CN201928034U - 电容投切开关 - Google Patents

电容投切开关 Download PDF

Info

Publication number
CN201928034U
CN201928034U CN2011200297024U CN201120029702U CN201928034U CN 201928034 U CN201928034 U CN 201928034U CN 2011200297024 U CN2011200297024 U CN 2011200297024U CN 201120029702 U CN201120029702 U CN 201120029702U CN 201928034 U CN201928034 U CN 201928034U
Authority
CN
China
Prior art keywords
input
voltage zero
control circuit
capacitor
capacitor switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2011200297024U
Other languages
English (en)
Inventor
郭桥石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGZHOU JINSHI ELECTRONICS CO Ltd
Original Assignee
GUANGZHOU JINSHI ELECTRONICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGZHOU JINSHI ELECTRONICS CO Ltd filed Critical GUANGZHOU JINSHI ELECTRONICS CO Ltd
Priority to CN2011200297024U priority Critical patent/CN201928034U/zh
Application granted granted Critical
Publication of CN201928034U publication Critical patent/CN201928034U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Electronic Switches (AREA)

Abstract

本实用新型电容投切开关属于电开关领域,特别是一种能进行准确电压过零投入且可靠性高的电容投切开关。本电容投切开关采用光电耦合器和互感器双电压过零取样方式的电压过零检测电路,其结合互感器具有灵敏度高、一致性好和光电耦合器输入端相对于输出端分布电容量极小、抗干扰能力强的优点,相得益彰,控制电路利用光电耦合器输出和互感器输出的两个信号作为电压过零信号,使得本电容投切开关具有电压过零投入准确、涌流小、抗干扰强、电压过零检测电路能耗低、电寿命长、可靠性高的特点,更适合于需对电容做频繁投切的场合中使用。

Description

电容投切开关
技术领域
本实用新型电容投切开关属于电开关领域,特别是一种能进行准确电压过零投入且可靠性高的电容投切开关。
背景技术
目前在电力补偿系统中,广泛使用可控硅、同步开关这几种电容投切开关对电容进行投切,为了使电容投入无浪涌冲击电流,必须保证开关在接通时开关两端的电压过零准确,这就要求主回路开关两端的电压过零检测电路的检测准确和抗干扰能力强,目前常用的是光电耦合器输入端与限流电阻串联,由其输出端输出电压过零信号,由控制电路控制主回路开关电压过零接通,但光电耦合器存在驱动电流大和光电传输效率离散性大的缺点,同时由于电容储能的特点,电容投切开关分断后主回路开关两端存在电压叠加和直流电压分量,造成限流电阻能耗很大,如电容投切开关在频繁投切操作能耗和发热量将更大,为兼顾到可接受的能耗,目前极大多数的电容投切开关电压过零检测精度为正负50V左右,这样也会产生较大的浪涌电流,对负载电容和电容投切开关本身的使用寿命和可靠性带来不利的影响。
发明内容
本实用新型的目的在于避免现有电容投切开关的不足之处而提供一种采用双电压过零取样的能对电容准确电压过零投入且可靠性高的电容投切开关。
实现本实用新型的目的是通过以下技术方案来达到的,一种电容投切开关,其包括:
主回路开关;
控制电路,与主回路开关控制端连接,控制电路连接有供电电源;
电压过零检测电路,内置有光电耦合器与互感器,光电耦合器的输入端和互感器的输入端与主回路开关相连接,形成双电压过零取样方式,光电耦合器与互感器输出的信号连接至控制电路。
一种电容投切开关,主回路开关为可控硅。
一种电容投切开关,主回路开关为机械开关。
一种电容投切开关,电压过零检测电路的光电耦合器输入端与互感器输入端串联再通过限流电阻连接至主回路开关的输入端和输出端,光电耦合器与互感器输出的信号连接至控制电路。
一种电容投切开关,控制电路内置有整流电路,整流电路的交流输入端与电压过零检测电路的互感器输出端连接。
一种电容投切开关,控制电路连接有投入控制端口。
一种电容投切开关,控制电路内置有微控制器。
一种电容投切开关,控制电路内置有失电检测电路。
一种电容投切开关,失电检测电路的输入端连接至控制电路滤波电容的前级,失电检测电路与控制电路滤波电容之间至少有一单向整流元件隔离。
一种电容投切开关,失电检测电路输出信号为全波信号。
其工作原理:控制电路上电或得到电容投切开关的投切控制信号时,控制电路对电压过零检测电路内置光电耦合器提供的信号和电压过零检测电路内置互感器提供的信号进行判断,再由控制电路输出控制电容投切开关主回路接通。
本实用新型设计合理,本电容投切开关电压过零检测电路采用光电耦合器和互感器双电压过零取样方式,其结合互感器具有灵敏度高、一致性好的优点,来克服光电耦合器存在驱动电流大和光电传输效率离散性大的缺点;利用光电耦合器输入端相对于输出端分布电容量极小、抗干扰能力强的优点,来弥补电压互感器输入端相对于输出端分布电容较大、抗干扰较差的缺点;同时光电耦合器和互感器的输入端输出端都是电气隔离,控制电路利用光电耦合器输出和互感器输出的两个信号作为电压过零信号,可以使得电压过零检测电路选用阻值较大、功率较小的限流电阻,也可达到电压过零准确到正负几伏的电压范围内,本电容投切开关具有电压过零投入准确、涌流小、抗干扰强、电压过零检测电路能耗低、电寿命长、更可靠的特点,更适合于需对电容做频繁投切的场合中使用。
附图说明
附图1是本实用新型电容投切开关实施例之一电路示意图。
附图2是本实用新型电容投切开关实施例之二电路示意图。
具体实施方式
如附图1所示的电容投切开关其主回路开关为可控硅,电压过零检测电路B连接至可控硅SCR1输入输出端,J1、J2分别为主回路开关可控硅SCR1的输入、输出端点,可控硅SCR1导通控制端连接至控制电路A,J3、J4为控制电路A电源输入端,J5、J6为控制电容投切开关投入的控制信号输入端。
电压过零检测电路B:光电耦合器OPT1输入端与互感器T1输入端串联再通过限流电阻R1连接至可控硅SCR1的输入和输出端,光电耦合器OPT1输出端和互感器T1输出端连接至控制电路A。(注:光电耦合器OPT1输入端与互感器T1输入端也可以分别通过限流电阻连接至可控硅SCR1的输入和输出端,但需增加一只限流电阻,工作原理相同)
控制电路A:其以微控制器MCU(此实施例MCU型号以F300为例)为控制核心,控制电路工作电源由J3、J4端点输入电源经变压器T2压降,经整流电路BR1整流、二极管D1、电容C1和C2滤波后,一路通过IC1稳压、电容C3和C4滤波给MCU供电;另一路给触发变压器T3供电,在滤波电容C1的前级,即二极管D1的阳极端连接有由电阻R3和三极管Q3组成的失电检测电路(注:由于失电检测电路输出的是全波信号,失电检测电路能够在电网失电半个周波时间内,使微控制器MCU得到响应,以最短的时间关断可控硅SCR1,防止电网短时间来电造成对开关和电容产生冲击损坏,失电检测电路必须放在控制电路滤波电容的前级,可以是前一级或以上),三极管Q3输出端连接至微控制器MCU的P0.2口,J5、J6输入的控制电容投切开关投入的控制信号通过光电耦合器OPT2输入到微控制器MCU的P0.4口,由电压过零检测电路B的互感器T1输出信号通过整流电路BR2和电平转换三极管Q2连接至微控制器MCU的P0.5口,电压过零检测电路B的光电耦合器OPT1输出信号直接连接至微控制器MCU的P0.5口,微控制器MCU的P0.0口输出脉冲信号驱动三极管Q1,由触发变压器T3驱动可控硅SCR1导通。
工作过程:在控制电路A上电后,微控制器MCU得电工作,当微控制器MCU的P0.4端口检测到投入控制信号,微控制器MCU在P0.5端口输入的电压过零时,微控制器MCU的P0.0端口输出脉冲信号给Q1,再由T3输出触发可控硅SCR1电压过零导通,当微控制器MCU的P0.4端口检测到无投入控制信号时或微控制器MCU的P0.2口检测到输入电源失电时,微控制器MCU的P0.0关闭脉冲信号输出,并置为低电平,可控硅SCR1电流过零关断。
如附图2所示的电容投切开关(即同步电容投切开关)其主回路开关为机械开关,电压过零检测电路B连接至机械开关KM1的输入输出端,J1、J2分别为机械开关KM1的输入、输出端点,机械开关KM1的导通控制端(即其控制线圈)连接至控制电路A,J3、J4为控制电路A电源输入端,J5、J6为控制电容投切开关投入的控制信号输入端。
电压过零检测电路B:光电耦合器OPT1输入端与互感器T1输入端串联再通过限流电阻R1连接至机械开关KM1的输入和输出端,光电耦合器OPT1输出端和互感器T1输出端连接至控制电路A。
控制电路A:其以微控制器MCU(此实施例MCU型号以F300为例)为控制核心,控制电路工作电源由J3、J4端点输入电源经变压器T2压降,经整流电路BR1整流、二极管D1、电容C1和C2滤波后,一路通过IC1稳压、电容C3和C4滤波给微控制器MCU供电;另一路通过IC2稳压、电容C5和C6滤波给机械开关KM1的控制线圈供电,在滤波电容C1的前级,即二极管D1的阳极端连接有由电阻R3和三极管Q3组成的失电检测电路(注:由于失电检测电路输出的是全波信号,失电检测电路能够在电网失电半个周波时间内,使MCU得到响应,以最短的时间关断机械开关KM1,防止电网短时间来电造成对开关和电容产生冲击损坏,失电检测电路必须放在控制电路滤波电容的前级,可以是前一级或以上),三极管Q3输出端连接至微控制器MCU的P0.2口,J5、J6输入的控制电容投切开关投入的控制信号通过光电耦合器OPT2输入到微控制器MCU的P0.4口,由电压过零检测电路B的互感器T1输出信号通过整流电路BR2和电阻R8转换为直流电压信号连接至微控制器MCU的P0.5口,电压过零检测电路B的光电耦合器OPT1输出信号直接连接至微控制器MCU的P0.6口,微控制器MCU的P0.0口和P0.1分别输出高电平脉冲信号驱动三极管Q1、三极管Q2,作为机械开关KM1接通和分断的控制信号(注:此实施例机械开关KM1电磁系统为磁保持结构)。
工作过程:在控制电路A上电后,微控制器MCU得电工作,当微控制器MCU的P0.4端口检测到投入控制信号,微控制器MCU在P0.5端口(微控制器MCU对P0.5端口的输入信号模/数转换)和P0.6端口输入的电压过零时,开始打开定时器定时,根据机械开关KM1的控制线圈上电到机械开关KM1闭合的时间差来计算出微控制器MCU的P0.0端口输出脉冲信号的滞后时间,使得在电压过零时机械开关KM1接通,微控制器MCU的P0.0端口输出脉冲信号期间,微控制器MCU不断检测P0.5端口和P0.6端口输入的电压过零信号,如机械开关KM1闭合不是在电压零点的要求范围内,修正微控制器MCU的存储器数据,以便下次准确电压过零投入,在机械开关KM1闭合期间,当微控制器MCU的P0.4端口检测到无投入控制信号时或微控制器MCU的P0.2口检测到输入电源失电时,微控制器MCU的P0.1输出高电平脉冲信号,机械开关KM1分断,在机械开关KM1分断操作期间,微控制器MCU不断检测P0.5端口和P0.6端口输入的电压过零信号,如机械开关KM1分断不是在电压零点的要求范围内,修正微控制器MCU的存储器数据,以便下次准确电压过零分断。
在上述实施例一可控硅实施例采用双向可控硅,在实际应用中也可以采用两只单向可控硅反向并联,工作原理相同,实施例二中的机械开关可以是机械触点任何开关,如继电器、接触器、气动开关等,实施例一和实施例二中的微控制器也可以采用其它型号替代,工作原理相同。

Claims (10)

1.一种电容投切开关,其特征在于,包括:
主回路开关;
控制电路,与主回路开关控制端连接,控制电路连接有供电电源;
电压过零检测电路,内置有光电耦合器与互感器,所述光电耦合器的输入端和所述互感器的输入端与所述主回路开关相连接,形成双电压过零取样方式,所述光电耦合器与所述互感器输出的信号连接至所述控制电路。
2.根据权利要求1所述的电容投切开关,其特征在于所述主回路开关为可控硅。
3.根据权利要求1所述的电容投切开关,其特征在于所述主回路开关为机械开关。
4.根据权利要求1所述的电容投切开关,其特征在于所述电压过零检测电路的所述光电耦合器输入端与所述互感器输入端串联再通过限流电阻连接至所述主回路开关的输入端和输出端,所述光电耦合器与所述互感器输出的信号连接至所述控制电路。
5.根据权利要求1所述的电容投切开关,其特征在于所述控制电路内置有整流电路,所述整流电路的交流输入端与所述电压过零检测电路的所述互感器输出端连接。
6.根据权利要求1所述的电容投切开关,其特征在于所述控制电路连接有投入控制端口。
7.根据权利要求1所述的电容投切开关,其特征在于所述控制电路内置有微控制器。
8.根据权利要求1所述的电容投切开关,其特征在于所述控制电路内置有失电检测电路。
9.根据权利要求8所述的电容投切开关,其特征在于所述失电检测电路的输入端连接至所述控制电路滤波电容的前级,所述失电检测电路与所述控制电路滤波电容之间至少有一单向整流元件隔离。
10.根据权利要求9所述的电容投切开关,其特征在于所述失电检测电路输出信号为全波信号。
CN2011200297024U 2011-01-19 2011-01-19 电容投切开关 Expired - Lifetime CN201928034U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011200297024U CN201928034U (zh) 2011-01-19 2011-01-19 电容投切开关

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011200297024U CN201928034U (zh) 2011-01-19 2011-01-19 电容投切开关

Publications (1)

Publication Number Publication Date
CN201928034U true CN201928034U (zh) 2011-08-10

Family

ID=44431869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011200297024U Expired - Lifetime CN201928034U (zh) 2011-01-19 2011-01-19 电容投切开关

Country Status (1)

Country Link
CN (1) CN201928034U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323472A (zh) * 2011-09-08 2012-01-18 广州市金矢电子有限公司 电压过零检测装置及过零投切开关
CN102611115A (zh) * 2011-01-19 2012-07-25 广州市金矢电子有限公司 电容投切开关
CN102323472B (zh) * 2011-09-08 2016-12-14 广州市金矢电子有限公司 电压过零检测装置及过零投切开关

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611115A (zh) * 2011-01-19 2012-07-25 广州市金矢电子有限公司 电容投切开关
CN102611115B (zh) * 2011-01-19 2017-04-12 广州市金矢电子有限公司 电容投切开关
CN102323472A (zh) * 2011-09-08 2012-01-18 广州市金矢电子有限公司 电压过零检测装置及过零投切开关
CN102323472B (zh) * 2011-09-08 2016-12-14 广州市金矢电子有限公司 电压过零检测装置及过零投切开关

Similar Documents

Publication Publication Date Title
CN103219877B (zh) 一种电容放电电路及变换器
CN106129509B (zh) 一种充放电控制器集成蓄电池
CN105572523A (zh) 一种交流电的检测电路
CN101882879B (zh) 恒流源转恒压源电路及使用该电路的灯具
CN103399215B (zh) 三相交流电的缺相和低压检测电路
CN201724988U (zh) 一种高压变频器功率单元输入缺相检测器
CN102638063A (zh) 电池组电位平衡电路
CN102222904A (zh) 一种直流双路供电电源
CN103138355A (zh) 一种充放电控制系统
CN202026077U (zh) 一种开关电源的短路保护电路及控制器、开关电源
CN102222927A (zh) 基于超级电容器的动态电压恢复器
CN203377777U (zh) 一种辅助电源的软起电路
CN205051933U (zh) Led的驱动电源
CN103532226A (zh) 基于超级电容器储能的电力操作电源
CN105553245A (zh) 一种软启动电路
CN203617719U (zh) 基于电磁式零投切低压复合开关的低压电力电容器
CN102916470A (zh) 一种用于串联电池之间能量转移的电池能量转移电路
CN103872785A (zh) 电能储存装置
CN201928034U (zh) 电容投切开关
CN202678217U (zh) 一种磁保持继电器驱动电路
CN102158066B (zh) 确保断路器和负荷开关的储能电机储能到位的直流电源
CN208479251U (zh) Ups冷启动系统
CN204681289U (zh) 太阳能供电装置
CN203595790U (zh) 无源开关隔离检测装置
CN201828602U (zh) 低功耗掉电检测电路

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20110810

Effective date of abandoning: 20171114