CN202381678U - Autofrettaged pressure vessel under safety design technology condition - Google Patents

Autofrettaged pressure vessel under safety design technology condition Download PDF

Info

Publication number
CN202381678U
CN202381678U CN2011205521280U CN201120552128U CN202381678U CN 202381678 U CN202381678 U CN 202381678U CN 2011205521280 U CN2011205521280 U CN 2011205521280U CN 201120552128 U CN201120552128 U CN 201120552128U CN 202381678 U CN202381678 U CN 202381678U
Authority
CN
China
Prior art keywords
sigma
pressure vessel
self
formula
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011205521280U
Other languages
Chinese (zh)
Inventor
朱瑞林
朱国林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN2011205521280U priority Critical patent/CN202381678U/en
Application granted granted Critical
Publication of CN202381678U publication Critical patent/CN202381678U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The utility model provides an autofrettaged pressure vessel under the safety design technology condition, aiming to improve the safety and bearing capacity of the vessel and solving the technical problem that the prior art is cumbersome and inaccurate in calculation or is not safe enough. The pressure vessel is characterized in that the depth of the plastic zone of the vessel is calculated according to the formula shown in the specification and the residual stress can not exceed sigma<y> and reverse yielding is not generated; the bearing capacity is calculated according to the formula shown in the specification and the absolute value of sigma<ej> is less than or equal to sigma<y> and the absolute value of sigma<ei> is less than or equal to sigma<y>; in the formula, k is the diameter ratio; kj is the ratio of radius to internal radius of an elastic-plastic interface; sigma<y> is the yield strength; p is the internal pressure borne by the vessel; pe is the maximum elastic bearing capacity of the non-autofrettaged vessel; sigma<ej> is the equivalent stress of the total stress on the elastic-plastic interface; sigma<ei> is the equivalent stress of the total stress on the internal face; and k is less than the value determined by the formula shown in the specification, that is, when k is less than 2.024678965..., no matter what kj is, the vessel does not generate reverse yielding after the autofrettaged pressure is removed.

Description

Self-reinforcing pressure vessel under the safety design technical specifications
Technical field
The utility model relates to the self-reinforcing pressure vessel under the safety design technical specifications, belongs to technical fields such as machine science technology, chemical engineering.
Background technique
Pressurized container is the special equipment that is widely used in many industrial departments, and like departments such as machinery, chemical industry, pharmacy, the energy, material, food, metallurgy, oil, building, Aeronautics and Astronautics, weapons, the pressurized container theme partly is generally cylindrical shape.The self intensification technology is to improve the important of pressurized container bearing capacity and Security thereof and effective means.The self intensification technology of pressurized container is before manipulating, it to be carried out pressure treatment (institute's plus-pressure generally surpasses operation pressure), makes the surrender of cylindrical shell internal layer, produces plastic deformation, form the plastic zone, and skin still is an elastic state.Keep the release after a period of time of this pressure.Release rear cylinder body internal layer plasticity part is because of there being residual deformation can not return to original state; Original state is tried hard to return in outer elastic region; But receiving stopping of internal layer plastic zone residual deformation can not return to original state; Therefore bear stretching, form tensile stress, internal layer then produces pressure stress because receiving the compression that skin tries hard to restore.So just formed the pre-stressed state that a kind of internal layer pressurized skin is drawn.After pressing in container comes into operation and bears, prestressing force is superimposed with the interior stress that causes of pressing of operation, and the bigger inboard wall stress of stress is reduced, and the less outer wall stress of stress increases to some extent, and stress is tending towards even in the container wall thereby make.Can improve the bearing capacity of pressurized container thus.Self intensification that Here it is.
The key factor of self intensification technology is the plastic zone degree of depth, i.e. confirming of the elasticity of container and plastic zone interface radius, or superstrain degree Confirm that wherein ε is the superstrain degree, r i, r j, r oBe respectively inside radius, elastoplasticity interface radius and the outer radius of shell; K is the self-reinforcing pressure vessel outer radius and the ratio of inside radius, i.e. k=r o/ r ik jBe self-reinforcing pressure vessel elasticity and the ratio of plastic zone interface radius with inside radius, i.e. k j=r j/ r i(consulting Fig. 1).The superstrain degree not only has influence on the enforcement of self-reinforcing process; And have influence on residual stress behind the removal from strengthen pressure of self intensification container, bearing capacity or the like; The superstrain degree is too big; Be that the plastic zone degree of depth is too big, reverse yielding possibly appear in container behind the removal from strengthen pressure, and promptly compressive residual stress (or its equivalent stress) (absolute value) can surpass the ultimate strength value of container material; The superstrain degree is too little, and promptly the plastic zone degree of depth is too shallow, and bearing capacity is then not high.For k jOr r jOr ε confirm that existing techniques mainly contains 1) graphical solution; 2) by formula
Figure BSA00000644061200021
Rough calculation; 3) some r are promptly supposed in trial and error method j, depress r in prestressing force after the calculating self intensification is handled and the operation jThe equivalent stress σ of the total stress (prestressing force and operational stresses induced sum) at place Ej, ask for making σ EjMinimum r jCalculate.These methods or too rough (like the graphical solution and the estimation technique) can not reflect question essence again; Or too loaded down with trivial details (like trial and error method), can not reflect question essence.And can not overcome some disadvantages, like the reverse yielding problem, i.e. removal self intensification possibly can produce the secondary compression surrender because receiving excessive compression by internal layer after handling time institute's applied pressure.This is very disadvantageous.From the viewpoint of safety, economy, self-reinforcing pressure vessel should guarantee not produce reverse yielding, guarantees r again jThe equivalent stress σ of the total stress at place EjLess than yield strength σ y, bearing capacity is improved.
Pressurized container is processed with the good material of plasticity mostly, and third and fourth theory of strength relatively is suitable for passing judgment on the inefficacy of plastic material.Discover that when pressing fourth strength theory, only for settled amount residual stress not enough, when the equivalent residual stress had just reached the yield limit of material, the hoop residual stress of cylinder inner wall face had surpassed the yield limit of material.This safety to pressurized container is unfavorable, in case of necessity, must the hoop residual stress of cylinder inner wall face be limited, and improves the bearing capacity of container simultaneously again as best one can.
The utility model takes the corresponding techniques scheme greatly to improve its bearing capacity to avoid the container inner wall face hoop excessive while of residual stress, to the self-reinforcing pressure vessel under the pressure situation in bearing according to the purpose of restriction internal face hoop residual stress.
Summary of the invention
The purpose of the utility model provides the self-reinforcing pressure vessel under a kind of safety design technical specifications.
The utility model solves the technological scheme that its technical problem adopted: construct the self-reinforcing pressure vessel under a kind of safety design technical specifications; The physical dimension of this kind pressurized container and bearing capacity confirm that by specific technological scheme specifically: its whole wall thickness does
Figure BSA00000644061200031
For k greater than by formula The self-reinforcing pressure vessel of the value of confirming, its plastic zone degree of depth by formula 2 k 2 Ln k j 2 - 2 k j 2 - 3 k 2 + ( 2 + 3 ) = 0 Confirm that its bearing capacity does p &sigma; y = 2 3 + 3 6 k 3 - 1 k 2 = ( 1 + 3 2 ) p e &sigma; y ; R wherein iBe the internal diameter of self-reinforcing pressure vessel, k is the self-reinforcing pressure vessel outer radius and the ratio of inside radius, plastic zone degree of depth k jBe self-reinforcing pressure vessel elasticity and plastic zone interface radius r jTo the ratio of inside radius, i.e. k j=r j/ r i, σ yBe the self-reinforcing pressure vessel YIELD STRENGTH, p is the interior pressure that self-reinforcing pressure vessel bore, p eMaximum flexibility bearing capacity (initial yield load) for non-self-reinforcing pressure vessel.For k less than by formula The self-reinforcing pressure vessel of the value of confirming, its plastic zone scope can be whole wall thickness, i.e. k j=k.
The beneficial effect and the advantage of the utility model are: the plastic zone depth calculation formula of self-reinforcing pressure vessel safety is provided, promptly
Figure BSA00000644061200036
The thickness size (with k reflection) that this formula has been established container and the plastic zone degree of depth of safety are (with k jReflection) function relation between has reflected the name of the game, and that has avoided that existing technology calculates is rough or loaded down with trivial details; Found the many maximum k values that can not produce reverse yielding deeply of the plastic zone degree of depth, promptly k equals by formula
Figure BSA00000644061200037
The value of confirming, that is k ≈ 2.024678965... (comprise by 2.024678965... and obtain approximate number) by certain rule; The formula of self-reinforcing pressure vessel bearing capacity is provided.Whole wall thickness with the self-reinforcing pressure vessel of the technological scheme of the utility model structure can be minimized, and simultaneously, presses
Figure BSA00000644061200038
The plastic zone degree of depth k that relation is confirmed jSmaller, and the plastic zone degree of depth is little, help practicing thrift the expense when carrying out self intensification and handling, and bearing capacity is the maximum flexibility bearing capacity of non-self-reinforcing pressure vessel
Figure BSA00000644061200041
Doubly.In addition, press the technological scheme of the utility model, each all is no more than cylinder YIELD STRENGTH σ to residual stress and equivalent stress thereof in the whole barrel after self intensification is handled can to reach the assurance container y, the technique effect of reverse yielding does not promptly take place.The interior pressure self-reinforcing pressure vessel of therefore being constructed with the technological scheme that the utility model was provided is a kind of safe and economic pressurized container.
Description of drawings
Fig. 1 is the autofrettaged cylinder of pressing in receiving.
Fig. 2 is k=3, k jThree-dimensional relative residual stress in=1.5 o'clock barrels (σ '/σ y) along relative position (r/r in the barrel i) distribution.
Fig. 3 is k=3, k jThree-dimensional relative residual stress in=1.748442 o'clock barrels (σ '/σ y) along relative position (r/r in the barrel i) distribution.
Fig. 4 is restriction internal face hoop residual stress σ Ti' time k and k jRelation.
Fig. 5 is restriction internal face hoop residual stress σ TiThe bearing capacity figure in ' time.
Residual stress after improving when Fig. 6 is k=3 and the residual stress before equivalent stress and the improvement and the comparison of equivalent stress thereof.
Residual stress after improving when Fig. 7 is k=4 and the residual stress before equivalent stress and the improvement and the comparison of equivalent stress thereof.
Embodiment
Embodiment 1, can be confirmed the internal diameter r of pressurized container by technology Calculation iContainer material decision back according to it with the load of bearing (p/ σ y), by the bearing capacity calculating formula
Figure BSA00000644061200042
Can confirm the footpath than k (by k=r o/ r iCan confirm external diameter r o).After k confirms, by formula
Figure BSA00000644061200043
Confirm the ratio of elastic-plastic district interface radius and inside radius, i.e. plastic zone degree of depth k j, press k j=r j/ r iCalculate safe r jKey factor r jJust can carry out self intensification after confirming has handled.Equation
Figure BSA00000644061200051
The solution can be a) by explicitly
Figure BSA00000644061200052
solving; or 2) using Excel software solution; or 3) in Figure 2 Zha take; or 4) the data provided in Table 1 Cha taken (in case of intermediate values available interpolation).
Annotate: this example focuses on the key point of the utility model, so the existing design procedure of pressurized container is not had and needn't be described in detail.
Analyze below in conjunction with accompanying drawing, with the foundation of proof the utility model.Shown in Figure 1 is a pressure container cylinder of pressing in receiving, and internal layer is the plastic zone, and skin is the elastic region, and the elastic-plastic interface radius is r j
According to the existing theory of pressurized container, behind the removal from strengthen pressure, during based on fourth strength theory, the residual stress in the container wall is (with yield limit or claim intersity limitation σ yThe ratio value representation):
The plastic zone:
&sigma; z &prime; &sigma; y = 1 3 [ k j 2 k 2 + ln ( r / r i ) 2 k j 2 - ( 1 - k j 2 k 2 + ln k j 2 ) 1 k 2 - 1 ] - - - ( 1 )
&sigma; r &prime; &sigma; y = 1 3 [ k j 2 k 2 - 1 + ln ( r / r i ) 2 k j 2 - ( 1 - k j 2 k 2 + ln k j 2 ) 1 k 2 - 1 ( 1 - k 2 ( r / r i ) 2 ) ] - - - ( 2 )
&sigma; t &prime; &sigma; y = 1 3 [ k j 2 k 2 + 1 + ln ( r / r i ) 2 k j 2 - ( 1 - k j 2 k 2 + ln k j 2 ) 1 k 2 - 1 ( 1 - k 2 ( r / r i ) 2 ) ] - - - ( 3 )
Press fourth strength theory, the equivalent stress of residual stress is:
&sigma; e &prime; = 1 2 [ ( &sigma; z &prime; - &sigma; r &prime; ) 2 + ( &sigma; r &prime; - &sigma; t &prime; ) 2 + ( &sigma; t &prime; - &sigma; r &prime; ) 2 ]
The equivalent stress that formula (1)~(3) substitution following formula is got the plastic zone residual stress is:
&sigma; e &prime; &sigma; y = 3 2 ( &sigma; t &prime; &sigma; y - &sigma; r &prime; &sigma; y ) = 1 - k 2 - k j 2 + k 2 ln k j 2 ( k 2 - 1 ) ( r / r i ) 2 - - - ( 4 )
The elastic region:
&sigma; z &prime; &sigma; y = 1 3 [ k j 2 k 2 - ( 1 - k j 2 k 2 + ln k j 2 ) 1 k 2 - 1 ] - - - ( 5 )
&sigma; r &prime; &sigma; y = 1 3 ( 1 - k 2 ( r / r i ) 2 ) [ k j 2 k 2 - ( 1 - k j 2 k 2 + ln k j 2 ) 1 k 2 - 1 ] = ( 1 - k 2 ( r / r i ) 2 ) &sigma; z &prime; &sigma; y - - - ( 6 )
&sigma; t &prime; &sigma; y = 1 3 ( 1 - k 2 ( r / r i ) 2 ) [ k j 2 k 2 - ( 1 - k j 2 k 2 + ln k j 2 ) 1 k 2 - 1 ] = ( 1 + k 2 ( r / r i ) 2 ) &sigma; z &prime; &sigma; y - - - ( 7 )
Equivalent stress is: &sigma; e &prime; &sigma; y = 3 2 ( &sigma; t &prime; &sigma; y - &sigma; r &prime; &sigma; y ) = k 2 ( k j 2 - 1 - Ln k j 2 ) ( k 2 - 1 ) ( r / r i ) 2 - - - ( 8 )
σ wherein z'---axial residual stress, units MPa; σ r'---residual stress radially, units MPa;
σ t'---circumferential residual stress, units MPa; R---the radius at place, arbitrfary point in the cylindrical wall, the m of unit;
σ e'---the equivalent residual stress, units MPa, indexing i representes the equivalent residual stress at internal face place, is designated as σ Ei'/σ y, indexing j representes the equivalent residual stress at elastic-plastic interface place, is designated as σ Ej'/σ y
At whole elastic region, σ Ei'/σ y>0.At the internal face place of cylinder, r/r i=1, the equivalent residual stress that is got here by formula (4) is:
&sigma; ei &prime; &sigma; y = k j 2 - 1 - k 2 ln k j 2 k 2 - 1 - - - ( 9 )
At the internal face place of cylinder, σ Ei'/σ yAlways negative.At the elastic-plastic interface place of cylinder, r/r i=k j, so formula (4) and (8) all become:
0 < &sigma; e &prime; &sigma; y = &sigma; ej &prime; &sigma; y = k 2 ( k j 2 - 1 - k 2 ln k j 2 ) ( k 2 - 1 ) k j 2 < 1 - - - ( 10 )
Order in formula (4) 1 - k 2 - k j 2 + k 2 Ln k j 2 ( k 2 - 1 ) ( r / r i ) 2 = 0
r r i = k 2 - k j 2 + k 2 ln k j 2 k 2 - 1 = &sigma; et &prime; &sigma; y + 1 < k j - - - ( 11 )
On the other hand, to formula (1)~(3), make σ z'=σ r', σ r'=σ t' and σ t'=σ z' also must formula (11).In other words, plastic zone three-dimensional residual stress (σ z', σ r' and σ t') congruence of curves meets at a bit, the abscissa of this point promptly is formula (11).
Get k=3, k jBe respectively 1.5 and 1.748442, the relative residual stress in the cylindrical wall is (with yield limit σ yThe ratio value representation) along relative position (r/r in the barrel i) distribution like Fig. 2, shown in 3.Can know by Fig. 3, theoretical by top four's degree, k=3, k j=1.748442 o'clock, at the absolute value of the relative equivalent residual stress at cylinder inner wall face place | σ Ei'/σ y| just reached 1, but the absolute value of relative hoop residual stress | σ Ti'/σ y| surpassed 1, this be because
Figure BSA00000644061200071
And the σ at internal face place Ri'/σ y=0, so work as | σ Ei'/σ y|=1 o'clock, | σ Ti'/σ y| must surpass 1.
So, tackle σ in case of necessity Ti'/σ yLimit.Order &sigma; Ti &prime; &sigma; y = - 2 3 ( k 2 - 1 ) ( 1 - k j 2 + k 2 Ln k j 2 ) = - 1 Must be according to restriction σ Ti'/σ yPrinciple and maximum plastic zone degree of depth k under certain k of determining j: 2 k 2 Ln k j 2 - 2 k j 2 - 3 k 2 + ( 2 + 3 ) = 0 Or k = 2 ( k j 2 ) - 3 2 Ln k j 2 - 3 - - - ( 12 )
Know by formula (12), k → ∞,
Figure BSA00000644061200075
Note is by the determined k of formula (12) jBe k Jt
In formula (12), make k j=k gets:
k 2 ln k 2 k 2 - 1 = 2 + 3 2 - - - ( 13 )
Separating of formula (13) is k=2.024678965...=k Ct, k CtBe called critical footpath ratio, this means k≤k CtThe time, no matter how dark the plastic zone is, even full surrender, i.e. k j=k, when carrying out the self intensification processing, removal from strengthen pressure p aReverse yielding can not take place in back cylinder; K>k CtThe time, if k jGreater than by the determined value (k of formula (12) j>k Jt), when carrying out the self intensification processing, removal from strengthen pressure p aReverse yielding can take place in back cylinder.K in the formula (12) jBe shown in Fig. 4, k≤k with the relation of k CtThe time, the plastic zone degree of depth kJ calculates (look into and get), i.e. k by straight line od j=k; K>=k CtThe time, plastic zone degree of depth k jCalculate (look into and get) by curve da, promptly calculate by formula (12).Practical application for ease is with k in the formula (12) jList in table 1 with the numerical value of k.
Table 1 2 k 2 Ln k j 2 - 2 k j 2 - 3 k 2 + ( 2 + 3 ) = 0 Numerical tables
Figure BSA00000644061200082
Continuous table 1
Figure BSA00000644061200091
Continuous table 1
Figure BSA00000644061200101
According to pressurized container knowledge, the plastic zone degree of depth is k jThe load (interior pressure) that can bear of cylinder be:
p &sigma; y = 2 3 ln k j + k 2 - k j 2 3 k 2 - - - ( 14 )
Wherein p is the load that cylinder bore.Convolution (14) and (12) proper k j=k JtThe time, promptly when the plastic zone degree of depth by formula (12) when confirming, at condition σ Ti'/σ y=-1 (| σ Ei'/σ y|<1) the following cylinder load of being born:
p &sigma; y = 3 + 2 2 3 k 2 - 1 k 2 = ( 1 + 3 2 ) p e &sigma; y - - - ( 15 )
Therefore, at k>k CtSituation under, if need to satisfy | σ Ti'/σ y|≤1 (| σ Ei'/σ y|<1), then the bearing capacity of autofrettaged cylinder is confirmed by formula (15).P/ σ y, p e/ σ yBe shown in Fig. 5, wherein p eInitial yield pressure (load) for non-autofrettaged cylinder.K>=k CtThe time, bearing capacity is calculated (look into and get) by curve fb, promptly calculates by formula (15).
Work as k j=k Jt, i.e. k jBy formula (12) when confirming, utilize formula (12) can formula (1)~(8) be put in order and residual stress and equivalent stress thereof after being improved:
&sigma; z &prime; &sigma; y = 1 3 ln ( r r i ) 2 - 1 2 = 1 3 ln x 2 - 1 2 - - - ( 1 a )
&sigma; r &prime; &sigma; y = 1 3 ( ln x 2 + 2 + 3 2 x 2 - 2 + 3 2 ) - - - ( 2 a )
&sigma; t &prime; &sigma; y = 1 3 ( ln x 2 - 2 + 3 2 x 2 + 2 - 3 2 ) - - - ( 3 a )
&sigma; e &prime; &sigma; y = 1 - 3 - 2 2 ( r / r i ) 2 = 1 - 3 - 2 2 x 2 - - - ( 4 a )
&sigma; z &prime; &sigma; y = k j 2 - ( 3 + 2 ) / 2 3 k 2 - - - ( 5 a )
&sigma; r &prime; &sigma; y = ( 1 - k 2 ( r / r i ) 2 ) &sigma; z &prime; &sigma; y ( 1 - k 2 x 2 ) &sigma; z &prime; &sigma; y - - - ( 6 a )
&sigma; t &prime; &sigma; y = ( 1 - k 2 ( r / r i ) 2 ) &sigma; z &prime; &sigma; y ( 1 - k 2 x 2 ) &sigma; z &prime; &sigma; y - - - ( 7 a )
&sigma; e &prime; &sigma; y = k j 2 - ( 3 + 2 ) / 2 x 2 - - - ( 8 a )
X=r/r wherein i
Residual stress before residual stress after the improvement and equivalent stress thereof and the improvement and equivalent stress thereof relatively see Fig. 6,7 (all representing to the residual stress and the relative value of the ratio of yield strength) with each.Obviously, residual stress and equivalent stress thereof after the improvement have reduced, and all in safety range, promptly all above yield strength.Among Fig. 6,7, residual stress after solid line is represented to improve and equivalent stress thereof (are r/r along barrel relative position x i) distribution, wherein, a: σ z'/σ y, b: σ r'/σ y, c: σ t'/σ y, d: σ e'/σ yResidual stress and equivalent stress thereof before dotted line is represented to improve (are r/r along barrel relative position x i) distribution, wherein, a ': σ z'/σ y, b ': σ r'/σ y, c ': σ t'/σ y, d ': σ e'/σ y
The theoretical foundation and the foundation of reference when certain law, relation and the data that obtain in the above analytic demonstration process, chart etc. can be used as the pressurized container engineering design also make theoretical each relationship between parameters of self intensification and Changing Pattern more clear, thorough and practical.

Claims (2)

1. the self-reinforcing pressure vessel under the safety design technical specifications, it is characterized in that: the physical dimension of this kind pressurized container and bearing capacity confirm that by specific technological scheme specifically: its whole wall thickness does t = r i ( 2 3 + 3 2 3 + 3 - 6 p / &sigma; y - 1 ) ; For k greater than by formula k 2 Ln k 2 k 2 - 1 = 2 + 3 2 The self-reinforcing pressure vessel of the value of confirming, its plastic zone degree of depth by formula
Figure FSA00000644061100013
Confirm that its bearing capacity does
Figure FSA00000644061100014
R wherein iBe the internal diameter of self-reinforcing pressure vessel, k is the self-reinforcing pressure vessel outer radius and the ratio of inside radius, plastic zone degree of depth k jBe self-reinforcing pressure vessel elasticity and plastic zone interface radius r jTo the ratio of inside radius, i.e. k j=r j/ Ri, σ yBe the self-reinforcing pressure vessel YIELD STRENGTH, p is the interior pressure that self-reinforcing pressure vessel bore, p eMaximum flexibility bearing capacity (initial yield load) for non-self-reinforcing pressure vessel.
2. the self-reinforcing pressure vessel under the safety design technical specifications as claimed in claim 1 is characterized in that: for k less than by formula The self-reinforcing pressure vessel of the value of confirming, its plastic zone scope can be whole wall thickness, i.e. k j=k.
CN2011205521280U 2011-12-27 2011-12-27 Autofrettaged pressure vessel under safety design technology condition Expired - Fee Related CN202381678U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011205521280U CN202381678U (en) 2011-12-27 2011-12-27 Autofrettaged pressure vessel under safety design technology condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011205521280U CN202381678U (en) 2011-12-27 2011-12-27 Autofrettaged pressure vessel under safety design technology condition

Publications (1)

Publication Number Publication Date
CN202381678U true CN202381678U (en) 2012-08-15

Family

ID=46630182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011205521280U Expired - Fee Related CN202381678U (en) 2011-12-27 2011-12-27 Autofrettaged pressure vessel under safety design technology condition

Country Status (1)

Country Link
CN (1) CN202381678U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563063A (en) * 2011-12-27 2012-07-11 湖南师范大学 Self-reinforcing pressure container based on safety design technical conditions
CN105508600A (en) * 2016-01-07 2016-04-20 湖南师范大学 Low-temperature prestress internal-pressure internal-heating pressure vessel
CN109520840A (en) * 2018-12-26 2019-03-26 太原科技大学 A kind of calculation method of tubing on-line checking yield strength

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563063A (en) * 2011-12-27 2012-07-11 湖南师范大学 Self-reinforcing pressure container based on safety design technical conditions
CN102563063B (en) * 2011-12-27 2014-11-12 湖南师范大学 Self-reinforcing pressure container based on safety design technical conditions
CN105508600A (en) * 2016-01-07 2016-04-20 湖南师范大学 Low-temperature prestress internal-pressure internal-heating pressure vessel
CN109520840A (en) * 2018-12-26 2019-03-26 太原科技大学 A kind of calculation method of tubing on-line checking yield strength
CN109520840B (en) * 2018-12-26 2020-11-27 太原科技大学 Calculation method for detecting yield strength of pipe on line

Similar Documents

Publication Publication Date Title
CN102563063B (en) Self-reinforcing pressure container based on safety design technical conditions
CN101338817B (en) Safe self-reinforcing pressure vessel
CN101655829B (en) External pressure self-intensification cylinder and design calculation and manufacturing method thereof
CN202381678U (en) Autofrettaged pressure vessel under safety design technology condition
Ali et al. Optimum design of pressure vessel subjected to autofrettage process
CN103470757B (en) The equal strength self-reinforcing pressure vessel that a kind of physical dimension is variable
CN104405869A (en) Self-enhancement pressure container adopting elastic temperature difference prestressed internal-pressure internal heating
CN102636634A (en) Method for determining temperature effect of concrete component
CN204284429U (en) A kind of elasticity temperature difference prestressing force external heat external pressure self-reinforcing pressure vessel
CN104455410B (en) A kind of outer compression elasticity temperature difference prestressing force external heat self-reinforcing pressure vessel
Lee et al. A study on DDI load for forming of the CNG storage vessel
CN204284428U (en) Compression elasticity temperature difference prestressed pressure container in a kind of
Ali Mukhtar et al. Simulation of Ironing Process for Bullet Case to Get Minimum Forming Force with Variation of Die Angle and Reduction Wall Thickness
CN104358867B (en) A kind of elasticity temperature difference prestressed pressure container
Lee et al. Nonlinear Buckling Finite Element Analysis to Estimate Collapse Pressure of Thick Cylinder under Hydrostatic Pressure
He Retracted: Optimization Design of Ultra-High Pressure Retaining Tube of Air-Tight Sampling Device for Deep-Sea Sediments
Kacmarcik et al. Comparison Of Design Method For Opening In Cylindrical Shells Under Internal Pressure Reinforced By Flush (Set-On) Nozzles
Duan et al. Prediction and experiment verification of spring-back of tailor welded blanks air bending process
Xu et al. Deformation and defects in hydroforming of 5A06 aluminum alloy dome with controllable radial pressure
Hirokawa et al. Defect tolerance assessment for abwr nozzle crotch corner
CN109949879B (en) Self-reinforcing method for pressure-resistant shell of underwater vehicle
Koh Residual Stress Evaluation and Its Effects on the Fatigue Life of an Autofrettaged Tube
Yulong et al. The Application of Hasofer-Lind Method in Reliability Design of Thin-walled Cylindrical Shell
CN204284427U (en) Heating self-reinforcing pressure vessel in compression elasticity temperature difference prestressing force in a kind of
Lee et al. Residual stress analysis of an autofrettaged compound cylinder under machining process

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120815

Termination date: 20121227