CN202398419U - High-gradient magnetism gathering medium for strong magnetic separator - Google Patents

High-gradient magnetism gathering medium for strong magnetic separator Download PDF

Info

Publication number
CN202398419U
CN202398419U CN2011203850705U CN201120385070U CN202398419U CN 202398419 U CN202398419 U CN 202398419U CN 2011203850705 U CN2011203850705 U CN 2011203850705U CN 201120385070 U CN201120385070 U CN 201120385070U CN 202398419 U CN202398419 U CN 202398419U
Authority
CN
China
Prior art keywords
magnetic
medium
magnetic conductive
gradient
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011203850705U
Other languages
Chinese (zh)
Inventor
李世厚
李庚�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN2011203850705U priority Critical patent/CN202398419U/en
Application granted granted Critical
Publication of CN202398419U publication Critical patent/CN202398419U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The utility model discloses a novel high-gradient magnetism gathering medium for a strong magnetic separator. The high-gradient magnetism gathering medium comprises non-magnetic metal sheets and a magnetic medium rod, wherein a section of the magnetic medium rod is equilateral diamond, the diamond magnetic medium rod is fixed between the two non-magnetic metal sheets to form a separation medium box, the two non-magnetic metal sheets are inserted into a separation space of the magnetic separator in parallel, and the sizes are appropriate, and two long-end top angles (acute angles) of the equilateral diamond magnetic medium rods are subjected to rounding treatment. The high-gradient magnetism gathering medium, provided by the utility model, has the advantages of high magnetic field gradient in a magnetic path, small magnetic resistance, low energy consumption, and no magnetic short circuit phenomenon and difficult blockage in an ore grain recycling process, the high-gradient magnetism gathering medium is particularly suitable for recycling tiny weakly-magnetic ore grains, and the lower limit of an effective recovery size fraction reaches 5 microns.

Description

A kind of high gradient magnetic matrix that is used for intensity magnetic separator
Technical field
The utility model relates to a kind of high gradient magnetic matrix that is used for intensity magnetic separator, belongs to the ore dressing field in the mining metallurgical engineering Mineral Processing Engineering.
Background technology
The iron ore deposit of ferromagnetism iron ore and high-quality reduces day by day now; And the iron ore resource that the ore dressing of mining metallurgical engineering steel industry is faced mainly is master's the very weak iron ore resource of thin and poor and magnetic with bloodstone, limonite and siderite, and the key technology that effectively reclaims these iron ore resources is to use the high gradient intensity magnetic separator.
The high gradient intensity magnetic separator is the very important preparation equipment of mining metallurgical engineering steel industry, and his quality quality directly has influence on the economic benefit in the utilization rate of iron ore deposit, ore dressing plant, the technical-economic indexes such as energy-saving and emission-reduction in ore dressing plant.The magnetic matrix of intensity magnetic separator is one of key technology and core technology of intensity magnetic separator; The magnetic matrix of present intensity magnetic separator generally uses the spherical medium of the tooth plate medium of filling at interval, the pole medium of filling at interval, tight filling, the netted medium of closely filling, the steel wool medium of tight filling, and the magnetic matrix that is commonly used in the ore dressing is the pole medium of filling at interval and the netted medium of tight filling.
The effect of the magnetic matrix of intensity magnetic separator becomes the uniform magnetic field that sorts the space in the magnetic separator magnetic circuit non-uniform magnetic-field of high gradient, exactly to satisfy the seizure requirement of magnetic separation to the magnetic conductivity mineral.Non-uniform magnetic-field to the seizure power of magnetic conductivity ore particle is:
F=m×k×H? gradH
The quality of m ore particle in the formula; K is the specific susceptibility of ore particle; H is the background magnetic field intensity that magnetic separator sorts the space;
Figure DEST_PATH_IMAGE001
is the magnetic field gradient of intensity magnetic separator magnetic matrix.
The magnetic field gradient that improves magnetic matrix need not increase energy consumption, just can realize different magnetic field gradients as long as the section configuration of magnetic matrix is different.The quality of ore particle and the specific susceptibility of ore particle are the numerical value of ore particle intrinsic property decision, and the background magnetic field intensity H that magnetic separator sorts the space obtains through electric energy.By knowing in the formula, for seizure quality little fine mineral particle (quality is very little) and the little weak magnetic mineral of seizure specific susceptibility, or increasing energy consumption improves magnetic field intensity H, or increasing magnetic field gradient increases the seizure power F to him.Therefore, for energy efficient, people have just invented high gradient magnetic separator, and high gradient magnetic separator is exactly to reduce the background magnetic field intensity that magnetic separator sorts the space in order to improve magnetic field gradient, and saves energy.
Present mining processing industry with the big minispread of magnetic field gradient of the magnetic matrix of intensity magnetic separator is: the netted medium ﹥ of tight filling is the pole medium of filling at interval.
Closely the netted medium of filling is better to reclaiming the particulate ore particle, but there is the problem of " magnet short-cut path " phenomenon and easy blocking between medium in he and is limited use.And at interval in not high, the magnetic circuit of the pole medium magnetic field gradient of filling magnetic resistance too big and energy consumption is high, but he has and does not have " magnet short-cut path " phenomenon and allow susceptible to plugging advantage and be not widely used.
Summary of the invention
The utility model has overcome the deficiency of prior art, provides a kind of high gradient that is used for intensity magnetic separator to gather magnetic
Medium, the ultra-fine grain ore particle that utilizes the high gradient magnetic matrix in magnetic separator, to reclaim to be difficult to reclaim, the high gradient magnetic matrix in the utility model can also be practiced thrift the energy consumption of magnetic separator.
The theoretical foundation of the utility model:
Non-uniform magnetic-field to the seizure power of magnetic conductivity ore particle is:
F=m×k×HgradH
In the formula: the quality of m ore particle; K is the specific susceptibility of ore particle; H is the background magnetic field intensity that magnetic separator sorts the space;
Figure 572029DEST_PATH_IMAGE001
is the magnetic field gradient of intensity magnetic separator magnetic matrix.
If will reclaim the very little ore particle of quality m, or increase magnetic field intensity with electric energy, but because the limitation of magnetic separator magnetic Circuit Design and materials used, that magnetic field intensity can not be brought up to is very high in magnetic saturation in the magnetic circuit, can reach 1T as common; Increase the magnetic field gradient of magnetic matrix.
The utility model is exactly a special shape of the section configuration of magnetic matrix being made a kind of equilateral rhombus; Mounting means with the interval filling; Acquisition is than the netted medium of tight filling and the higher magnetic field gradient of pole medium of filling at interval, and do not have the magnet short-cut path phenomenon.
The utility model high gradient magnetic matrix comprises non-magnetic conductive metal sheet and magnetic conductive media rod, and the cross section of magnetic conductive media rod is equilateral rhombus, and equilateral rhombus magnetic conductive media rod is fixed on and constitutes medium sorting box between two non-magnetic conductive metal sheets.
Two catercorner lengths of diamond-shaped cross-section described in the utility model are than being 2:1~3:2.
The long-diagonal of diamond-shaped cross-section was parallel with the magnetic field magnetic line direction when magnetic conductive media of rhombus described in the utility model rod was installed.
Rhombus magnetic conductive media rod perhaps is screwed between two non-magnetic conductive metal sheets by vertical welding of certain density or riveted joint in the utility model, and the rhombus magnetic conductive media rod cross section gross area accounts for 40%~50% of non-magnetic conductive metal sheet area.
The sorting space of the parallel embedding magnetic separator of two non-magnetic conductive metal sheets and size are suitably in the utility model.
Two drift angles of equilateral rhombus magnetic conductive media rod in the utility model, promptly parallel with the magnetic field magnetic line direction two long end drift angles (acute angle) carry out rounding and handle.
Below in conjunction with Fig. 1, Fig. 2 its structural principle is introduced.
Fig. 2 is the pole type magnetic matrix of using always; His magnetic line of force vertically rate of change of unit distance (being magnetic field gradient) is less; If will increase magnetic field gradient and just can only reduce the diameter of pole, but the diameter that has reduced pole has just increased the area of magnetic circuit section hollow air gap, magnetic resistance in the whole magnetic circuit is rolled up and rolls up energy consumption; After reaching magnetic saturation, how to increase energy consumption again and also do not reach the required magnetic field seizure power of some microfine ore particle.Pole type magnetic matrix effectively reclaims lower size can reach 19 microns.
Fig. 1 is that the ore dressing intensity magnetic separator of the utility model is used the high gradient magnetic matrix; The long-diagonal of diamond-shaped cross-section was parallel with the magnetic field magnetic line direction when it was installed by rhombus magnetic conductive media rod as shown in the figure; Formation has maximum magnetic field gradient and sorts the minimum characteristics of magnetic resistance in space maximum and the magnetic circuit; His magnetic line of force is the rate of change of unit distance (being magnetic field gradient) high by 25% than pole type vertically; Therefore efficient and energy-conservation, he effectively reclaims lower size to the magnetic ore particle can reach 5 microns.
Advantage of the utility model and good effect:
The utility model is compared with the general pole type medium of routine, and magnetic field gradient can be high by 25%; Can reclaim 5 μ m ore particles; Magnetic separator is under the same consumption energy situation, and the iron ore rate of recovery can improve 5%~20%; Under the situation that reclaims the identical ore particle and the equal rate of recovery, can practice thrift 20% energy consumption.
The utility model is that a kind of novel magnetic separator is used the high gradient magnetic matrix; Be to adopt the mounting means of filling at interval; His magnetic field gradient is higher than pole type medium, and magnetic resistance is little and energy consumption is low in magnetic circuit, and having does not have " magnet short-cut path " phenomenon and do not allow susceptible to plugging advantage yet.The novel ore dressing intensity magnetic separator of the utility model is used the high gradient magnetic matrix, is specially adapted to reclaim microfine weakly magnetic mineral grain, and effectively reclaim lower size and can reach 5 microns, and efficient, energy-conservation.
Description of drawings
Fig. 1 is the magnetic line of force distribution schematic diagram of the utility model magnetic matrix.
Among the figure: the 1st, a magnetic pole (N) in magnetic field; The 3rd, the equilateral rhombus dielectric rod of the utility model.
Fig. 2 is the magnetic line of force distribution schematic diagram of pole type magnetic matrix.
Among the figure: the 1st, a magnetic pole (N) in magnetic field; The 2nd, the circular dielectric rod that tradition is used.
Fig. 3 is the utility model magnetic matrix rod scheme of installation.
Among the figure: the 1st, two magnetic poles (N and S) in magnetic field; The 3rd, 50 identical shaped rhombus magnetic conductive media rods.
Fig. 4 is a pole type magnetic matrix rod sketch map.
Among the figure: the 1st, two magnetic poles (N and S) in magnetic field; The 2nd, the cylinder shape medium rod that 35 identical shaped tradition are used.
Fig. 5 is high gradient magnetic matrix sorting box of the utility model and the sketch map of in magnetic field, installing.
Among the figure: the 1st, two magnetic poles (N and S) in magnetic field; The 3rd, equilateral rhombus magnetic matrix rod of the present invention; The 6th, two non-magnetic conductive metal sheets of mounting medium rod, dielectric rod are that screw is vertically fixed on this plate by welding or rivet perhaps.
The specific embodiment
Embodiment 1
The utility model high gradient magnetic matrix (see figure 5) is used on XCSQ50 * 70 and dicyclo magnetic separator; Comprise non-magnetic conductive metal sheet 6 and magnetic conductive media rod 3; Dielectric rod is riveted on 6 of two non-magnetic conductive metal sheets and constitutes the separating medium box that size is fit to the magnetic separator sorting chamber; Rhombus magnetic conductive media rod vertically is riveted between two non-magnetic conductive metal sheets by 50% density; Two diagonal length-width ratios of diamond-shaped cross-section are 2:1, and diamond-shaped cross-section two catercorner lengths are 10mm and 5mm respectively, and two drift angles (acute angle) fillet of falling R2mm of dielectric rod is handled.
Among Fig. 5; The magnetic field space that sorts of magnetic separator is like the section space between magnetic pole 1 (N) and magnetic pole 1 (S) among the figure, if there is not magnetic matrix, the magnetic field in this space is close to and is uniform magnetic field; Uniform magnetic field is not almost caught power to the magnetic ore particle, promptly can not reclaim ore particle.When adopt as shown in the figure magnetic matrix has been installed after; the magnetic field that sorts the space has become non-uniform magnetic-field as shown in Figure 1; the magnetic field gradient of novel magnetic matrix is higher by 25% than with similarity condition the round bar shape medium being installed; magnetic separator is under the situation of 0.8T in the background field intensity, can effectively reclaim iron ore or the ilmenite fine mineral particle of 5 μ m, the rate of recovery with use the specific energy raising about 15% mutually of round bar shape medium.Under the situation that reclaims the identical ore particle and the rate of recovery, can practice thrift 20% electromagnetic field energy consumption.
The high gradient magnetic matrix that the utility model provides after making difform cartridge, is applicable to whole intensity magnetic separators and high gradient magnetic separator, has very big economic benefit and application prospect.

Claims (6)

1. a high gradient magnetic matrix that is used for intensity magnetic separator is characterized in that comprising non-magnetic conductive metal sheet and magnetic conductive media rod, and the cross section of magnetic conductive media rod is equilateral rhombus, and rhombus magnetic conductive media rod is arranged on and constitutes medium sorting box between two non-magnetic conductive metal sheets.
2. magnetic matrix according to claim 1, two catercorner lengths that it is characterized in that diamond-shaped cross-section are than being 2:1~3:2.
3. magnetic matrix according to claim 1 and 2 is characterized in that the long-diagonal of diamond-shaped cross-section was parallel with the magnetic field magnetic line direction when rhombus magnetic conductive media rod was installed.
4. magnetic matrix according to claim 1 is characterized in that vertical welding of rhombus magnetic conductive media rod or riveted joint perhaps are screwed between two non-magnetic conductive metal sheets, and the rhombus magnetic conductive media rod cross section gross area accounts for 40%~50% of non-magnetic conductive metal sheet area.
5. magnetic matrix according to claim 1 is characterized in that two non-magnetic conductive metal sheets embed the sorting space of magnetic separator abreast.
6. magnetic matrix according to claim 1 is characterized in that two acute angles of equilateral rhombus magnetic conductive media rod carry out the rounding processing.
CN2011203850705U 2011-10-12 2011-10-12 High-gradient magnetism gathering medium for strong magnetic separator Expired - Fee Related CN202398419U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011203850705U CN202398419U (en) 2011-10-12 2011-10-12 High-gradient magnetism gathering medium for strong magnetic separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011203850705U CN202398419U (en) 2011-10-12 2011-10-12 High-gradient magnetism gathering medium for strong magnetic separator

Publications (1)

Publication Number Publication Date
CN202398419U true CN202398419U (en) 2012-08-29

Family

ID=46696097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011203850705U Expired - Fee Related CN202398419U (en) 2011-10-12 2011-10-12 High-gradient magnetism gathering medium for strong magnetic separator

Country Status (1)

Country Link
CN (1) CN202398419U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335638A (en) * 2011-10-12 2012-02-01 昆明理工大学 High-gradient magnetic flux converging medium for high intensity magnetic separator
CN104525363A (en) * 2014-12-16 2015-04-22 攀钢集团矿业有限公司 Magnetic separator and swivel thereof as well as magnetic separation method
CN107824333A (en) * 2017-12-07 2018-03-23 武汉理工大学 A kind of cross arrangement rod medium high gradient magnetic separator control parameter adaptive matching method
CN108499726A (en) * 2018-06-06 2018-09-07 广州粤有研矿物资源科技有限公司 Magnetic plant
CN110369126A (en) * 2019-08-05 2019-10-25 潍坊奇为新材料科技有限公司 A kind of high saturation magnetic flux amount magnetic conductive media

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335638A (en) * 2011-10-12 2012-02-01 昆明理工大学 High-gradient magnetic flux converging medium for high intensity magnetic separator
CN104525363A (en) * 2014-12-16 2015-04-22 攀钢集团矿业有限公司 Magnetic separator and swivel thereof as well as magnetic separation method
CN104525363B (en) * 2014-12-16 2016-10-26 攀钢集团矿业有限公司 A kind of magnetic separator and change thereof and magnetic selection method
CN107824333A (en) * 2017-12-07 2018-03-23 武汉理工大学 A kind of cross arrangement rod medium high gradient magnetic separator control parameter adaptive matching method
CN107824333B (en) * 2017-12-07 2020-05-05 武汉理工大学 Cross arrangement rod medium high gradient magnetic separator control parameter self-adaptive matching method
CN108499726A (en) * 2018-06-06 2018-09-07 广州粤有研矿物资源科技有限公司 Magnetic plant
CN110369126A (en) * 2019-08-05 2019-10-25 潍坊奇为新材料科技有限公司 A kind of high saturation magnetic flux amount magnetic conductive media

Similar Documents

Publication Publication Date Title
CN102335638A (en) High-gradient magnetic flux converging medium for high intensity magnetic separator
CN202398419U (en) High-gradient magnetism gathering medium for strong magnetic separator
CN104689907B (en) Magnetic matrix, magnetic matrix box, magnetic matrix post and its application for magnetic separator
CN203209167U (en) High-gradient magnetic concentration medium for high intensity magnetic separator
CN102357410A (en) Dry-type permanent magnetic roller for separation of fine-disseminated ore
CN103386358A (en) Ore dressing method for low-grade rare earth ore
Zheng et al. Magnetic field simulation and experimental tests of special cross-sectional shape matrices for high gradient magnetic separation
Zheng et al. Matching relation between matrix aspect ratio and applied induction for maximum particle capture in longitudinal high gradient magnetic separation
CN102553713A (en) Magnetic system device for high-gradient magnetic separator
CN204544416U (en) For the magnetic matrix of magnetic separator, magnetic matrix box, magnetic matrix post and magnetic separator
CN107824333B (en) Cross arrangement rod medium high gradient magnetic separator control parameter self-adaptive matching method
CN203044191U (en) Magnetic and hydraulic cyclone for grading magnetite
CN102600969B (en) A kind of unit medium analysis method optimizing magnetizing mediums permutation and combination
CN102728461B (en) Micro powder fine powder dry-type magnet separator
CN102909128B (en) Gradient sawtooth magnetic medium box for high gradient magnetic separator
CN102489398A (en) Magnetic matrix used for high silicon cold rolling prism-shaped rod type magnet separator
CN101630565B (en) Device for constituting permanent magnet full-acting surface
Zheng et al. Study on the application of elliptic cross-section matrices for axial high gradient magnetic separation: key considerations for optimization
CN211217106U (en) High-gradient permanent magnet rod
CN202933778U (en) Gradient toothed magnetic medium box for high gradient magnetic separator
CN202506481U (en) Magnetic matrix for high-silicon cold rolled rhombic-pillar-shaped rod type magnetic separator
CN207153938U (en) Ore-sorting system for Ultra-low-grade magnetite
CN202137046U (en) Assembled magnetic medium box with fluffy steel wool filling materials
CN202638574U (en) Micro powder and fine powder dry type magnetic separator
CN104549713A (en) Simple and efficient magnetic separation method for low-grade iron minerals

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829

Termination date: 20141012

EXPY Termination of patent right or utility model