CN202381112U - 多功能城市交通隧道火灾烟气扩散模型装置 - Google Patents

多功能城市交通隧道火灾烟气扩散模型装置 Download PDF

Info

Publication number
CN202381112U
CN202381112U CN2011203794438U CN201120379443U CN202381112U CN 202381112 U CN202381112 U CN 202381112U CN 2011203794438 U CN2011203794438 U CN 2011203794438U CN 201120379443 U CN201120379443 U CN 201120379443U CN 202381112 U CN202381112 U CN 202381112U
Authority
CN
China
Prior art keywords
tunnel
arch
fire
branch
arch master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN2011203794438U
Other languages
English (en)
Inventor
李炎锋
刘晓阳
赵明星
李俊梅
孙晓龙
林欣欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN2011203794438U priority Critical patent/CN202381112U/zh
Application granted granted Critical
Publication of CN202381112U publication Critical patent/CN202381112U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

多功能城市交通隧道火灾烟气扩散模型装置,主要包括变频风机,盲板,防火玻璃窗,隧道转动铰链,拱形主隧道,排烟烟道,支撑杆,底座,千斤顶,钢架结构,变频水泵,热电偶布置口,水喷淋喷头布置口,分支隧道;拱形主隧道至少有两段,变频风机通过盲板与第一段拱形主隧道的前端相连,排烟烟道与最后一段拱形主隧道的后端相连,第一段拱形主隧道通过隧道转动铰链固定在支撑杆的上端,支撑杆下端固定在底座上;最后一段拱形主隧道通过钢架结构连接于千斤顶的顶部;拱形主隧道顶部设有热电偶布置口和水喷淋喷头布置口;分支隧道通过分支隧道连接口与拱形主隧道侧面的分支隧道预留口相连。本实用新型实现了对多出入口及特长隧道火灾的模拟。

Description

多功能城市交通隧道火灾烟气扩散模型装置
技术领域
本实用新型设计一种火灾实验装置,尤其是涉及坡度可调、长度可调整、具有多出入口、以及采用水喷淋系统进行灭火的隧道火灾模型实验装置。 
背景技术
随着城市建设规模的日益增加,城市交通隧道作为立体交通能有效地缓解交通拥堵问题,因而得到广泛应用。在北京,国内首例超大规模中关村西区地下综合管廊及城市交通隧道综合开发利用系统投入试运行,使中关村地区实现了立体交通;与非城市地区的交通隧道相比,在隧道本体方面城市交通隧道具有以下特征:1)交通量大;2)埋深大,城市地下交通隧道,往往埋深较大,造成隧道的出入口坡度大;3)在隧道出入口设置方面,城市交通隧道(如城市地下快速路、城市地下交通联系隧道)多与地下停车场及地面主干道相连,出入口多,空气(烟气)流动受此影响,使通风排烟效果难以控制。 
城市交通隧道火灾是城市交通灾害中最具危害的一部分。由于隧道环境的封闭性和逃生救援的困难性,使得隧道一旦发生火灾,往往造成严重的人员伤亡和巨大的社会影响和经济损失。研究城市交通隧道火灾主要有火灾模拟实验、数值模拟和理论分析三大类。尽管研究费用昂贵和试验时间长,但实验方法是研究火灾直接、有效的手段。 
对于城市交通隧道的火灾烟气扩散研究,目前主要是停留在理论研究和数值模拟研究阶段,其中,关于隧道坡度对抑制火灾烟气的临界风速影响的研究主要采用理论分析阶段和数值模拟研究阶段。Oka Y,Atkinson GT等人(1996)、Ballesteros-Tajadur等人在2006年研究隧道坡度对火灾通工况下临界风速影响,提出考虑坡度因素的临界风速修正公式。国内中国科技大学火灾科学国家重点实验室李博等(2007)、陈海峰等(2009),山东建筑大学徐琳等(2009)、中南大学赵望达(2009)以及北京工业大学李炎锋等(2011)分别采用数值模拟手段研究隧道坡度对火灾烟气扩散以及抑制烟气的临界风速的影响。 
目前,针对受限空间火灾进行的模拟实验研究主要有三种方式:(1)盐水实验;(2)现场试验(全尺寸试验)研究及大尺寸比例模型实验;(3)小尺寸比例模型实验研究。 
对于城市交通隧道而言,主要是现场实验研究及大尺寸比例模型实验、小尺寸比例模型实验研究手段。主要原因是盐水实验模拟是一种用湍浮盐水在清水中的运动和扩散来模拟受限空间火灾烟气在空气中的蔓延和热量传递的研究方法。虽然Thomas早在1963年用盐水模拟技术来显示顶棚和侧壁的排烟向大房间排烟效果。许多学者采用该手段模拟中庭类建筑、顶棚射流等火灾烟气规律,但盐水模拟实验方法忽略了化学反映以及壁面传热,模拟烟气层较实体燃烧实验低。存在定量研究误差大,而且难以模拟隧道坡度和出入口设置对火灾烟气扩散的影响。因而在城市交通隧道模拟中没有得到应用。 
现场实验及大尺寸比例模型实验结果是对数值模拟、理论研究以及小尺寸比例模型实验研究结果进行验证的重要数据。在隧道现场火灾试验方面,国外进行了大量研究,但由于受到试验条件限制,基本是在废弃的隧道内进行。如Ofenegg在1965年进行的隧道火灾试验,Zwerberg于1974及1975年、Heselden等人在1976年在废弃的隧道中进行的火灾试验,欧洲的EUREKA 499计划在1993-1995年间在挪威Repparford隧道中进行5次火灾试验,1993-1995年,美国MTFVTP项目在西维吉尼亚Memorial公路隧道中92次火灾测验,2001年,日本在New Tomei高速公路Shimizu 3号隧道开展的大断面公路隧道足尺寸火灾试验;欧洲UPTUN项目2003年在挪威废弃的两车道Runehamar隧道内进行的4次现场火灾试验。 
国内中国科学技术大学火灾科学国家重点实验室胡隆华等在云南省昆明一石林高速公路阳宗隧道内进行了全尺寸火灾模拟试验。西南交通大学杨其新教授等人则借助大比例火灾模型试验,研究了火灾时隧道内温度随时间的变化,最高温度与通风风速、火灾规模等的关系。 
由于实际火灾的复杂性和随机性,全尺寸火灾实验往往又是无法完全实现模拟火灾工况。而且受到现场试验费用以及现场条件、隧道的使用情况限制很难进行大量火灾工况研究。与此相对应,以相似理论为依据建立的小尺寸模型试验具有真实再现火灾现象的特点,在节约时间、缩短空间以及节省人力、物力、财力等方面具有独特的优越性,因而在针对隧道火灾的研究方法中被广泛应用。 
在方面,小尺寸比例模型实验研究隧道火灾方面,主要是建立模型实验台研究隧道火灾防止烟气回流的临界风速研究。Lee在1979年在长13.7m、横截面积 为0.27m2的小尺寸试验台上进行了临界纵向风速研究。Vantelon等人(1990年)、Kwack等人(1990年)、Xue等人(1993年)和Oka等人(1996年),J.S.Choi,等人(2005),Jae Seong Roh等人(2007年)建立了比例大小不一的小尺寸试验台进行了临界风速的研究。研究主要侧重:1)抑制隧道火灾产生烟气逆流所需的最小临界纵向送风风速;2)近火源区域的羽流特征;3)模型隧道是单出口、单入口。没有考虑隧道纵坡度对烟气流动的影响和对临界纵向通风风速的影响,以及着火车辆位置和运行速度的不同对烟气运动的影响,没有考虑出入口因素对隧道火灾烟气扩散的影响。 
关于城市交通隧道火灾实验研究,中建筑科学研究建筑防火研究所、北京工业大学华高英等(2010)进行CBD在城市地下交通联系隧道进行火灾烟气控制研究。研究主要侧重城市联系隧道的送排风系统的优化运行方案确定,但没有考虑坡度因素对隧道防排烟的影响。 
综合目前已经公布的研究成果,开展城市交通的火灾烟气扩散的小尺寸比例模型实验研究,除了坡度问题受到一定重视外,在考虑城市交通多出入口特性对于城市交通隧道的火灾烟气扩散影响方面缺乏考虑。另外,城市交通隧道采用水喷淋系统来控制火势蔓延和保护隧道结构免受破坏。虽然目前对是隧道中否采用水喷淋系统进行灭火还存在争议,主要原因是水喷淋系统启动后影响烟气层的扩散。但是由于城市交通隧道的出入口多,可以在发现火灾一定时间后(预留出安全疏散时间)启动水喷淋系统来灭火或者控制火灾发展,从而保护隧道结构安全。目前,我国的少数隧道采用了水喷淋。如被称为“万里长江第一隧”的武汉长江隧道消防系统就采用水喷淋系统。但是,水喷淋是否适用于隧道中,至今在世界上仍存在很大争议。因此,针对是否应该在隧道火灾中应用水喷淋系统,需要进行大量的实验研究。 
实用新型内容
本实用新型提供了一种方便灵活的隧道火灾烟气运动模型,克服了现有隧道模型难易观察烟气运动、隧道坡度无法多角度改变、水喷淋难以实现、难以描述多出入口及特长型隧道模型结构复杂的缺陷,提供了综合一体、方便灵活的小尺寸城市交通隧道比例实验模型,能够研究隧道坡度、多出入口、水喷淋系统对隧道火灾影响的研究。另外,隧道系统采用分段模式组建,段与段之间进行连接, 可以根据研究隧道的长度进行调整,非常方便模拟不同长度的隧道火灾工况。 
为了实现上述目的,本实用新型采取了如下技术方案: 
多功能城市交通隧道火灾烟气扩散模型装置,包括变频风机(1),盲板(2),隧道转动铰链(3),防火玻璃窗(4),拱形主隧道(5),排烟烟道(6),支撑杆(7),底座(8),分支隧道预留口(9),主隧道连接口(10),千斤顶(11),钢架结构(12),拱形主隧道底板(13),滑道(14),小车(15),螺杆(16),变频水泵(17),水管(18),水喷头(19),分支隧道连接口(20),电偶布设口(21),喷淋系统喷头布设口(22),分支隧道(23),底板框架(24),底板(25);拱形主隧道(5)至少有两段,变频风机(1)通过盲板(2)与第一段拱形主隧道(5)的前端相连,排烟烟道(6)与最后一段拱形主隧道(5)的后端相连,各个拱形主隧道(5)之间通过主隧道连接口(10)连接;第一段拱形主隧道(5)通过隧道转动铰链(3)固定在支撑杆(7)的上端,支撑杆(7)下端固定在底座(8)上;最后一段拱形主隧道(5)通过钢架结构(12)连接于千斤顶(11)的顶部;拱形主隧道(5)顶部设有热电偶布置口(21)和水喷淋喷头布置口(22);水喷头(19)置于水喷淋喷头布置口(22)中,水喷头(19)通过水管(18)与变频水泵(17)相连;拱形主隧道(5)两侧设有防火玻璃窗(4);拱形主隧道底板(13)由底板框架(24)和底板(25)组成,底板框架(24)和底板(25)活动链接,底板框架(24)与拱形主隧道(5)底部固定连接,底板框架(24)上沿主隧道方向固定连接两条平行的滑道(14);小车(15)设有燃烧床和油盘;螺杆(16)安装于小车(15)的底部;分支隧道预留口(9)位于拱形主隧道(5)的侧面,分支隧道(23)通过分支隧道连接口(20)与拱形主隧道(5)侧面的分支隧道预留口(9)相连。 
设置了能够提供隧道内纵向风速范围在0~5m/s的变频风机(1)。 
所述的拱形主隧道(5)每个侧面各设有n个防火玻璃窗(4),n至少为3。 
设置了能够为隧道提供0~15°坡度的千斤顶。 
设置了可提供0~0.1MP压力的变频水泵(17)。 
所述的分支隧道(23)个数为k,k至少为2。 
本实用新型一是采用了可调节风量的变频风机,可为纵向通风模式提供0~5m/s的风速;二是水喷淋的应用,实验时可将设在隧道顶部的水喷淋的喷头 通过塑料管与变频水泵相连,通过变频水泵来调节水流量,从而实现对不同火源功率下火势控制及灭火所需水流量的控制;三是坡度的调节,支撑杆的一端通过转动铰链固定在拱形主隧道上,另一端固定在底座上,而隧道的坡度靠调节另一端的千斤顶来实现,其上端的螺杆与拱形主隧道另一端的钢架横梁上的螺扣相连,可实现在0~15°之间的任意调节;四是火源位置的设置,在做实验时,可将拱形主隧道底部打开,将螺杆拧在小车底盘的螺扣上,通过滑道滑到所需的位置,后将螺杆取下,将隧道底部关闭,这样可方便灵活布置火源位置;五是多出入口隧道火灾的实现,实验时,可将分支隧道利用法兰连接与主隧道相连,既灵活有方便;六是特长隧道的实现,实验时,可利用法兰连接对拱形主隧道进行加长;七是拱形隧道模型的围护结构:拱形主隧道由内外层钢板构成,内外层钢板之间,铺设有龙骨,选择高强度及高性能保温材料作为填充材料。为便于观测和拍摄实验台内的烟气流动情况,隧道侧面设有耐高温钢化玻璃窗。在这样的情况下,可以将围护结构的热模拟作简化处理——视其为绝热。 
与现有技术比较,本实验装置具有以下优点: 
1、本装置能够真实再现多出入口城市交通隧道及特长隧道火灾场景下的烟气流动情况,可为复杂隧道火灾的研究提供实验平台; 
2、本装置可通过千斤顶来调节坡度,从而可模拟不同坡度隧道发生火灾时的烟气运动。同时,模型隧道坡度调节操作简单,且安装费用不高; 
3、本装置实验范围大。可对不同通风风速下的火灾场景,不同隧道坡度下的火灾场景以及不同火源功率下的火灾场景进行互相的组合研究。另外,由于隧道模型内部可实现水喷淋,因此,可对水喷淋系统是否适用于隧道火灾控制以及控制效果进行有效的实验研究; 
4、本装置结构简单,操作灵活方便,可以外接数据测量系统、监测系统和控制系统。通过数据测量系统对烟气流动中的烟气温度场、浓度场等烟气流动规律进行高精度测量;通过监测系统对火灾进行全程监测;通过控制系统对测量数据进行分析。 
附图说明
图1多功能城市交通隧道火灾烟气扩散模型装置结构示意图 
图2拱形主隧道底板结构 
图3小车位置示意图 
图4坡度调节示意图 
图5千斤顶支撑的钢架结构 
图6水喷淋结构图 
图7主隧道连接口横断面示意图 
图8分支隧道连接口横断面示意图 
图9温度测试热电偶及水喷淋纵断面布置示意图 
图10隧道顶部热电偶及水喷淋布置口示意图 
图11多出入口隧道结构示意图 
图中:1、变频风机,2、盲板,3、隧道转动铰链,4、防火玻璃窗,5、拱形主隧道,6、排烟烟道,7、支撑杆,8、底座,9、分支隧道预留口,10、主隧道连接口,11、千斤顶,12、钢架结构,13、主隧道底,14、滑道,15、小车,16、螺杆,17、变频水泵,18、水管,19、水喷头,20、分支隧道连接口,21、热电偶布设口,22、水喷淋喷头布置口,23、分支隧道,24、底板框架,25、底板L、测温热电偶轴向间距,h、隧道高度,W、隧道宽度。 
具体实施方式
下面结合附图对本实用新型作进一步说明: 
如图1所示,为本实用新型的示意图。本实验装置包括变频风机1、盲板2、隧道转动铰链3、防火玻璃窗4、拱形主隧道5、排烟烟道6、支撑杆7、底座8、支隧道预留口9、主隧道连接口10、千斤顶11、钢架结构12。变频风机1通过盲板2与拱形主隧道5前端相连,排烟烟道6与隧道5末端相连,隧道5可绕着隧道转动铰链3转动,其坡度靠千斤顶11调节。变频风机1可提供的纵向风速为0~5m/s。模型隧道由两段拱形主隧道5组成,中间通过主隧道连接口10进行连接,主隧道连接口10如图7所示。拱形主隧道内外层钢板之间,铺设有龙骨,选择高强度及高性能保温材料作为填充材料,整个隧道模型实验台全长3.7m,有效段长3m,截面尺寸0.25m(高)×0.3m(宽),近似实际隧道的断面形状,拱形主隧道5的水平角可在0~15°范围内调节。实验时小车15放置在滑道14上移动如图3所示,在拱形主隧道5两边都设有防火钢化玻璃4,用于观察火灾发生时隧道内烟气流动状态和烟气厚度。测温热电偶设置在电偶布设口21内, 热电偶和智能式数字温度巡检仪相连,用以采集烟气温度。 
如图2所示,为主隧道底板13的结构,拱形主隧道底板13由底板框架24和底板25组成,底板框架24和底板25活动链接,底板框架24与拱形主隧道5底部固定连接,底板框架24上沿主隧道方向固定连接两条平行的滑道14;做实验时,可打底板25将螺杆16拧在小车15(如图3)底部螺扣上,通过拨动螺杆16让小车15在滑道14上滑动,滑到做实验时所需位置,点燃燃料后将底板25封闭。 
如图4所示,为坡度调节装置,做隧道火灾实验时,将支撑杆7一端通过隧道转动铰链3与拱形主隧道5相连,另一端与底座8相连,而千斤顶11上端螺杆与钢架结构12下端的螺扣相连,通过调节千斤顶11的高度来调节拱形主隧道5的坡度,坡度范围是0~15°,如图5所示。 
如图6所示,为本装置的水喷淋结构图,变频水泵17与水喷头19通过水管18连接,水被水泵17加压后将水打到水喷头19处,水泵所提供的水头压力为0~0.1MP,可实现对不同火源功率进行灭火模拟。 
如图9、图10所示,分别为温度测试热电偶及水喷淋纵断面布置示意图和隧道顶部热电偶及水喷淋布置口示意图。本实施例设置有6个温度测试面,每个断面间隔0.5m,纵向温度分布的测点沿隧道拱顶下方水平布置,横向温度分布的测点则分布在隧道顶部和两侧。 
如图11所示,当进行多出入口隧道火灾实验时,将事先准备好的分支隧道23通过分支隧道连接口20与拱形主隧道5侧面的分支隧道预留口9相连;当进行特长隧道火灾实验时,可通过主隧道连接口20将拱形主隧道5加长。 
实施例1-模拟坡度对火灾的烟气运动以及临界风速的影响 
前期准备,检查火灾模型系统各部件是否运行正常。调节模型隧道系统达到设定好的火灾场景,模拟单出口交通隧道火灾工况。火灾规模设定为小火灾规模,做隧道火灾实验时,将支撑杆7一端通过隧道转动铰链3与拱形主隧道5相连,另一端与底座8相连,而千斤顶11上端螺杆与钢架结构12下端的螺扣相连,通过调节千斤顶11的高度来调节隧道的坡度。分别调节隧道坡度为0°、3°、5°、10°、15°工况。采用变频风机改变隧道纵向通风的风速。 
实验中将固定火源置于隧道中部。按操作规范启动各测试系统,启动计算机 开始温度数据采集,油盘中加入配好的燃料,摆放到小车内,待测试系统运行稳定开始点火。实验人员记录好整个燃烧过程的各类实验数据。火熄灭,保存所得到的实验数据,将风门开至最大,将隧道内残留的烟气排出,整理实验场地和实验设施,将隧道内工矿恢复到初始状态,再进行下一组实验。按上述分别进行几组实验,将所得的实验数据比较分析隧道坡度对烟气运动以及抑制烟气回流的隧道临界风速。 
实施例2-模拟多出入口对隧道火灾烟气运动的影响 
前期实验准备工作完成后,为模拟多出入口隧道火灾实验时,将事先准备好的分支隧道23与主隧道5通过分支隧道连接口20进行法兰连接。本次实验模拟不同火源位置的烟气运动,设定火灾规模为小火灾规模,隧道坡度为0°,通风风速为0m/s。第一组火源放置于隧道中间部位,位于两个支隧道口中间。第二组火源位于隧道进口和第一个支隧道口之间中间位置。第三组火源位于隧道出口和第二个支隧道口的中间位置。将所得的实验数据比较分析出入口的设置对隧道火灾烟气运动的影响。 
实施例3-模拟水喷淋系统对隧道火灾烟气扩散以及火灾控制的影响 
按照案例一所述的做好实验前的准备,在水喷头19接入到水喷淋喷头布置口22并调试好水喷淋装置。水喷淋系统的出水量由水泵所提供的水头压力进行调节。水泵的水头压力为0~0.1MP,可实现对不同火源功率进行灭火模拟。本次实验模拟水喷淋系统对火灾烟气运动和火势控制的影响。隧道采用单出入口隧道,通风风速为0m/s。水喷淋启动时间滞后于火源稳定时间10s,该时间由实验观察确定。共分三组工况,第一组工况,水喷淋系统的喷头位于火源的正下方;第二组工况,移动小车位置,水喷淋喷头位于火源下游0.5m处;第三组水喷淋的喷头位于火源上游0.5m处;观察水喷淋系统启动后火源的发展情况以及烟气扩散的变化情况,将所得的实验数据比较分析水喷淋系统的设置对隧道火灾烟气运动的影响。

Claims (6)

1.多功能城市交通隧道火灾烟气扩散模型装置,其特征在于:包括变频风机(1),盲板(2),隧道转动铰链(3),防火玻璃窗(4),拱形主隧道(5),排烟烟道(6),支撑杆(7),底座(8),分支隧道预留口(9),主隧道连接口(10),千斤顶(11),钢架结构(12),拱形主隧道底板(13),滑道(14),小车(15),螺杆(16),变频水泵(17),水管(18),水喷头(19),分支隧道连接口(20),电偶布设口(21),喷淋系统喷头布设口(22),分支隧道(23),底板框架(24),底板(25);拱形主隧道(5)至少有两段,变频风机(1)通过盲板(2)与第一段拱形主隧道(5)的前端相连,排烟烟道(6)与最后一段拱形主隧道(5)的后端相连,各个拱形主隧道(5)之间通过主隧道连接口(10)连接;第一段拱形主隧道(5)通过隧道转动铰链(3)固定在支撑杆(7)的上端,支撑杆(7)下端固定在底座(8)上;最后一段拱形主隧道(5)通过钢架结构(12)连接于千斤顶(11)的顶部;拱形主隧道(5)顶部设有热电偶布置口(21)和水喷淋喷头布置口(22);水喷头(19)置于水喷淋喷头布置口(22)中,水喷头(19)通过水管(18)与变频水泵(17)相连;拱形主隧道(5)两侧设有防火玻璃窗(4);拱形主隧道底板(13)由底板框架(24)和底板(25)组成,底板框架(24)和底板(25)活动链接,底板框架(24)与拱形主隧道(5)底部固定连接,底板框架(24)上沿主隧道方向固定连接两条平行的滑道(14);小车(15)设有燃烧床和油盘;螺杆(16)安装于小车(15)的底部;分支隧道预留口(9)位于拱形主隧道(5)的侧面,分支隧道(23)通过分支隧道连接口(20)与拱形主隧道(5)侧面的分支隧道预留口(9)相连。
2.根据权利要求1所述的多功能城市交通隧道火灾烟气扩散模型装置,其特征在于:设置了能够提供隧道内纵向风速范围在0~5m/s的变频风机(1)。
3.根据权利要求1所述的多功能城市交通隧道火灾烟气扩散模型装置,其特征在于:所述的拱形主隧道(5)每个侧面各设有n个防火玻璃窗(4),n至少为3。
4.根据权利要求1所述的多功能城市交通隧道火灾烟气扩散模型装置,其特征在于:设置了能够为隧道提供0~15。坡度的千斤顶。
5.根据权利要求1所述的多功能城市交通隧道火灾烟气扩散模型装置,其特征在于:设置了可提供0~0.1MP压力的变频水泵(17)。
6.根据权利要求1所述的多功能城市交通隧道火灾烟气扩散模型装置,其特征还在于:所述的分支隧道(23)个数为k,k至少为2。
CN2011203794438U 2011-09-30 2011-09-30 多功能城市交通隧道火灾烟气扩散模型装置 Withdrawn - After Issue CN202381112U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011203794438U CN202381112U (zh) 2011-09-30 2011-09-30 多功能城市交通隧道火灾烟气扩散模型装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011203794438U CN202381112U (zh) 2011-09-30 2011-09-30 多功能城市交通隧道火灾烟气扩散模型装置

Publications (1)

Publication Number Publication Date
CN202381112U true CN202381112U (zh) 2012-08-15

Family

ID=46629625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011203794438U Withdrawn - After Issue CN202381112U (zh) 2011-09-30 2011-09-30 多功能城市交通隧道火灾烟气扩散模型装置

Country Status (1)

Country Link
CN (1) CN202381112U (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505955A (zh) * 2011-09-30 2012-06-20 北京工业大学 多功能城市交通隧道火灾烟气扩散模型装置
CN106157785A (zh) * 2016-09-12 2016-11-23 武汉科技大学 一种多功能铁路隧道火灾实验平台
CN108956182A (zh) * 2018-08-01 2018-12-07 武汉科技大学 采用不同排烟方式的可调节坡度的隧道火灾实验模拟装置
CN109345938A (zh) * 2018-11-06 2019-02-15 北京工业大学 一种组合式地下管廊空间火灾安全研究模型装置
CN111462606A (zh) * 2020-04-21 2020-07-28 合肥工业大学 一种交通隧道群烟雾窜流研究和应急救援系统
CN111477085A (zh) * 2020-04-21 2020-07-31 合肥工业大学 一种分岔隧道群的火灾燃烧和污染物窜流测量系统
CN111816016A (zh) * 2020-07-02 2020-10-23 中国矿业大学(北京) 一种复杂通风网络火灾模拟系统
CN112284673A (zh) * 2020-10-22 2021-01-29 淮南矿业(集团)有限责任公司 一种倾斜巷道火灾相似模拟试验装置及试验方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505955A (zh) * 2011-09-30 2012-06-20 北京工业大学 多功能城市交通隧道火灾烟气扩散模型装置
CN102505955B (zh) * 2011-09-30 2014-03-26 北京工业大学 城市交通隧道火灾烟气扩散模型装置
CN106157785A (zh) * 2016-09-12 2016-11-23 武汉科技大学 一种多功能铁路隧道火灾实验平台
CN108956182A (zh) * 2018-08-01 2018-12-07 武汉科技大学 采用不同排烟方式的可调节坡度的隧道火灾实验模拟装置
CN109345938A (zh) * 2018-11-06 2019-02-15 北京工业大学 一种组合式地下管廊空间火灾安全研究模型装置
CN109345938B (zh) * 2018-11-06 2021-11-12 北京工业大学 一种组合式地下管廊空间火灾安全研究模型装置
CN111462606A (zh) * 2020-04-21 2020-07-28 合肥工业大学 一种交通隧道群烟雾窜流研究和应急救援系统
CN111477085A (zh) * 2020-04-21 2020-07-31 合肥工业大学 一种分岔隧道群的火灾燃烧和污染物窜流测量系统
CN111462606B (zh) * 2020-04-21 2022-04-26 合肥工业大学 一种交通隧道群烟雾窜流研究和应急救援系统
CN111816016A (zh) * 2020-07-02 2020-10-23 中国矿业大学(北京) 一种复杂通风网络火灾模拟系统
CN112284673A (zh) * 2020-10-22 2021-01-29 淮南矿业(集团)有限责任公司 一种倾斜巷道火灾相似模拟试验装置及试验方法

Similar Documents

Publication Publication Date Title
CN102505955B (zh) 城市交通隧道火灾烟气扩散模型装置
CN202381112U (zh) 多功能城市交通隧道火灾烟气扩散模型装置
Liu et al. Research on tunnel ventilation systems: dust diffusion and pollution behaviour by air curtains based on CFD technology and field measurement
CN100567929C (zh) 坡度可调隧道火灾风洞实验装置
CN109345938B (zh) 一种组合式地下管廊空间火灾安全研究模型装置
Yu et al. Experimental study on thermal and smoke control using transverse ventilation in a sloping urban traffic link tunnel fire
Chen et al. Experimental investigation on the effect of asymmetrical sealing on tunnel fire behavior
Zhang et al. Numerical analysis on spatial distribution for concentration and particle size of particulate pollutants in dust environment at fully mechanized coal mining face
Zhang et al. CFD investigation on dust dispersion pollution of down/upwind coal cutting and relevant countermeasures for spraying dustfall in fully mechanized mining face
CN105336258B (zh) 一种地铁换乘车站火灾排烟模拟实验装置
CN102385812A (zh) 一种狭长受限空间的火灾实验模拟装置
Xie et al. Numerical study on fine dust pollution characteristics under various ventilation time in metro tunnel after blasting
CN201133870Y (zh) 坡度可调隧道火灾风洞实验装置
Zhou et al. Experimental study on the characteristics of temperature distribution of two pool fires with different transverse locations in a naturally ventilated tunnel
CN111968479A (zh) 一种多角度峡谷风作用下隧道火灾模拟实验装置
Tao et al. Experimental and numerical study on the smoke and velocity distribution in an extra-long railway tunnel fire
CN111145627B (zh) 一种可调式y型隧道模拟实验系统
Yang et al. Study on the modularized airflow-diverging system and dust-control technology in the fully mechanized heading face
CN208126718U (zh) 可调坡度管廊通风模型装置
Zhang et al. The cooling effect of high geothermal tunnel construction environment: A case of ice and spray method in an extra-long tunnel
Chen et al. Research on the effect of ceiling centralized smoke exhaust system with air curtains on heat confinement and plug-holing phenomenon in tunnel fires
CN108564868A (zh) 可调坡度管廊通风模型装置
Luo et al. Fire experiment on temperature distribution in an underground vertical car park
Zhang et al. Influence of injection method on the fire extinguishing efficiency of liquid nitrogen in urban underground utility tunnel
CN110728895B (zh) 一种可用于隧道及地铁车站半横向排烟研究的实验装置

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20120815

Effective date of abandoning: 20140326

AV01 Patent right actively abandoned

Granted publication date: 20120815

Effective date of abandoning: 20140326

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned