波长之外的其他波长的离焦图像,得到所述目标物体在各波长下的光谱图像;
所述光谱图像缩放模块,用于从所述离焦图像去除模块获取所述目标物体在各波长下的光谱图像,对所述目标物体在各波长下的光谱图像进行放大或缩小处理,将其归一化为具有相同放大倍数的光谱图像;
所述三维数据重构模块,用于从所述光谱图像缩放模块获取所述具有相同放大倍数的光谱图像,并将所述具有相同放大倍数的光谱图像合成为三维数据立方体。
在本实用新型一较佳实施例中,所述图像转换模块,用于根据如下公式将所述探测器图像转换为所述四维光束分布矩阵:
L(p,q,x,y)=I(Nx+p,Ny-q),p,q=0,1,2,…,N-1;x,y=0,1,2,…,M-1,其中,L(p,q,x,y)为所述四维光束分布矩阵,为所述探测器记录下的由每个(x,y)采样和每个(p,q)采样之间分布的光束的强度,I(Nx+p,Ny-q)为所述探测器图像的表达式,(x,y)为所述透镜阵列所在平面的坐标系,(p,q)为所述衍射透镜光瞳面所在平面的坐标系,所述透镜阵列中单元透镜的数量为M×M,所述衍射透镜光瞳面的子像覆盖N×N个像元,M和N为自然数。
在本实用新型一较佳实施例中,所述像平面位置确定模块计算出的各波长所对应的像平面位置为:其中,Sλ表示波长λ对应的像平面位置,λ0是所述衍射透镜的中心波长,是所述衍射透镜的中心波长λ0对应的焦距,是所述透镜阵列和所述衍射透镜之间的距离。
在本实用新型一较佳实施例中,所述像平面图像获取模块,用于在各波长所对应的像平面位置处对所述四维光束分布矩阵进行求和,得到各波长的像平面图像Iλ,其中,
在本实用新型一较佳实施例中,所述光谱图像缩放模块,用于选取λ0处的光谱图像作为参考图像,对波长为λ的光谱图像通过插值处理的方法,按照缩放系数为进行放大或缩小,将其归一化为具有相同放大倍数的光谱图像,其中,λ0是所述衍射透镜的中心波长,Sλ为波长λ所对应的像平面位置,是所述透镜阵2和所述衍射透镜之间的距离。
附图说明
图1为本实用新型实施例中衍射光学成像系统的结构示意图;
图2示出了光线通过透镜阵列在探测器上的分布方式;
图3示出了衍射透镜全光瞳光线经过透镜阵列所成的子像;
图4示出了探测器的一个像元对应的光束采样;
图5示出了包含图1所示衍射光学成像系统的成像光谱仪;
图6为光线会聚到长波像平面的示意图;
图7为光线会聚到短波像平面的示意图。
图中:1:衍射透镜 2:透镜阵列 3:探测器 501:衍射光学成像系统 502:图像转换模块 503:像平面位置确定模块 504:像平面图像获取模块 505:离焦图像去除模块 506:光谱图像缩放模块 507:三维数据重构模块
具体实施方式
为使本实用新型的目的、技术方案及优点更加清楚明白,以下参照附图并列举实施例,对本实用新型进一步详细说明。
图1为本实用新型实施例中衍射光学成像系统的结构示意图。如图1所示,该衍射光学成像系统包括:衍射透镜1、透镜阵列2和探测器3。其中,衍射透镜1、透镜阵列2和探测器3之间的位置关系满足如下关系:为透镜阵列2和衍射透镜1之间的距离,s为透镜阵列2和探测器3之间的距离,f是该透镜阵列2中每个单元透镜的焦距。
在图1所示的实施例中,衍射透镜对光线进行轴向色散和会聚成像,透镜阵列将衍射透镜不同视角发出的光线重新进行会聚。根据共轭成像的关系,该衍射透镜光瞳面中每个采样点发出的光线经过该透镜阵列中的单元透镜后将会聚到该探测器的对应像元上。采用本实施例中的衍射光学成像系统,经过透镜阵列中单元透镜的二次会聚作用可以将透过衍射透镜光瞳面的光线一次成像在探测器的像元上,无需沿光轴移动探测器进行扫描成像。这样,无需包括运动部件即可对目标物体进行成像,减少了系统的复杂度,增加了系统的稳定性,易于实现轻量小型化,可安装在运动平台或手机、相机等手持设备中。此外,采用本实施例中的衍射光学成像系统可以实现一次曝光成像,增强了探测的实时性,可以对快速运动的目标或光谱瞬变的目标进行探测。
在本实用新型实施例中,该透镜阵列可以为微透镜阵列或者针孔透镜阵列。探测器可以为电荷耦合元件、互补金属氧化物半导体或胶片。
图2示出了光线通过透镜阵列在探测器上的分布方式。如图2所示,衍射透镜1光瞳面中每个采样点发出的光线经过透镜阵列2中的每个单元透镜后都将会聚到探测器3的一个对应像元上。
图3示出了衍射透镜全光瞳光线经过透镜阵列所成的子像。如图3所示,衍射透镜1的整个光瞳的光线经过透镜阵列2中单元透镜后在探测器3上形成子像,相邻单元透镜所成的子像在交界处相切。
图4示出了探测器的一个像元对应的光束采样。如图4所示,令透镜阵列2所在平面的坐标系为(x,y),衍射透镜1的光瞳面所在的平面的坐标系为(p,q),探测器3的一个像元记录下的每个(x,y)采样和每个(p,q)采样之间光束分布的强度为L(p,q,x,y)。假设透镜阵列2中单元透镜的数目为M×M,衍射透镜1的光瞳面的子像覆盖的像元的数目为N×N,那么探测器3所成的图像I利光束分布的强度L之间的关系为:I(Nx+p,Ny+q)=L(p,q,x,y),p,q=0,1,2,…,N-1,x,y=0,1,2,…,M-1。其中,M和N为自然数。
图5示出了包含图1所示衍射光学成像系统的成像光谱仪。如图5所示,该成像光谱仪包括:衍射光学成像系统501、图像转换模块502、像平面位置确定模块503、像平面图像获取模块504、离焦图像去除模块505、光谱图像缩放模块506和三维数据重构模块507。
其中,该衍射光学成像系统501,用于对目标物体进行成像,得到探测器图像。
该图像转换模块502,用于从该衍射光学成像系统501获取探测器图像,将该探测器图像转换为四维光束分布矩阵。
该像平面位置确定模块503,用于计算各波长所对应的像平面位置。
该像平面图像获取模块504,用于从该图像转换模块502接收该四维光束分布矩阵,从该像平面位置确定模块503接收该各波长所对应的像平面位置,在各波长所对应的像平面位置处对四维光束分布矩阵进行求和,得到各波长的像平面图像。
该离焦图像去除模块505,用于从该像平面图像获取模块504接收各波长的像平面图像,依次对每一波长的像平面图像进行卷积处理,去除当前波长之外的其他波长的离焦图像,得到目标物体在各波长下的光谱图像。
该光谱图像缩放模块506,用于从该离焦图像去除模块505获取目标物体在各波长下的光谱图像,对目标物体在各波长下的光谱图像进行放大或缩小处理,将其归一化为具有相同放大倍数的光谱图像。
该三维数据重构模块507,用于从该光谱图像缩放模块506获取具有相同放大倍数的光谱图像,并将具有相同放大倍数的光谱图像合成为三维数据立方体。
本实用新型实施例提供的成像光谱仪包括图1所示的衍射光学成像系统,因此具有该衍射光学成像系统具有的优点,即,无需包括运动部件即可对目标物体进行成像,减少了系统的复杂度,增加了系统的稳定性,易于实现轻量小型化,可安装在运动平台或手机、相机等手持设备中。此外,可以实现一次曝光成像,增强了探测的实时性,可以对快速运动的目标或光谱瞬变的目标进行探测。
在具体应用中,该图像转换模块502,用于根据如下公式将该探测器图像转换为四维光束分布矩阵:L(p,q,x,y)=I(Nx+p,Ny+q),p,q=0,1,2,…,N-1;x,y=0,1,2,…,M-1,其中,L(p,q,x,y)为该四维光束分布矩阵,为探测器3记录下的由每个(x,y)采样和每个(p,q)采样之间光束分布的强度,(x,y)为所述透镜阵列2所在平面的坐标系,(p,q)为所述衍射透镜1光瞳面所在平面的坐标系,所述透镜阵列2中单元透镜的数量为M×M,所述衍射透镜光瞳面的子像覆盖N×N个像元,M和N为自然数。
该像平面位置确定模块503计算出的各波长λ所对应的像平面位置为:其中,Sλ表示波长λ对应的像平面位置,λ0是所述衍射透镜的中心波长,是所述衍射透镜的中心波长λ0对应的焦距,是所述透镜阵列和所述衍射透镜之间的距离。
此处,该像平面位置确定模块503确定出的像平面可以位于透镜阵列2之前,也可以位于透镜阵列2之后。位于透镜阵列2之前的像平面为长波(λ>λ0)像平面,位于透镜阵列2之后的像平面为短波(λ<λ0)像平面。
图6为光线会聚到长波像平面的示意图。
图7为光线会聚到短波像平面的示意图。
该光谱图像缩放模块506,用于选取λ0处的光谱图像作为参考图像,对波长为λ的光谱图像通过插值处理的方法,按照缩放系数为进行放大或缩小,将其归一化为具有相同放大倍数的光谱图像,其中,λ0是所述衍射透镜的中心波长,Sλ为波长λ所对应的像平面位置,是所述透镜阵列和所述衍射透镜之间的距离。
上文通过附图和优选实施例对本实用新型进行了详细展示和说明,然而本实用新型不限于这些已揭示的实施例,本领域技术人员从中推导出米的其他方案也在本实用新型的保护范围之内。
Claims (8)
2.根据权利要求1所述的衍射光学成像系统,其特征在于,所述透镜阵列(2)为微透镜阵列或者针孔透镜阵列。
3.根据权利要求1或2所述的衍射光学成像系统,其特征在于,所述探测器(3)为电荷耦合元件、互补金属氧化物半导体或胶片。
4.一种包括权1所述衍射光学成像系统的成像光谱仪,其特征在于,包括:权1所述的衍射光学成像系统(501)、图像转换模块(502)、像平面位置确定模块(503)、像平面图像获取模块(504)、离焦图像去除模块(505)、光谱图像缩放模块(506)和三维数据重构模块(507),其中
所述衍射光学成像系统(501),用于对目标物体进行成像,得到探测器图像;
所述图像转换模块(502),用于从所述衍射光学成像系统(501)获取所述探测器图像,将所述探测器图像转换为四维光束分布矩阵:
所述像平面位置确定模块(503),用于计算各波长所对应的像平面位置;
所述像平面图像获取模块(504),用于从所述图像转换模块(502)获取所述四维光束分布矩阵,从所述像平面位置确定模块(503)获取所述各波长对应的像平面位置,在所述各波长所对应的像平面位置处对所述四维光束分布矩阵进行求和,得到各波长的像平面图像:
所述离焦图像去除模块(505),用于从所述像平面图像获取模块(504)接收各波长的像平面图像,依次对每一波长的像平面图像进行卷积处理,去除当前波长之外的其他波长的离焦图像,得到所述目标物体在各波长下的光谱图像;
所述光谱图像缩放模块(506),用于从所述离焦图像去除模块(505)获取所述目标物体在各波长下的光谱图像,对所述目标物体在各波长下的光谱图像进行放大或缩小处理,将其归一化为具有相同放大倍数的光谱图像;
所述三维数据重构模块(507),用于从所述光谱图像缩放模块(506)获取所述具有相同放大倍数的光谱图像,并将所述具有相同放大倍数的光谱图像合成为三维数据立方体。
5.根据权利要求4所述的成像光谱仪,其特征在于,所述图像转换模块(502),用于根据如下公式将所述探测器图像转换为所述四维光束分布矩阵:
L(p,q,x,y)=I(Nx+p,Ny-q),p,q=0,1,2,…,N-1;x,y=0,1,2,…,M-1,其中, L(p,q,x,y)为所述四维光束分布矩阵,为所述探测器(3)记录下的由每个(x,y)采样和每个(p,q)采样之间分布的光束的强度,I(Nx+p,Ny+q)为所述探测器图像的表达式,(x,y)为所述透镜阵列(2)所在平面的坐标系,(p,q)为所述衍射透镜(1)光瞳面所在平面的坐标系,所述透镜阵列(2)中单元透镜的数量为M×M,所述衍射透镜(1)光瞳面的子像覆盖N×N个像元,M和N为自然数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201120526385 CN202420674U (zh) | 2011-12-14 | 2011-12-14 | 一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201120526385 CN202420674U (zh) | 2011-12-14 | 2011-12-14 | 一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202420674U true CN202420674U (zh) | 2012-09-05 |
Family
ID=46745429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201120526385 Expired - Fee Related CN202420674U (zh) | 2011-12-14 | 2011-12-14 | 一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202420674U (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102494771A (zh) * | 2011-12-14 | 2012-06-13 | 中国科学院光电研究院 | 一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 |
CN104570344A (zh) * | 2014-12-23 | 2015-04-29 | 中国科学院光电研究院 | 一种数字成像系统的光学和数字联合设计方法 |
CN112097904A (zh) * | 2020-08-20 | 2020-12-18 | 中国科学院西安光学精密机械研究所 | 基于衍射透镜/变焦透镜阵列的光谱成像系统及方法 |
-
2011
- 2011-12-14 CN CN 201120526385 patent/CN202420674U/zh not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102494771A (zh) * | 2011-12-14 | 2012-06-13 | 中国科学院光电研究院 | 一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 |
CN104570344A (zh) * | 2014-12-23 | 2015-04-29 | 中国科学院光电研究院 | 一种数字成像系统的光学和数字联合设计方法 |
CN104570344B (zh) * | 2014-12-23 | 2017-02-22 | 中国科学院光电研究院 | 一种数字成像系统的光学和数字联合设计方法 |
CN112097904A (zh) * | 2020-08-20 | 2020-12-18 | 中国科学院西安光学精密机械研究所 | 基于衍射透镜/变焦透镜阵列的光谱成像系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Geelen et al. | A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic | |
CN102494771A (zh) | 一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 | |
US8149400B2 (en) | Coded aperture snapshot spectral imager and method therefor | |
CN110017897B (zh) | 一种紧凑型单目多通道可组合式多光谱成像系统 | |
JP5675419B2 (ja) | 画像生成装置、及び、画像生成方法 | |
JPWO2005069216A1 (ja) | 光学的伝達関数の測定方法、画像復元方法、およびデジタル撮像装置 | |
CN112672054B (zh) | 对焦方法、装置及电子设备 | |
CN103091258A (zh) | 一种基于液态变焦技术的多光谱成像仪 | |
CN107436194A (zh) | 一种高光通量实时光谱成像装置 | |
CN115885311A (zh) | 用于数字光学像差校正和光谱成像的系统和方法 | |
CN202420674U (zh) | 一种衍射光学成像系统及包含该衍射光学成像系统的成像光谱仪 | |
EP2932327A1 (en) | Dual-q imaging system | |
EP3143583B1 (en) | System and method for improved computational imaging | |
JP2020508469A (ja) | 広角コンピュータ撮像分光法および装置 | |
CN109357761B (zh) | 一种局部光谱高分辨成像光谱仪系统 | |
CN114689174A (zh) | 一种芯片级多光谱相机系统及其操作方法 | |
CN108917928B (zh) | 一种360度全景多光谱成像仪 | |
CN112672021A (zh) | 语言识别方法、装置及电子设备 | |
CN114125196A (zh) | 摄像头芯片和摄像设备 | |
EP3355038B1 (en) | Imaging apparatus and operating method | |
CN111442757A (zh) | 基于色散透镜与滤光片的视觉测距系统及测距方法 | |
RU2822085C1 (ru) | Способ получения четырехмерных яркостно-спектральных профилей удаленных объектов и устройство для его реализации | |
CN100590403C (zh) | 横向放大率恒定的衍射光学成像光谱仪的成像结构及其使用方法 | |
KR102287082B1 (ko) | 다단계 이종 필터 시스템을 이용한 소형 초분광 이미지 센서 | |
CN117686089B (zh) | 双通道积分视场快照式高光谱成像系统及图像融合方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 Termination date: 20121214 |