CN202167861U - 基于灰色模型控制的风力发电储能装置 - Google Patents

基于灰色模型控制的风力发电储能装置 Download PDF

Info

Publication number
CN202167861U
CN202167861U CN2011202942771U CN201120294277U CN202167861U CN 202167861 U CN202167861 U CN 202167861U CN 2011202942771 U CN2011202942771 U CN 2011202942771U CN 201120294277 U CN201120294277 U CN 201120294277U CN 202167861 U CN202167861 U CN 202167861U
Authority
CN
China
Prior art keywords
energy storage
wind power
power
storage unit
converters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011202942771U
Other languages
English (en)
Inventor
卢芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN2011202942771U priority Critical patent/CN202167861U/zh
Application granted granted Critical
Publication of CN202167861U publication Critical patent/CN202167861U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

本实用新型涉及一种基于灰色模型控制的风力发电储能装置,该储能装置主要由控制单元、AC/DC整流器、DC/AC逆变器、双向DC/DC变换器及储能用的超级电容器储能单元构成;控制单元分别连接AC/DC整流器、DC/AC逆变器和双向DC/DC变换器,AC/DC整流器与DC/AC逆变器之间连接有双向DC/DC变换器,双向DC/DC变换器与超级电容器储能单元相连接;本实用新型基于灰色模型控制提出了采用储能装置来稳定控制输出功率的控制策略,减少了电力系统的不确定性,增强了电力系统的安全性和可靠性,为风电并网而带来的电力系统不稳定提供有效的解决方法。

Description

基于灰色模型控制的风力发电储能装置
技术领域
本实用新型主要涉及一种风力发电储能装置,特别是涉及一种基于灰色模型控制的风力发电储能装置。
背景技术
随着世界能源消耗的加快,传统能源储量的减少,风力发电这种绿色能源越来越得到重视,并具有取之不尽用之不竭的优势。世界各国都出台各项政策大力扶持风电产业,近几年我国的风电产业也得到了飞速发展,从引进技术,到自主研发,国产化率得到大幅提高,国产风电机已占主导地位。在风力发电发展的同时,由于大量间隙性和随机性风电能源注入电网,风电机的稳定性、安全性以及电网的调度管理将面临新的挑战。
大规模风电接入使电力系统面临若干挑战,为了把握风电出力变化规律,减少电力系统的不确定性,增强电力系统的安全性和可靠性,提出了采用储能装置来稳定控制输出功率的控制策略。这将为风电并网而带来的电力系统不稳定提供有效的解决方法,对于电力系统经济、安全、可靠地运行以及提高其运行效益具有特别重要的意义。
发明内容
发明目的:
本实用新型提出了一种基于灰色模型控制的风力发电储能装置,其目的是为了减少电力系统的不确定性,增强电力系统的安全性和可靠性。
技术方案:
一种基于灰色模型控制的风力发电储能装置,建立在风电场与电网之间,其特征在于:该储能装置主要由控制单元、AC/DC整流器、DC/AC逆变器、双向DC/DC变换器及储能用的超级电容器储能单元构成;控制单元分别连接AC/DC整流器、DC/AC逆变器和双向DC/DC变换器,AC/DC整流器与DC/AC逆变器之间连接有双向DC/DC变换器,双向DC/DC变换器与超级电容器储能单元相连接。
所述DC/DC变换器的低压端连接超级电容器储能单元,DC/DC变换器的高压端连接AC/DC整流器和DC/AC逆变器。
所述双向DC/DC变换器用于实现直流低压侧超级电容器储能单元与直流高压侧之间的能量转换,其电路结构为:超级电容器储能单元一端连接电感L的一端,电感L的另一端分别连接绝缘栅双极晶体管S1的发射极、绝缘栅双极晶体管S2的集电极、二极管D1的正极、二极管D2的负极,绝缘栅双极晶体管S1的集电极与二极管D1的负极连接电容C的一端,电容C的另一端连接绝缘栅双极晶体管S2的发射极、二极管D2的正极和超级电容器储能单元的另一端。
所述的超级电容器储能单元为超级电容器的串联、并联或串并联组合。
优点及效果:
本实用新型提出了基于灰色模型控制的风力发电储能装置,具有如下优点:
在灰色模型控制中,通过对风电输出功率进行等维新息处理,能够不断获得最新风电输出功率,解决风电随机性大、预测精度难以提高的问题;同时,为了进一步提高预测精度,针对每一次风电输出功率预测,都将对灰色模型背景值进行修正,进一步提高了预测精度;由预测出的风电输出功率与电网所需提供功率比较的结果来控制超级电容器储能装置充电及放电,使得风力发电储能装置得到合理的利用,极大地提高电力系统的稳定性、安全性及其运行效益。
附图说明:
图1为本实用新型风力发电储能装置的结构示意图;
图2为本实用新型双向DC/DC变换器的电路结构图;
图3为灰色模型预测流程图;
图4为风力发电输出功率预测误差图。
具体实施方式:
下面结合附图对本实用新型做进一步的说明:
为了充分利用风能,风电场以最大运行方式运行,将风力发电输出功率超出电网所需提供功率的部分储存起来;当风速下降后,风电场的输出功率达不到电网所需提供功率时,由储能设备补充,仍以电网所需功率输出,据此提高电力系统的稳定性。
如何正确把握风力发电储能控制是非常重要的,如何认定在何时开始储能及何时开始释放对储能系统起着至关重要的作用。自然界风的变化是很难预测的,风速和风向的变化影响着风力发电机的出力。在灰色模型控制中,通过对风电输出功率进行等维新息处理,能够不断获得最新风电输出功率,解决风电随机性大、预测精度难以提高的问题。同时,为了进一步提高预测精度,针对每一次风电输出功率预测,都将对灰色模型背景值进行修正,进一步提高了预测精度。
本实用新型采用灰色模型针对风电场前若干时刻的输出功率预测出未来时刻的输出功率,将未来时刻的输出功率与电网需要风电场提供的功率进行比较,超出所需提供的功率部分进行储存,低于所需提供的功率将由储能设备补充。
本实用新型提供了一种基于灰色模型控制的风力发电储能装置,如图1中所示,建立在风电场与电网之间,其特征在于:该储能装置主要由控制单元、AC/DC整流器、DC/AC逆变器、双向DC/DC变换器及储能用的超级电容器储能单元构成;控制单元分别连接AC/DC整流器、DC/AC逆变器和双向DC/DC变换器,AC/DC整流器与DC/AC逆变器之间连接有双向DC/DC变换器,双向DC/DC变换器与超级电容器储能单元1相连接。
所述DC/DC变换器的的低压端连接超级电容器储能单元,DC/DC变换器的高压端连接AC/DC整流器和DC/AC逆变器。
所述双向DC/DC变换器用于实现直流低压侧超级电容器单元与直流高压侧之间的能量转换,如图2中所示,其电路结构为:超级电容器储能单元1一端连接电感L的一端,电感L的另一端分别连接绝缘栅双极晶体管S1的发射极、绝缘栅双极晶体管S2的集电极、二极管D1的正极、二极管D2的负极,绝缘栅双极晶体管S1的集电极与二极管D1的负极连接电容C的一端,电容C的另一端连接绝缘栅双极晶体管S2的发射极、二极管D2的正极和超级电容器储能单元1的另一端。
所述的超级电容器储能单元1为超级电容器的串联、并联或串并联组合,可以根据实际情况将大量的超级电容经过串联、并联或者串并联的组合达到所需的容量。
本实用新型这种基于灰色模型控制的风力发电储能装置的工作原理是:控制单元是以风力发电输出功率和电网所需提供功率作为控制信号,对风力发电储能装置进行控制。将灰色模型预测后得到的超出电网所需提供功率的储存能量部分通过超级电容器储能单元1进行风力发电储能,或将低于电网所需提供功率的能量部分由风力发电储能装置进行能量释放,以风电发电输出功率和电网所需提供功率作为控制信号,进行风力发电储能装置的控制。AC/DC整流器采用三相全桥整流器,将三相交流电能变为直流电能;DC/AC逆变器采用三相电压型逆变器,将直流逆变成可控的三相交流;双向DC/DC变换器电路结构如图2所示。
采用风电场交流侧并联功率转换系统方式,当风电场以最大运行方式运行,将风电场输出功率高于电网需要风电场提供功率部分的三相交流电能经AC/DC整流器变为直流电能,进行储能;当需要储能装置进行能量释放时,通过DC/AC逆变器将直流逆变成可控的三相交流;采用并联补偿平滑风力发电系统出力,以风电发电输出功率和电网所需提供功率作为控制信号,对风力发电储能装置进行控制。
一种基于灰色模型控制的风力发电储能方法,为了充分利用风能,风电场以最大运行方式运行,采用灰色模型针对风电场前若干时刻的输出功率预测出未来时刻的输出功率,将未来时刻的输出功率与电网需要风电场提供的功率进行比较,超出电网所需提供的功率部分进行储存,当风速下降后,风电场的输出功率达不到电网所需提供功率时,低于电网所需提供的功率将由储能装置补充,仍以电网所需功率输出;具体步骤如下:
首先针对风力发电的特点,建立改进的灰色模型对风力发电输出功率进行预测:
1)、在建立GM(1,1)模型中,令                                               
Figure 2011202942771100002DEST_PATH_IMAGE002
为GM(1,1)建模序列,
                           
其中,
Figure DEST_PATH_IMAGE006
分别为预测前个等时间间隔(该时间间隔可根据具体情况设定)的风力发电输出功率数值。
2)、为了随时追踪前若干时刻的输出功率状况,每次将预测时刻前的等时间间隔的风电输出功率送入数据序列中的同时,去除一个最陈旧的数据。即
Figure 911160DEST_PATH_IMAGE004
当新得到数据
Figure DEST_PATH_IMAGE010
后,则将其置入
Figure 454399DEST_PATH_IMAGE002
同时去除
Figure DEST_PATH_IMAGE012
,此时
Figure 358770DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE014
即进行等维新息处理;由于该灰色模型输入量为待预测风力发电输出功率的前若干时刻实际输出功率序列,能够随时追踪前若干时刻的输出功率,使得预测结果更加接近实际输出功率。
3)、将
Figure 377148DEST_PATH_IMAGE014
Figure 253837DEST_PATH_IMAGE004
的形式进行以下计算:
Figure 76300DEST_PATH_IMAGE002
进行一次累加生成序列,得到
Figure DEST_PATH_IMAGE016
                       
其中,
Figure DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE020
4)、对
Figure DEST_PATH_IMAGE022
再做邻均值处理,得到背景值序列:
Figure DEST_PATH_IMAGE024
一般情况下,;                          
为了提高预测精度,进行背景值
Figure DEST_PATH_IMAGE028
的修正,取
Figure DEST_PATH_IMAGE030
  
Figure DEST_PATH_IMAGE032
;             
第一次计算时取
Figure DEST_PATH_IMAGE034
,构造GM(1,1)灰微分方程如下:
Figure DEST_PATH_IMAGE036
                               
灰微分方程的白化微分方程为:
             
Figure DEST_PATH_IMAGE038
                                     
用最小二乘法来求解参数
Figure DEST_PATH_IMAGE040
,则
Figure DEST_PATH_IMAGE042
                                  
Figure DEST_PATH_IMAGE044
    
Figure DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE048
的灰色预测模型为:  
Figure DEST_PATH_IMAGE050
Figure DEST_PATH_IMAGE052
的灰色预测模型为:
其中
Figure DEST_PATH_IMAGE056
将解得的参数
Figure DEST_PATH_IMAGE058
带入
Figure DEST_PATH_IMAGE060
,重新计算
Figure DEST_PATH_IMAGE062
,记为
Figure DEST_PATH_IMAGE064
;将
Figure DEST_PATH_IMAGE066
与上一次计算所用的进行比较;如果大于给定的阈值,表明还有可能大幅度的提高精度,将
Figure 399790DEST_PATH_IMAGE066
代入
Figure 162472DEST_PATH_IMAGE030
    
计算背景值
Figure DEST_PATH_IMAGE072
,再一次进行建模和预测运算;否则,迭代结束,输出预测结果;
预测结果
Figure DEST_PATH_IMAGE074
即为预测出的未来时刻的风电输出功率。                       
灰色模型预测流程如图3中所示。以某风电场日24小时风电输出功率为例,取预测时刻前10个小时的风电输出功率作为建模序列,首先利用上述灰色模型进行预测,输出预测结果;再进行下一时刻预测时,为了随时追踪前若干时刻的输出功率,下一个时刻预测前进行等维新息处理,在等维新息处理后,利用上述灰色模型进行下一个时刻预测,输出预测结果;如此反复,得到未来时刻的预测结果。图4为采用该预测模型预测的某日24小时的风电输出功率预测误差图,实例证明该方法具有可行性和有效性。
在采用该灰色模型进行风电输出功率预测过程中,根据具体实际情况还可通过输入数据的处理(如指数平滑法)和输出结果的残差处理(如残差GM(1,1)模型修正)等,达到减小误差的效果。

Claims (4)

1.一种基于灰色模型控制的风力发电储能装置,建立在风电场与电网之间,其特征在于:该储能装置主要由控制单元、AC/DC整流器、DC/AC逆变器、双向DC/DC变换器及储能用的超级电容器储能单元构成;控制单元分别连接AC/DC整流器、DC/AC逆变器和双向DC/DC变换器,AC/DC整流器与DC/AC逆变器之间连接有双向DC/DC变换器,双向DC/DC变换器与超级电容器储能单元(1)相连接。
2.根据权利要求1所述的基于灰色模型控制的风力发电储能装置,其特征在于:所述DC/DC变换器的低压端连接超级电容器储能单元(1),DC/DC变换器的高压端连接AC/DC整流器和DC/AC逆变器。
3.根据权利要求1所述的基于灰色模型控制的风力发电储能装置,其特征在于:所述双向DC/DC变换器用于实现直流低压侧超级电容器储能单元与直流高压侧之间的能量转换,其电路结构为:超级电容器储能单元(1)一端连接电感L的一端,电感L的另一端分别连接绝缘栅双极晶体管S1的发射极、绝缘栅双极晶体管S2的集电极、二极管D1的正极、二极管D2的负极,绝缘栅双极晶体管S1的集电极与二极管D1的负极连接电容C的一端,电容C的另一端连接绝缘栅双极晶体管S2的发射极、二极管D2的正极和超级电容器储能单元(1)的另一端。
4.根据权利要求1、2或3所述的基于灰色模型控制的风力发电储能装置,其特征在于:所述的超级电容器储能单元(1)为超级电容器的串联、并联或串并联组合。
CN2011202942771U 2011-08-15 2011-08-15 基于灰色模型控制的风力发电储能装置 Expired - Fee Related CN202167861U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011202942771U CN202167861U (zh) 2011-08-15 2011-08-15 基于灰色模型控制的风力发电储能装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011202942771U CN202167861U (zh) 2011-08-15 2011-08-15 基于灰色模型控制的风力发电储能装置

Publications (1)

Publication Number Publication Date
CN202167861U true CN202167861U (zh) 2012-03-14

Family

ID=45803665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011202942771U Expired - Fee Related CN202167861U (zh) 2011-08-15 2011-08-15 基于灰色模型控制的风力发电储能装置

Country Status (1)

Country Link
CN (1) CN202167861U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280896A (zh) * 2011-08-15 2011-12-14 沈阳工业大学 基于灰色模型控制的风力发电储能装置及方法
CN102832634A (zh) * 2012-08-28 2012-12-19 华北电力大学 基于超级电容和大容量储能装置的组合式功率平抑系统
CN103762920A (zh) * 2014-01-20 2014-04-30 漳州科华技术有限责任公司 用于发电机的变流器及其发电供电装置
CN103972914A (zh) * 2014-05-19 2014-08-06 华北科技学院 实现电能存储与再生双向dc/dc变流器方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280896A (zh) * 2011-08-15 2011-12-14 沈阳工业大学 基于灰色模型控制的风力发电储能装置及方法
CN102280896B (zh) * 2011-08-15 2014-01-08 沈阳工业大学 基于灰色模型控制的风力发电储能装置及方法
CN102832634A (zh) * 2012-08-28 2012-12-19 华北电力大学 基于超级电容和大容量储能装置的组合式功率平抑系统
CN103762920A (zh) * 2014-01-20 2014-04-30 漳州科华技术有限责任公司 用于发电机的变流器及其发电供电装置
CN103762920B (zh) * 2014-01-20 2017-07-04 漳州科华技术有限责任公司 用于发电机的变流器及其发电供电装置
CN103972914A (zh) * 2014-05-19 2014-08-06 华北科技学院 实现电能存储与再生双向dc/dc变流器方法

Similar Documents

Publication Publication Date Title
CN102280896B (zh) 基于灰色模型控制的风力发电储能装置及方法
CN109659980B (zh) 集成混合储能与光伏装置的牵引供电系统能量管理优化方法
CN103986190B (zh) 基于发电功率曲线的风光储联合发电系统平滑控制方法
Jiang et al. Two-time-scale coordination control for a battery energy storage system to mitigate wind power fluctuations
CN104734166B (zh) 混合储能系统及风力发电功率平滑控制方法
CN105262117B (zh) 一种风电爬坡优化控制方法
CN102545250A (zh) 锂电池储能的风电场功率平滑控制方法及装置和工作方法
CN113241803B (zh) 一种基于新能源消纳的储能调度方法及计算机介质
CN106230012A (zh) 并网光伏系统中超级电容器与蓄电池容量的优化配置方法
CN106026184A (zh) 一种面向电网调峰的抽水蓄能电站与风电联合系统及其优化调度方法
CN107846043B (zh) 一种考虑电动汽车充电影响的微网能量管理方法
CN202167861U (zh) 基于灰色模型控制的风力发电储能装置
CN106385048A (zh) 一种风光蓄一体化调度策略
CN105680771A (zh) 一种风光互补发电系统及控制方法
CN103023055A (zh) 利用复合储能技术平抑风光发电系统输出功率波动的方法
CN103560533B (zh) 基于变化率控制储能电站平滑风光发电波动的方法及系统
CN107846035B (zh) 一种考虑电动汽车充电特性的风光储并网型微网
CN107645194A (zh) 一种基于储能的风电场电能质量优化系统
CN115603383B (zh) 一种储能辅助火电机组调峰的容量配置及运行调度分层优化方法
Li et al. An improved dispatchable wind turbine generator and dual-battery energy storage system to reduce battery capacity requirement
Daud et al. An optimal state of charge feedback control strategy for battery energy storage in hourly dispatch of PV sources
CN106640523B (zh) 一种垂直轴风力发电系统的蓄电池充放电控制策略
CN106602592B (zh) 一种垂直轴风电系统中变流器与蓄电池容量优化配置方法
CN108964096A (zh) 消纳新能源弃电量的储能配置方法、系统、装置
Abedi et al. Smart energy storage system for integration of PMSG-based wind power plant

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120314

Termination date: 20140815

EXPY Termination of patent right or utility model