CN202330240U - 一种用于液体颗粒计数器的样品池 - Google Patents

一种用于液体颗粒计数器的样品池 Download PDF

Info

Publication number
CN202330240U
CN202330240U CN2011204155304U CN201120415530U CN202330240U CN 202330240 U CN202330240 U CN 202330240U CN 2011204155304 U CN2011204155304 U CN 2011204155304U CN 201120415530 U CN201120415530 U CN 201120415530U CN 202330240 U CN202330240 U CN 202330240U
Authority
CN
China
Prior art keywords
slit
sample cell
liquid
liquid particles
fluid passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN2011204155304U
Other languages
English (en)
Inventor
孙吉勇
沈玮栋
梁凤飞
周大农
王佳琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Sujing Group Co Ltd
Original Assignee
Jiangsu Sujing Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Sujing Group Co Ltd filed Critical Jiangsu Sujing Group Co Ltd
Priority to CN2011204155304U priority Critical patent/CN202330240U/zh
Application granted granted Critical
Publication of CN202330240U publication Critical patent/CN202330240U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)

Abstract

本实用新型公开了一种用于液体颗粒计数器的样品池,其具有密封的液体通道,所述样品池包括二个具有狭缝的结构单元,每个具有狭缝的结构单元包括石英玻璃层、形成在石英玻璃层表面上且具有第一狭缝的金属薄膜光阑和形成在金属薄膜光阑表面上的光刻胶层,该光刻胶层上对应金属薄膜光阑的第一狭缝的位置形成有第二狭缝,所述第一狭缝和所述第二狭缝共同构成所述狭缝,二个所述结构单元的光刻胶层相键合,二个结构单元的狭缝共同构成所述液体通道。具有本实用新型结构的样品池,可通过MEMS的加工工艺来制造,制作出传统加工工艺无法得到的微小液体通道,并且液体通道的形状和大小可以被精确的控制,有利于提高液体颗粒检测的灵敏度。

Description

一种用于液体颗粒计数器的样品池
技术领域
本实用新型涉及一种颗粒粒度测试设备配件,具体涉及一种样品池,特别是与液体颗粒计数器配套使用的样品池。
背景技术
液体颗粒计数器用于检测液体中的微小固体颗粒污染物,它在医药,水质分析,油液清洁度检测,半导体工艺控制等领域有着重要的应用。光阻法激光液体颗粒计数器根据米散射理论,利用微小粒子对光的散射和阻挡实现对粒子计数和测量,其检测原理如图1所示。半导体激光器(101)发出的光经过透镜组(102)的整形之后形成细小的线光束,线光束照射到液体样品池(103)的检测区域,透过样品池(103)之后到达光电探测器(106)的表面。待测液体(104)通过样品池(103)的液体通道(109)流经样品池(103)的检测区域,当待测液体(104)中的微小颗粒(105)通过检测区域的时候,由于粒子对光的散射和阻挡,使得光电探测器(106)接收到光信号减弱,光信号经过探测器(106)和检测电路(107)之后成为一负脉冲信号(108),信号(108)的幅度与粒子的大小成比例。因此,通过脉冲信号的个数和幅度可以测量出被测液体中微小颗粒物的个数和颗粒物的大小。
样品池是液体颗粒计数器的核心部件,它的结构和质量决定着仪器的关键检测指标。目前的光阻法液体颗粒计数器所用的样品池主要有两种加工方法:一种是基于精密机械加工的方法。另一种是基于精密光学加工的方法。
基于精密机械加工的样品池的结构如图2所示,该结构主要有第一不锈钢板(201),第二不锈钢板(203),第一不锈钢薄片(202),第二不锈钢薄片(204)和玻璃光学窗口(205)组成,它们共同形成一个狭长的方形液体通道(206),通道(206)的尺寸由不锈钢薄片(202,204)的厚度和两不锈钢薄片(202,204)之间的距离决定。为了防止液体流经液体通道时发生泄漏,不锈钢板和不锈钢薄片之间通过精密配合形成机械密封。这就要求不锈钢板与不锈钢薄片的接触面达到几乎镜面的粗糙度和平面度。如此高的技术要求使得该结构的机械加工难度很大,增加了制作成本。不锈钢薄片厚度越薄,加工难度越大,为了达到密封的效果,不锈钢薄片的厚度通常必须大于0.5毫米,这使得液体通道的尺寸不可能做的很小,限制了液体颗粒计数器检测的灵敏度。另外,基于精密机械加工得到的样品池,狭缝内壁的粗糙度不可能达很高的水平,因此,在实际使用当中容易粘附液体中的粒子,造成液体通道的堵塞,降低了仪器的稳定性和可靠性。
基于精密光学加工方法的样品池结构如图3所示。它包括第一石英玻璃板(301),第二石英玻璃板(303),第一黑石英片(302)和第二黑石英片(304)。石英板和黑石英之间利用光胶技术进行熔接,能形成良好的密封,不容易形成泄漏。光学加工能到非常高的光学表面,克服了机械结构样品池容易堵塞的问题。结构中的黑石英片起到阻挡杂散光的作用,降低背景光强的影响,提高测试精度。但是黑石英具有一定的透射率,进口高质量的黑石英玻璃,当厚度为1毫米厚的时候,其透光率为0.1%。当厚度为0.5毫米厚的时候,其透光率为1.1%。为了降低黑石英的透光对测试结果的影响,黑石英片的厚度必须大于0.5毫米以上,这使得液体通道的尺寸也不可能做得很小,同样限制了液体颗粒检测器的灵敏度。
发明内容
本实用新型所要解决的技术问题是克服现有技术的不足,提供一种用于颗粒计数器的改进型样品池。
为解决上述技术问题,本实用新型采取如下技术方案:
一种用于液体颗粒计数器的样品池,其具有密封的液体通道,所述样品池包括二个具有狭缝的结构单元,每个具有狭缝的结构单元包括石英玻璃层、形成在石英玻璃层表面上且具有第一狭缝的金属薄膜光阑和形成在金属薄膜光阑表面上的光刻胶层,该光刻胶层上对应金属薄膜光阑的第一狭缝的位置形成有第二狭缝,所述第一狭缝和所述第二狭缝共同构成所述狭缝,二个所述结构单元的光刻胶层相键合,二个结构单元的狭缝共同构成所述液体通道。
根据本实用新型的一个方面,所述金属薄膜光阑可以为溅射在石英玻璃层表面的厚度为0.05~0.2微米的铝膜。铝膜的厚度优选为0.08~0.12微米,最优选为0.1微米。所述光刻胶层为旋涂在金属薄膜光阑上的厚度为50~250微米的光刻胶。优选地,光刻胶层的厚度为80~120微米,最优选100微米。所述的光刻胶优选为SU-8光刻胶。
根据本实用新型又一方面,所述液体通道自一端向另一端的方向依次为进液端、检测区域和出液端,其中,所述进液端为沿着液体的流动方向逐渐变窄的锥形,所述检测区域为矩形,所述的出液端为沿着液体的流动方向逐渐变宽的锥形。优选地,进液端的开口锥度与所述出液端的开口锥度相同,且开口锥度在6~10°之间。所述液体通道的长度可以为10~40毫米,所述检测区域的宽度可以为0.1~0.8毫米。液体通道的长度优选为15~25毫米,最优选20毫米;检测区域的宽度优选为0.1~0.3毫米,最优选0.2毫米。
根据本实用新型的一个具体实施例,液体通道的长度为20毫米,进液端的开口锥度与所述出液端的开口锥度均为8°,检测区域的宽度为0.2毫米、高度为0.2~0.25毫米。
由于以上技术方案的实施,本实用新型与现有技术相比具有如下优点:
具有本实用新型结构的样品池,可通过MEMS的加工工艺来制造,制作出传统加工工艺无法得到的微小液体通道,并且液体通道的形状和大小可以被精确的控制。此外,键合得到的液体通道具有良好的密封效果,可有效防止液体的渗漏;而金属薄膜光阑可以阻挡杂散光,降低背景光的影响。本实用新型的样品池制作方便,加工精度高,可靠性好,有利于提高液体颗粒检测的灵敏度。
附图说明
   下面结合附图和具体的实施例对本实用新型做进一步详细的说明。
图1是光阻法激光液体颗粒计数器的检测原理示意图
图2是传统的基于精密机械加工工艺的样品池的结构示意图;
图3是传统的基于精密光学加工工艺的样品池的结构示意图;
图4是根据本实用新型的液体通道的形状示意图;
图5a~5c是根据本实用新型的样品池的加工过程示意图;
其中:101、半导体激光器;102、透镜组;103、样品池;104、待测液体;105、微小颗粒;106、光电探测器;107、检测电路;108、信号;109、液体通道;201、第一不锈钢板;202、第一不锈钢薄片;203、第二不锈钢板;204、第二不锈钢薄片;205、玻璃光学窗口;301、第一石英玻璃板;302、第一黑石英片;303、第二石英玻璃板;304、第二黑石英片;4a,4b、结构单元;401a,401b、石英玻璃层;402a,402b、金属薄膜光阑;403a,403b、光刻胶层;404a,404b、狭缝;405a,405b、第一狭缝;406a,406b、第二狭缝;5液体通道;50、进液端;51、检测区域;52、出液端。
具体实施方式
如图5c所示,按照本实施例的用于液体颗粒计数器的样品池包括具有狭缝404a的结构单元4a和具有狭缝404b的结构单元4b。其中结构单元4a包括石英玻璃层401a、形成在石英玻璃层401a表面上且具有第一狭缝405a的金属薄膜光阑402a和形成在金属薄膜光阑402a表面上的光刻胶层403a,该光刻胶层403a上对应金属薄膜光阑402a的第一狭缝405a的位置形成有第二狭缝406a,且第一狭缝405a和第二狭缝406a共同构成所述狭缝404a。结构单元4b包括石英玻璃层401b、形成在石英玻璃层401b表面上且具有第一狭缝405b的金属薄膜光阑402b和形成在金属薄膜光阑402b表面上的光刻胶层403b,该光刻胶层403b上对应金属薄膜光阑402b的第一狭缝405b的位置形成有第二狭缝406b,且第一狭缝405b和第二狭缝406b共同构成狭缝404b。二个结构单元4a和4b的光刻胶层403a和403b键合,从而二个所述狭缝404a和404b共同构成了密封的液体通道5。参见图4,液体通道5自一端向另一端的方向依次为进液端50、检测区域51和出液端52,其中,进液端50为沿着液体的流动方向逐渐变窄的锥形,检测区域51为矩形,出液端51为沿着液体的流动方向逐渐变宽的锥形。
上述的样品池中金属薄膜光阑402a、402b为分别溅射在石英玻璃层401a、401b表面的厚度为0.05~0.2微米的铝膜。该铝膜的厚度优选为0.08~0.12微米,最优选为0.1微米。光刻胶层403a、403b为旋涂在金属薄膜光阑402a、402b上的厚度为50~250微米的光刻胶,优选地,光刻胶层403a、403b的厚度为80~120微米。
参见图5a~5c,本实施例的用于液体颗粒计数器的样品池可通过如下步骤来制作:
一、分别制作具有狭缝404a的结构单元4a和具有狭缝404b的结构单元4b,具体如下:
首先,如图5a所示,选用长20毫米、宽4毫米、高为1.75毫米的石英玻璃作为衬底即为石英玻璃层401a,在该石英玻璃层401a的上表面溅射厚度为0.1微米的铝,光刻铝,去掉中间部分的铝膜,得到具有第一狭缝405a的金属薄膜光阑402a,如图4所示,该金属薄膜光阑402a的第一狭缝405a的形状与最后要形成的液体通道5的形状相同,即为自两端向中间逐渐变窄的锥形,且两端开口锥度相同,均为8°。中间部分为矩形,宽度为0.2毫米,高度等同于金属薄膜光阑402a的厚度也即0.1微米。
其次,如图5b所示,在金属薄膜光阑402a上旋涂厚度为100微米的SU-8光刻胶,光刻SU-8光刻胶,去除未曝光的光刻胶,在对应第一狭缝405a的位置形成与第一狭缝405a形状完全相同的第二狭缝406a,第二狭缝406a中间的矩形区域的宽度也为0.2毫米,厚度为光刻胶403a的厚度即100微米。
最后,重复上述的步骤制作具有狭缝404b的结构单元4b。该二个结构单元4a和4b结构和尺寸完全相同。
二、将上述制备的二个结构单元4a和4b通过键合的方法封装在一起,得到具有密封液体通道5的样品池,其结构如图5c所示。
以上对本实用新型做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本实用新型的内容并加以实施,并不能以此限制本实用新型的保护范围,凡根据本实用新型的精神实质所作的等效变化或修饰,都应涵盖在本实用新型的保护范围

Claims (10)

1.一种用于液体颗粒计数器的样品池,其具有密封的液体通道,其特征在于:所述样品池包括二个具有狭缝的结构单元,每个所述的具有狭缝的结构单元包括石英玻璃层、形成在所述石英玻璃层表面上且具有第一狭缝的金属薄膜光阑和形成在所述金属薄膜光阑表面上的光刻胶层,所述光刻胶层上对应所述金属薄膜光阑的第一狭缝的位置形成有第二狭缝,所述第一狭缝和所述第二狭缝共同构成所述狭缝,二个所述结构单元的光刻胶层相键合,二个所述结构单元的所述狭缝共同构成所述的液体通道。
2.根据权利要求1所述的用于液体颗粒计数器的样品池,其特征在于:所述金属薄膜光阑为溅射在所述石英玻璃层表面的厚度为0.05~0.2微米的铝膜。
3.根据权利要求1所述的用于液体颗粒计数器的样品池,其特征在于:所述光刻胶层为旋涂在所述的金属薄膜光阑上的厚度为50~250微米的光刻胶。
4.根据权利要求3所述的用于液体颗粒计数器的样品池,其特征在于:所述光刻胶层的厚度为80~120微米。
5.根据权利要求3所述的用于液体颗粒计数器的样品池,其特征在于:所述的光刻胶为SU-8光刻胶。
6.根据权利要求1所述的用于液体颗粒计数器的样品池,其特征在于:所述液体通道自一端向另一端的方向依次为进液端、检测区域和出液端,其中,所述进液端为沿着液体的流动方向逐渐变窄的锥形,所述检测区域为矩形,所述的出液端为沿着液体的流动方向逐渐变宽的锥形。
7.根据权利要求6所述的用于液体颗粒计数器的样品池,其特征在于:所述进液端的开口锥度与所述出液端的开口锥度相同,且开口锥度在6~10°之间。
8.根据权利要求6或7所述的用于液体颗粒计数器的样品池,其特征在于:所述液体通道的长度为10~40毫米,所述检测区域的宽度为0.1~0.8毫米。
9.根据权利要求8所述的用于液体颗粒计数器的样品池,其特征在于:所述液体通道的长度为15~25毫米,所述检测区域的宽度为0.1~0.3毫米。
10.根据权利要求9所述的用于液体颗粒计数器的样品池,其特征在于:所述的液体通道的长度为20毫米,所述进液端的开口锥度与所述出液端的开口锥度均为8°,所述检测区域的宽度为0.2毫米、高度为0.2~0.25毫米。
CN2011204155304U 2011-10-27 2011-10-27 一种用于液体颗粒计数器的样品池 Withdrawn - After Issue CN202330240U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011204155304U CN202330240U (zh) 2011-10-27 2011-10-27 一种用于液体颗粒计数器的样品池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011204155304U CN202330240U (zh) 2011-10-27 2011-10-27 一种用于液体颗粒计数器的样品池

Publications (1)

Publication Number Publication Date
CN202330240U true CN202330240U (zh) 2012-07-11

Family

ID=46442218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011204155304U Withdrawn - After Issue CN202330240U (zh) 2011-10-27 2011-10-27 一种用于液体颗粒计数器的样品池

Country Status (1)

Country Link
CN (1) CN202330240U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507419A (zh) * 2011-10-27 2012-06-20 江苏苏净集团有限公司 一种用于液体颗粒计数器的样品池及其制作方法
CN106198327A (zh) * 2016-09-21 2016-12-07 江苏苏净集团有限公司 一种液体颗粒检测装置
CN106255869A (zh) * 2014-05-02 2016-12-21 新加坡国立大学 一次性测量尖端及其使用方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507419A (zh) * 2011-10-27 2012-06-20 江苏苏净集团有限公司 一种用于液体颗粒计数器的样品池及其制作方法
CN102507419B (zh) * 2011-10-27 2013-07-03 江苏苏净集团有限公司 一种用于液体颗粒计数器的样品池及其制作方法
CN106255869A (zh) * 2014-05-02 2016-12-21 新加坡国立大学 一次性测量尖端及其使用方法
CN106255869B (zh) * 2014-05-02 2020-04-28 新加坡国立大学 一次性测量尖端及其使用方法
CN106198327A (zh) * 2016-09-21 2016-12-07 江苏苏净集团有限公司 一种液体颗粒检测装置
CN106198327B (zh) * 2016-09-21 2023-08-15 江苏苏净集团有限公司 一种液体颗粒检测装置

Similar Documents

Publication Publication Date Title
CN202330240U (zh) 一种用于液体颗粒计数器的样品池
CN106198327B (zh) 一种液体颗粒检测装置
CN102998234A (zh) 微型液体颗粒计数器芯片
CN1987486B (zh) 集成光栅干涉微机械加速度传感器及其制作方法
König et al. Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing
CN104662408A (zh) 用于测量在介质中的颗粒的传感器和方法
JP6530063B2 (ja) 電子工学、光学または光電子工学用のウェハを検査する方法およびシステム
CN104296969B (zh) 一种激光损伤阈值标定方法
CN111879731B (zh) 一种微纳结构光散射式浊度检测传感器及其制备工艺
CN102507419B (zh) 一种用于液体颗粒计数器的样品池及其制作方法
Grebenikova et al. Features of optical signals processing for monitoring the state of the flowing liquid medium with a refractometer
US10260868B2 (en) Interferometric method and system using variable fringe spacing for inspecting transparent wafers for electronics, optics or optoelectronics
CN104777077A (zh) 基于光阱效应的液体黏滞系数测量装置及测量方法
US6388745B2 (en) Detecting inclusions in transparent sheets
CN202994617U (zh) 微型液体颗粒计数器芯片
CN102519907B (zh) 反射型光纤-微流控芯片折射率传感器
CN112033931A (zh) 一种光波导、其制造方法、包含其的生物传感系统及其应用
CN103063299B (zh) 一种微型光谱仪
CN103900945B (zh) 微型pm2.5检测传感器
CN203720056U (zh) 微型pm2.5检测传感器
CN105157579B (zh) 一种微结构阵列光学位移传感器的制造方法及其用于检测微小位移的方法
JP4842696B2 (ja) フォトマスクブランクの製造方法およびフォトマスクブランク
US20220057316A1 (en) Particle standards for reflected light scatter measurements from degenerate particle foci
US2436567A (en) Microrefractometer for liquids
US20030179374A1 (en) Method for illuminating particles contained in a medium for optical analysis, and optical particle analyser

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20120711

Effective date of abandoning: 20130703

RGAV Abandon patent right to avoid regrant