CN202405608U - Multi-wavelength optical fiber laser based on fusible cone gratings of optical fiber coupler - Google Patents
Multi-wavelength optical fiber laser based on fusible cone gratings of optical fiber coupler Download PDFInfo
- Publication number
- CN202405608U CN202405608U CN2012200069963U CN201220006996U CN202405608U CN 202405608 U CN202405608 U CN 202405608U CN 2012200069963 U CN2012200069963 U CN 2012200069963U CN 201220006996 U CN201220006996 U CN 201220006996U CN 202405608 U CN202405608 U CN 202405608U
- Authority
- CN
- China
- Prior art keywords
- port
- fiber
- coupler
- division multiplexer
- wavelength division
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 39
- 239000000835 fiber Substances 0.000 claims abstract description 111
- 230000004927 fusion Effects 0.000 claims abstract description 23
- 238000005086 pumping Methods 0.000 claims description 11
- 238000004891 communication Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 101100456571 Mus musculus Med12 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
基于光纤耦合器熔锥光栅的多波长光纤激光器,涉及一种光纤激光器,适用于光纤通信领域。解决了目前多波长光纤激光器中激光器结构的稳定性差,输出激光的波长数量难以控制的问题。该激光器中的第一泵浦源(51)接第一波分复用器的第一端口(411),第一波分复用器的第二端口(412)接耦合器的第一端口(21),第一波分复用器的第三端口(413)接第一有源单模光纤(11)的一端,第一有源单模光纤(11)的另一端接耦合器的第三端口(23);刻写在耦合器熔锥区(2)的第一至第N光纤光栅(31、32、……、3M、3(M+1)、3(M+2)、……、3N)的中心波长均不一致,均为布拉格光纤光栅,反射带宽均没有重叠部分。N=2~50,0≤M≤N,M和N均为正整数。
A multi-wavelength fiber laser based on a fiber coupler fusion cone grating relates to a fiber laser and is suitable for the field of fiber communication. The problem of poor stability of the laser structure and difficulty in controlling the number of output laser wavelengths in current multi-wavelength fiber lasers is solved. The first pump source (51) in this laser is connected to the first port (411) of the first wavelength division multiplexer, and the second port (412) of the first wavelength division multiplexer is connected to the first port (412) of the coupler 21), the third port (413) of the first wavelength division multiplexer is connected to one end of the first active single-mode optical fiber (11), and the other end of the first active single-mode optical fiber (11) is connected to the third port of the coupler. port (23); the first to N fiber gratings (31, 32, ..., 3M, 3(M+1), 3(M+2), ..., 3N) have inconsistent central wavelengths, are all fiber Bragg gratings, and have no overlapping reflection bandwidths. N=2-50, 0≤M≤N, M and N are both positive integers.
Description
技术领域 technical field
本实用新型涉及一种光纤激光器,适用于光纤通信领域。The utility model relates to an optical fiber laser, which is suitable for the field of optical fiber communication.
背景技术 Background technique
人类发现并利用光源可以追溯到用火照明的原始部落年代,直到激光产生前的所有光源都无法在方向性和亮度上有质的提高,无论外加多少设备对输出光进行调节,发散角大、能量不集中的问题始终无法有效解决。这归其原因在于激光产生以前的所有光源都不是相干光源,发散角大,亮度低是其固有的弊病。直到上世纪六十年代初,第一台红宝石激光器的问世才彻底解决了这个问题,而随着激光器技术的不断成熟,激光的应用领域也进一步扩展,目前,激光器已经发展为包括半导体激光器、光纤激光器、CO2激光器、自由电子激光器等多种基理不同的庞大激光器体系。综合考虑各类激光器的优缺点,光纤激光器以其光束质量好,结构紧凑、热效率低、光-光转换效率高等特点得到广大科研工作者的青睐,并且在基础应用领域展现出其巨大的经济效益和社会效益。The discovery and use of light sources by humans can be traced back to the primitive tribes who used fire for lighting. All light sources before the generation of lasers could not improve the directionality and brightness qualitatively. No matter how many devices are added to adjust the output light, the divergence angle is large, The problem of energy inconcentration cannot be effectively solved all the time. The reason for this is that all light sources before laser generation are not coherent light sources, and their inherent disadvantages are large divergence angle and low brightness. It was not until the early 1960s that the advent of the first ruby laser completely solved this problem. With the continuous maturity of laser technology, the application field of laser has been further expanded. At present, lasers have been developed to include semiconductor lasers, optical fibers Lasers, CO2 lasers, free electron lasers and other huge laser systems with different fundamentals. Considering the advantages and disadvantages of various lasers, fiber lasers are favored by the majority of scientific researchers for their good beam quality, compact structure, low thermal efficiency, and high light-to-light conversion efficiency, and they have shown huge economic benefits in basic applications. and social benefits.
目前,基于包层抽运技术的光纤激光器以其光束质量好、转换效率高以及结构紧凑等特点吸引了人们的广泛关注。2004年光纤激光器的单纤输出功率达到千瓦量级,2009年IPG公司报道已实现了单纤万瓦的单模激光输出。但随着功率的增加,SBS、SRS和FWM等各种非线性效应使得光束质量严重降低,并且成为进一步增加激光功率的巨大障碍。大模场面积LMA光纤的提出成为一种可行的方法,在保持光功率密度不变的情况下,增大光纤半径可以有效增加光纤所能承载的光功率,为大功率光纤激光器的制备提供了必要的前提。但由于光纤半径增加幅度有限,过大的光纤半径使得模场变的复杂,光束质量得不到保证,因此该方法能够解决的问题受到光纤尺寸的限制。另一种方法为主控振荡器的功率放大器MOPA,这种方法可以有效增加激光器功率,而且输出激光的质量很高,但同样受到单根光纤光功率承载能力的限制。At present, fiber lasers based on cladding pumping technology have attracted widespread attention due to their good beam quality, high conversion efficiency, and compact structure. In 2004, the single-fiber output power of fiber lasers reached the kilowatt level. In 2009, IPG reported that it had achieved a single-fiber 10,000-watt single-mode laser output. However, as the power increases, various nonlinear effects such as SBS, SRS, and FWM seriously degrade the beam quality and become a huge obstacle to further increase the laser power. The proposal of large mode area LMA fiber has become a feasible method. In the case of keeping the optical power density constant, increasing the fiber radius can effectively increase the optical power that the fiber can carry, which provides a great opportunity for the preparation of high-power fiber lasers. necessary prerequisite. However, due to the limited increase in fiber radius, too large fiber radius makes the mode field complex and the beam quality cannot be guaranteed. Therefore, the problem that this method can solve is limited by the size of the fiber. Another method is the power amplifier MOPA of the main control oscillator. This method can effectively increase the laser power, and the quality of the output laser is very high, but it is also limited by the optical power carrying capacity of a single fiber.
光纤激光器在通信领域发挥着不可替代的作用,多波长,窄线宽的光纤激光器一直以来都是通信领域追求的目标,目前光纤激光器已经可以实现多波长,窄线宽激光的输出,转换的效率高,对推动光通信的进步起到了相当重要的作用。但是,现有多波长激光器多数采用梳状滤波器结构,具体为取样光栅、两个3dB耦合器构成的M-Z干涉仪、F-P标准具等,稳定性差。而且难以对波长的数量进行有效控制。Fiber lasers play an irreplaceable role in the field of communication. Fiber lasers with multiple wavelengths and narrow linewidths have always been the goal pursued in the field of communications. At present, fiber lasers can achieve multi-wavelength, narrow linewidth laser output and high conversion efficiency. High, played a very important role in promoting the progress of optical communication. However, most of the existing multi-wavelength lasers use a comb filter structure, specifically a sampling grating, an M-Z interferometer composed of two 3dB couplers, an F-P etalon, etc., and the stability is poor. And it is difficult to effectively control the number of wavelengths.
因此,目前多波长光纤激光器面临的问题是:激光器结构的稳定性差,输出激光的波长数量难以控制。Therefore, the current problems faced by multi-wavelength fiber lasers are: the stability of the laser structure is poor, and the number of wavelengths of the output laser is difficult to control.
实用新型内容 Utility model content
本实用新型所要解决的技术问题是:激光器结构的稳定性差,输出激光的波长数量难以控制。The technical problem to be solved by the utility model is that the stability of the laser structure is poor, and it is difficult to control the number of wavelengths of the output laser.
本实用新型的技术方案为:The technical scheme of the utility model is:
基于光纤耦合器熔锥光栅的多波长光纤激光器,该激光器包括第一有源单模光纤,耦合器,刻写在耦合器熔锥区的第一至第N光纤光栅,第一泵浦源,第一波分复用器,各器件的连接方式为:A multi-wavelength fiber laser based on a fiber coupler fusion taper grating, the laser includes a first active single-mode fiber, a coupler, the first to Nth fiber gratings written in the fusion taper region of the coupler, a first pump source, and a first pumping source. A wavelength division multiplexer, the connection mode of each device is:
第一泵浦源接第一波分复用器的第一端口,第一波分复用器的第二端口接耦合器的第一端口,第一波分复用器的第三端口接第一有源单模光纤的一端,第一有源单模光纤的另一端接耦合器的第三端口;The first pump source is connected to the first port of the first wavelength division multiplexer, the second port of the first wavelength division multiplexer is connected to the first port of the coupler, and the third port of the first wavelength division multiplexer is connected to the second port of the first wavelength division multiplexer. One end of an active single-mode fiber, the other end of the first active single-mode fiber is connected to the third port of the coupler;
激光信号从耦合器的第二端口或/和第四端口输出;The laser signal is output from the second port or/and the fourth port of the coupler;
刻写在耦合器熔锥区的第一至第N光纤光栅的中心波长均不一致,均为布拉格光纤光栅,反射带宽均没有重叠部分;The central wavelengths of the first to Nth fiber gratings written in the fusion cone of the coupler are all inconsistent, they are all fiber Bragg gratings, and the reflection bandwidths have no overlapping parts;
第一至第M光纤光栅被刻写在耦合器熔锥区的其中一根光纤上,第M+1至第N光纤光栅被刻写在耦合器熔锥区的另一根光纤上;The first to Mth fiber gratings are written on one of the optical fibers in the fusing zone of the coupler, and the M+1 to Nth fiber gratings are written on the other optical fiber in the fusing zone of the coupler;
N=2~50,0≤M≤N,M和N均为非负整数。N=2-50, 0≤M≤N, both M and N are non-negative integers.
本实用新型和已有技术相比所具有的有益效果:Compared with the prior art, the utility model has the following beneficial effects:
传统的多波长光纤激光器中的梳状滤波器,依靠取样光栅的选频作用对光信号进行选择,但取样光栅的制作难度较高,而且精度难以满足要求,无法达到对光信号的选择与理论计算一样的要求,本实用新型所述的多波长激光器结构中,每个光栅对应一个波长的激光信号,制作难度低,精度高;传统多波长激光器难以对波长数量进行控制,波长过多则会使每个输出波长的激光信号功率下降,而输出波长过少则无法满足要求,本实用新型由于采用多个光栅串联于耦合器熔锥区的方法,光栅的数量即为输出波长的数量,可控性强。The comb filter in the traditional multi-wavelength fiber laser relies on the frequency selection function of the sampling grating to select the optical signal, but the production of the sampling grating is difficult, and the accuracy is difficult to meet the requirements, and the selection and theory of the optical signal cannot be achieved. Calculating the same requirements, in the multi-wavelength laser structure described in the utility model, each grating corresponds to a laser signal of a wavelength, which has low manufacturing difficulty and high precision; traditional multi-wavelength lasers are difficult to control the number of wavelengths, and too many wavelengths will cause The laser signal power of each output wavelength is reduced, and the output wavelength is too small to meet the requirements. The utility model adopts the method of connecting multiple gratings in series in the fusion cone area of the coupler, and the number of gratings is the number of output wavelengths. Strong control.
附图说明 Description of drawings
图1为输出N个波长的基于光纤耦合器熔锥光栅的多波长光纤激光器。Figure 1 is a multi-wavelength fiber laser based on a fiber coupler fused cone grating that outputs N wavelengths.
图2为输出五十个波长的基于光纤耦合器熔锥光栅的多波长光纤激光器。Figure 2 is a multi-wavelength fiber laser based on a fiber coupler fused cone grating outputting fifty wavelengths.
图3为输出U个波长的基于光纤耦合器熔锥光栅的多波长光纤激光器。Figure 3 is a multi-wavelength fiber laser based on a fiber coupler fused cone grating that outputs U wavelengths.
图4为输出两个波长的基于光纤耦合器熔锥光栅的多波长光纤激光器。Figure 4 is a multi-wavelength fiber laser based on a fiber coupler fused cone grating outputting two wavelengths.
图5为输出五个波长的基于光纤耦合器熔锥光栅的多波长光纤激光器。Figure 5 is a multi-wavelength fiber laser based on a fiber coupler fused cone grating outputting five wavelengths.
图6为3×3耦合器的基于光纤耦合器熔锥光栅的多波长光纤激光器。Figure 6 is a multi-wavelength fiber laser based on a fiber coupler fused cone grating with a 3×3 coupler.
具体实施方式 Detailed ways
下面结合附图对本实用新型作进一步描述。Below in conjunction with accompanying drawing, the utility model is further described.
实施方式一
基于光纤耦合器熔锥光栅的多波长光纤激光器,如图1,该激光器包括第一有源单模光纤11,耦合器,刻写在耦合器熔锥区2的第一至第N光纤光栅31、32、……、3M、3(M+1)、3(M+2)、……、3N,第一泵浦源51,第一波分复用器,各器件的连接方式为:A multi-wavelength fiber laser based on a fiber coupler fusion cone grating, as shown in Figure 1, the laser includes a first active single-
第一泵浦源51接第一波分复用器的第一端口411,第一波分复用器的第二端口412接耦合器的第一端口21,第一波分复用器的第三端口413接第一有源单模光纤11的一端,第一有源单模光纤11的另一端接耦合器的第三端口23。The
激光信号从耦合器的第二端口22或/和第四端口24输出。The laser signal is output from the
刻写在耦合器熔锥区2的第一至第N光纤光栅31、32、……、3M、3(M+1)、3(M+2)、……、3N的中心波长均不一致,均为布拉格光纤光栅,反射带宽均没有重叠部分。The central wavelengths of the first to
第一至第M光纤光栅31、32、……、3M被刻写在耦合器熔锥区2的其中一根光纤上,第M+1至第N光纤光栅3(M+1)、3(M+2)、……、3N被刻写在耦合器熔锥区2的另一根光纤上。The first to
N=2~50,0≤M≤N,M和N均为非负整数。N=2-50, 0≤M≤N, both M and N are non-negative integers.
实施方式二Implementation mode two
基于光纤耦合器熔锥光栅的多波长光纤激光器,如图2,该激光器包括第一有源单模光纤11,耦合器,刻写在耦合器熔锥区2的第一至第五十光纤光栅31、32、……、350,第一泵浦源51,第一波分复用器,各器件的连接方式为:The multi-wavelength fiber laser based on the fiber coupler fusion taper grating, as shown in Figure 2, the laser includes the first active single-
第一泵浦源51接第一波分复用器的第一端口411,第一波分复用器的第二端口412接耦合器的第一端口21,第一波分复用器的第三端口413接第一有源单模光纤11的一端,第一有源单模光纤11的另一端接耦合器的第三端口23。The
激光信号从耦合器的第二端口22或/和第四端口24输出。The laser signal is output from the
刻写在耦合器熔锥区2的第一至第五十光纤光栅31、32、……、350的中心波长均不一致,均为布拉格光纤光栅,反射带宽均没有重叠部分。The center wavelengths of the first to
第一至第五十光纤光栅31、32、……、350被刻写在耦合器熔锥区2的其中一根光纤上。The first to
实施方式三Implementation Mode Three
基于光纤耦合器熔锥光栅的多波长光纤激光器,如图3,该激光器包括第一、第二有源单模光纤11、12,3×3耦合器,刻写在3×3耦合器熔锥区2的第一至第U光纤光栅31、32、……、3M、3(M+1)、3(M+2)、……、3N、3(N+1)、3(N+2)、……、3U,第一、第二泵浦源51、52,第一、第二波分复用器,各器件的连接方式为:A multi-wavelength fiber laser based on a fiber coupler fusion cone grating, as shown in Figure 3, the laser includes first and second active single-
3×3耦合器的第一端口21接第一波分复用器的第二端口412,第一波分复用器的第一端口411接第一泵浦源51,第一波分复用器的第三端口413接第一有源单模光纤11的一端,第一有源单模光纤11的另一端接3×3耦合器的第三端口23。The
3×3耦合器的第二端口22接第二波分复用器的第二端口422,第二波分复用器的第一端口421接第二泵浦源52,第二波分复用器的第三端口423接第二有源单模光纤12的一端,第二有源单模光纤12的另一端接3×3耦合器的第四端口24。The
刻写在3×3耦合器熔锥区2的第一至第U光纤光栅31、32、……、3M、3(M+1)、3(M+2)、……、3N、3(N+1)、3(N+2)、……、3U的中心波长均不一致,均为布拉格光纤光栅,反射带宽均没有重叠部分。The first to
激光信号从3×3耦合器的第五端口25或/和第六端口26输出。The laser signal is output from the
第一至第M光纤光栅31、32、……、3M,第M+1至第N光纤光栅3(M+1)、3(M+2)、……、3N和第N+1至第U光纤光栅3(N+1)、3(N+2)、……、3U分别被刻写在3×3耦合器熔锥区2中的三根不同的光纤上。The first to the
U=2~50,0≤M≤N≤U,M、N和U均非负整数。U=2~50, 0≤M≤N≤U, M, N and U are all non-negative integers.
实施方式四Implementation Mode Four
基于光纤耦合器熔锥光栅的多波长光纤激光器,如图4,该激光器包括第一有源单模光纤11,耦合器,刻写在耦合器熔锥区2的第一、第二光纤光栅31、32,第一泵浦源51,第一波分复用器,各器件的连接方式为:Based on the multi-wavelength fiber laser of the fiber coupler fusion cone grating, as shown in Figure 4, the laser includes the first active single-
第一泵浦源51接第一波分复用器的第一端口411,第一波分复用器的第二端口412接耦合器的第一端口21,第一波分复用器的第三端口413接第一有源单模光纤11的一端,第一有源单模光纤11的另一端接耦合器的第三端口23。The
激光信号从耦合器的第二端口22或/和第四端口24输出。The laser signal is output from the
刻写在耦合器熔锥区2的第一、第二光纤光栅31、32的中心波长不一致,均为布拉格光纤光栅,反射带宽均没有重叠部分。The center wavelengths of the first and
第一、第二光纤光栅31、32被刻写在耦合器熔锥区2的其中一根光纤上。The first and
实施方式五Implementation Mode Five
基于光纤耦合器熔锥光栅的多波长光纤激光器,如图5,该激光器包括第一有源单模光纤11,耦合器,刻写在耦合器熔锥区2的第一至第五光纤光栅31、32、33、34、35,第一泵浦源51,第一波分复用器,各器件的连接方式为:A multi-wavelength fiber laser based on a fiber coupler fusion taper grating, as shown in Figure 5, the laser includes a first active single-mode
第一泵浦源51接第一波分复用器的第一端口411,第一波分复用器的第二端口412接耦合器的第一端口21,第一波分复用器的第三端口413接第一有源单模光纤11的一端,第一有源单模光纤11的另一端接耦合器的第三端口23。The
激光信号从耦合器的第二端口22或/和第四端口24输出。The laser signal is output from the
刻写在耦合器熔锥区2的第一至第五光纤光栅31、32、33、34、35的中心波长均不一致,均为布拉格光纤光栅,反射带宽均没有重叠部分。The central wavelengths of the first to
第一、第二光纤光栅31、32被刻写在耦合器熔锥区2的其中一根光纤上,第三至第五光纤光栅33、34、35被刻写在耦合器熔锥区2的另一根光纤上。The first and
实施方式六Embodiment six
基于光纤耦合器熔锥光栅的多波长光纤激光器,如图6,该激光器包括第一、第二有源单模光纤11、12,3×3耦合器,刻写在3×3耦合器熔锥区2的第一至第五十光纤光栅31、32、……、35、36、37、……、312、313、314、……、350,第一、第二泵浦源51、52,第一、第二波分复用器,各器件的连接方式为:A multi-wavelength fiber laser based on a fiber coupler fusion cone grating, as shown in Figure 6, the laser includes first and second active single-
3×3耦合器的第一端口21接第一波分复用器的第二端口412,第一波分复用器的第一端口411接第一泵浦源51,第一波分复用器的第三端口413接第一有源单模光纤11的一端,第一有源单模光纤11的另一端接3×3耦合器的第三端口23。The
3×3耦合器的第二端口22接第二波分复用器的第二端口422,第二波分复用器的第一端口421接第二泵浦源52,第二波分复用器的第三端口423接第二有源单模光纤12的一端,第二有源单模光纤12的另一端接3×3耦合器的第四端口24。The
刻写在3×3耦合器熔锥区2的第一至第五十光纤光栅31、32、……、35、36、37、……、312、313、314、……、350的中心波长均不一致,均为布拉格光纤光栅,反射带宽均没有重叠部分。The central wavelengths of the first to
激光信号从3×3耦合器的第五端口25或/和第六端口26输出。The laser signal is output from the
第一至第五光纤光栅31、32、……、35,第六至第十二光纤光栅36、37、……、312和第十三至第五十光纤光栅313、314、……、350分别被刻写在3×3耦合器熔锥区2中的三根不同的光纤上。First to
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012200069963U CN202405608U (en) | 2012-01-09 | 2012-01-09 | Multi-wavelength optical fiber laser based on fusible cone gratings of optical fiber coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012200069963U CN202405608U (en) | 2012-01-09 | 2012-01-09 | Multi-wavelength optical fiber laser based on fusible cone gratings of optical fiber coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202405608U true CN202405608U (en) | 2012-08-29 |
Family
ID=46703227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012200069963U Expired - Fee Related CN202405608U (en) | 2012-01-09 | 2012-01-09 | Multi-wavelength optical fiber laser based on fusible cone gratings of optical fiber coupler |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202405608U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113608295A (en) * | 2021-08-04 | 2021-11-05 | 西南交通大学 | Fiber-integrated tunable comb filter, method and optical system |
WO2022068711A1 (en) * | 2020-09-30 | 2022-04-07 | 华为技术有限公司 | Optical amplification device and multi-port wavelength division multiplexing coupler |
-
2012
- 2012-01-09 CN CN2012200069963U patent/CN202405608U/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022068711A1 (en) * | 2020-09-30 | 2022-04-07 | 华为技术有限公司 | Optical amplification device and multi-port wavelength division multiplexing coupler |
CN113608295A (en) * | 2021-08-04 | 2021-11-05 | 西南交通大学 | Fiber-integrated tunable comb filter, method and optical system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102646916B (en) | Coherent combination of high-power fiber laser full optical fiber structure and high brightness beam controlling method | |
CN109217972B (en) | A system and method for on-chip few-mode laser generation based on silicon-based mode conversion | |
CN203012249U (en) | Pulse Laser Polarization Beam Combiner | |
WO2019233012A1 (en) | All-fiber transverse mode switchable high-order mode brillouin laser | |
CN105428975A (en) | High-power femtosecond fiber laser device | |
CN102263356A (en) | Single-frequency narrow linewidth polarization-maintaining all-fiber pulse laser | |
CN114498262B (en) | A multi-wavelength switchable single longitudinal mode thulium-doped fiber laser | |
CN103928829B (en) | A kind of high-order mode acquisition device based on few mode fiber Bragg grating | |
WO2020248929A1 (en) | Closed-loop control high-power single-fiber output continuous all-fiber laser system | |
CN106602395A (en) | Ultra-wideband random fiber laser based on multi-wavelength pumping | |
CN102185239B (en) | Single fiber multi-wavelength fiber laser | |
CN205248608U (en) | High power flies a second fiber laser | |
CN108462023B (en) | High-power fiber laser amplifier system with high mode instability threshold | |
CN208111909U (en) | Random Fiber Laser Based on Sagnac Ring and Oppositely Chirped Fiber Bragg Grating Strings | |
CN202405608U (en) | Multi-wavelength optical fiber laser based on fusible cone gratings of optical fiber coupler | |
CN113572003B (en) | Channel interval tunable multi-wavelength fiber laser based on double Sagnac rings | |
CN114284840A (en) | Multi-light-path cascading beam combining device based on photon lantern | |
CN202423818U (en) | Coherent beam combination high power fiber laser based on composite annular cavity | |
CN111769872A (en) | An all-fiber dispersion adjustment method and an all-fiber dispersion management device | |
CN109270614B (en) | A method for manufacturing a cascaded multi-type nonlinear effect-suppressed tilt grating | |
CN117613677A (en) | High-order mode nanosecond green laser | |
CN103368069A (en) | A laser device structure for reducing high-order mode | |
CN102544997B (en) | Fiber laser based on melting cone gratings of fiber coupler | |
CN114566857A (en) | Fiber laser for directly outputting vortex light pulse | |
CN202602077U (en) | Double-core optical fiber laser based on long-period gratings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120829 Termination date: 20130109 |