CN201726176U - Charge control circuit with bidirectional reverse connection protection for storage batteries - Google Patents
Charge control circuit with bidirectional reverse connection protection for storage batteries Download PDFInfo
- Publication number
- CN201726176U CN201726176U CN2010202701075U CN201020270107U CN201726176U CN 201726176 U CN201726176 U CN 201726176U CN 2010202701075 U CN2010202701075 U CN 2010202701075U CN 201020270107 U CN201020270107 U CN 201020270107U CN 201726176 U CN201726176 U CN 201726176U
- Authority
- CN
- China
- Prior art keywords
- resistor
- photocoupler
- terminal
- diode
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002457 bidirectional effect Effects 0.000 title claims abstract description 21
- 239000003990 capacitor Substances 0.000 claims abstract description 56
- 230000005669 field effect Effects 0.000 claims abstract description 53
- 239000013078 crystal Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 230000005622 photoelectricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及蓄电池充电保护技术,特别是一种采用双向反接保护的蓄电池充电控制电路。The utility model relates to battery charging protection technology, in particular to a battery charging control circuit adopting bidirectional reverse connection protection.
背景技术Background technique
目前,采用新能源成为当前人类面临的迫切课题。在采用新能源用于动力和照明时,往往需要配置蓄电池供电系统。在使用蓄电池供电系统时,无论充电电源反接还是蓄电池反接,都会带来严重的后果。现有技术中,普遍采用熔断器、继电器、二极管、晶闸管、晶体三极管和二极管与场效应管串联对充电电源反接或蓄电池反接进行保护,采用以上方法都存在以下缺点:At present, the adoption of new energy has become an urgent issue facing mankind. When using new energy for power and lighting, it is often necessary to configure a battery power supply system. When using a battery-powered system, no matter whether the charging power supply or the battery is reversed, it will bring serious consequences. In the prior art, fuses, relays, diodes, thyristors, transistors and diodes are generally used in series with field effect transistors to protect the reverse connection of the charging power supply or the reverse connection of the battery. The above methods all have the following disadvantages:
采用熔断器一次性保护虽然简单,熔断器熔断后,需要人工更换新的熔断器,十分不方便;Although it is simple to use a fuse for one-time protection, it is very inconvenient to manually replace a new fuse after the fuse is blown;
采用继电器保护,大电流工作时触点容易烧毁,且触点通断次数有限;采用二极管、晶闸管、晶体三极管和二极管与场效应管串联保护均有导通电阻大,大电流工作时功率损耗大等等。Relay protection is used, the contacts are easy to burn out when working with high current, and the number of contact on and off is limited; diodes, thyristors, transistors, and diodes and field effect transistors are used for series protection, and the on-resistance is large, and the power loss is large when working at high currents. etc.
实用新型内容Utility model content
本实用新型的目的是克服现有技术的上述不足而提供一种采用双向反接保护的蓄电池充电控制电路。The purpose of the utility model is to overcome the above-mentioned shortcomings of the prior art and provide a battery charging control circuit using bidirectional reverse connection protection.
本实用新型的技术方案是:一种采用双向反接保护的蓄电池充电控制电路,是由端子1、输入端子2、端子3、P沟道场效应管4、电阻5、P沟道场效应管6、二极管7、电阻8、电阻9、二极管10、电容11、电阻12、光电耦合器13、电阻14、光电耦合器15、电阻16、电容17、NPN晶体三极管18、电阻19、电容20、电阻21、端子22、端子23组成。The technical scheme of the utility model is: a storage battery charging control circuit adopting bidirectional reverse connection protection, which is composed of
端子1分别与二极管7正极、P沟道场效应管4的源极(S)、电阻8连接,电阻8的另一端分别与P沟道场效应管4的栅极(G)、电阻14、P沟道场效应管6的栅极(G)、电阻9连接,电阻9的另一端分别与P沟道场效应管6的源极(S)、二极管10正极、端子22连接,电阻5的一端与P沟道场效应管4的漏极(D)连接,电阻5的另一端与P沟道场效应管6的漏极(D)连接,二极管7负极分别与电阻12、电容11连接,电阻12的另一端与光电耦合器13中的发光二极管正极连接,电容11的另一端接地,光电耦合器13中的发光二极管负极接地,光电耦合器13中的光敏三极管集电极与光电耦合器15中的光敏三极管发射极连接,光电耦合器13中的光敏三极管发射极与NPN晶体三极管18的集电极连接,NPN晶体三极管18的发射极接地,NPN晶体三极管18的基极分别与电阻19、电阻21连接,电阻21的另一端接地,电阻19的另一端与电容20连接并与输入端子2连接,电容20的另一端接地,光电耦合器15中的光敏三极管集电极与电阻14的另一端连接,二极管10负极分别与电阻16、电容17连接,电容17的另一端接地,电阻16的另一端与光电耦合器15中的发光二极管正极连接,光电耦合器15中的发光二极管负极接地,端子3和端子23接地。
本实用新型进一步的技术方案是:可以用PNP型晶体管替代P沟道场效应管4和P沟道场效应管6。这时,连接到P沟道场效应管栅极(G)、漏极(D)和源极(S)的位置分别被PNP型晶体管基极(B)、集电极(C)和发射极(E)所一一对应替换。在PNP型晶体管内部没有集成续流二极管的,在替换使用时,每只PNP型晶体管集电极(C)和发射极(E)之间需要连接一只二极管,其正极连接PNP型晶体管集电极(C),负极连接PNP型晶体管发射极(E)。The further technical solution of the utility model is: the P-channel
本实用新型再进一步的技术方案是:可以用N沟道场效应管替代P沟道场效应管4和P沟道场效应管6。这时,充电电源24与蓄电池25正常工作时的的极性均应反接,即充电电源24负极连接到端子1、充电电源24正极接地;蓄电池25负极连接到端子22,蓄电池25正极接地。A further technical solution of the utility model is: the P-
本实用新型更进一步的技术方案是:可以用NPN型晶体管替代N沟道场效应管,这时,连接到N沟道场效应管栅极(G)、漏极(D)和源极(S)的位置分别被NPN型晶体管基极(B)、集电极(C)和发射极(E)所一一对应替换。在NPN型晶体管内部没有集成续流二极管的,在替换使用时,每只NPN型晶体管集电极(C)和发射极(E)之间需要连接一只二极管,其正极连接NPN型晶体管发射极(E),负极连接NPN型晶体管集电极(C)。The further technical scheme of the utility model is: the N channel field effect transistor can be replaced with the NPN type transistor, at this moment, be connected to the N channel field effect transistor grid (G), drain (D) and source (S) The positions are replaced one by one by the NPN transistor base (B), collector (C) and emitter (E). There is no freewheeling diode integrated inside the NPN transistor. When replacing it, a diode needs to be connected between the collector (C) and emitter (E) of each NPN transistor, and its anode is connected to the emitter of the NPN transistor ( E), the negative pole is connected to the NPN transistor collector (C).
本实用新型提供的采用双向反接保护的蓄电池充电控制电路其工作原理如下:正常情况下,充电电源24正极连接到端子1,充电电源24负极接地,蓄电池25正极连接到端子22,蓄电池25负极接地。充电电源24正极电压加载于二极管7正极时,二极管7导通,电流通过二极管7、电阻12、光电耦合器13中发光二极管正极、光电耦合器13中发光二极管负极接地形成回路,光电耦合器13中发光二极管工作,光电耦合器13中光敏三极管导通。蓄电池25正极电压加载于二极管10正极时,二极管10导通,电流通过二极管10、电阻16、光电耦合器15中发光二极管正极、光电耦合器15中发光二极管负极接地形成回路,光电耦合器15中发光二极管工作,光电耦合器15中光敏三极管导通。因为P沟道场效应管4的栅极(G)和P沟道场效应管6的栅极(G)均通过电阻14、光电耦合器13中光敏三极管、光电耦合器15中光敏三极管、NPN晶体三极管18接地,所以当光电耦合器15中光敏三极管、光电耦合器15中光敏三极管、NPN晶体三极管18均处于导通状态时,P沟道场效应管4和P沟道场效应管6也会同时处于导通状态。这时,充电电源24正极通过P沟道场效应管4、电阻5和P沟道场效应管6与蓄电池25正极连通,充电电源24向蓄电池25正常充电。本实用新型电路可以工作在单纯保护状态,也可以工作在可编程状态:电路工作在单纯保护状态时,应该使输入端子2始终处于高电平;电路工作在可编程状态时,通过输入端子2输入编程信号如脉宽调制(PWM)信号。电阻5连接在P沟道场效应管4的漏极(D)和P沟道场效应管6的漏极(D)之间,其作用一是限流;二是当充电电源或蓄电池错误连接时建立反接保护的起始电压。The working principle of the storage battery charging control circuit with bidirectional reverse connection protection provided by the utility model is as follows: under normal circumstances, the positive pole of the
由于现代场效应管制造技术的进步,场效应管的导通电阻可以非常小(最低可达几毫欧)。因此,通过选择场效应管4和场效应管6,可以使得本实用新型的功率消耗很小,能够很好地在大电流状态下工作。电路中光电耦合器13中光敏三极管、光电耦合器15中光敏三极管、NPN晶体三极管18组成三输入端与门电路,当光电耦合器13中光敏三极管、光电耦合器15中光敏三极管同时导通时,通过输入端子2控制NPN晶体三极管18可以实现各项所需功能:①可编程充电功能:输入脉宽调制(PWM)等编程信号控制充电过程;②开关功能:输入高电平或低电平即可开通或关断充电电路;③保护功能:在电路过电流、过电压时可关断电路。Due to the advancement of modern field effect transistor manufacturing technology, the on-resistance of field effect transistors can be very small (as low as several milliohms). Therefore, by selecting the
如果出现充电电源或蓄电池连接错误,电路可能出现三种连接状态:If there is a wrong connection of the charging power supply or battery, the circuit may have three connection states:
1、充电电源反接:1. Reverse connection of charging power supply:
充电电源24反接时,电源负极误连接到端子1、电源正极接地;蓄电池25正常连接,即蓄电池25正极连接到端子22,蓄电池25负极接地。这时,充电电源24负极电压加载于二极管7正极,在这种情况下二极管7不会导通,没有电流流过由电阻12、光电耦合器13中发光二极管正极、光电耦合器13中发光二极管负极接地形成的回路,光电耦合器13中发光二极管不工作,光电耦合器13中光敏三极管关断。由于P沟道场效应管4的栅极(G)和P沟道场效应管6的栅极(G)通过电阻14和由光电耦合器13中光敏三极管、光电耦合器15中光敏三极管、NPN晶体三极管18组成的三输入端与门接地,所以当光电耦合器15中光敏三极管、光电耦合器15中光敏三极管和NPN晶体三极管18中任一器件关断均会同时关断P沟道场效应管4和P沟道场效应管6,从而断开充电电源24负极与蓄电池25正极之间的电气连接,有效地保护了充电电源24与蓄电池25。When the
2、蓄电池反接:2. Reverse battery connection:
蓄电池25反接时,蓄电池25负极误连接端子22、蓄电池25正极连接到地;充电电源24正常连接,即充电电源24正极连接到端子1,电源负极接地。这时,蓄电池25负极电压加载于二极管10正极,在这种情况下二极管10不会导通,没有电流流过由电阻16、光电耦合器15中发光二极管正极、光电耦合器15中发光二极管负极接地形成的回路,光电耦合器15中发光二极管不工作,光电耦合器15中光敏三极管关断。由于P沟道场效应管4的栅极(G)和P沟道场效应管6的栅极(G)通过电阻14和由光电耦合器13中光敏三极管、光电耦合器15中光敏三极管、晶体三极管18组成的三输入端与门接地,所以当光电耦合器15中光敏三极管、光电耦合器15中光敏三极管和晶体三极管18中任一器件关断均会同时关断P沟道场效应管4和P沟道场效应管6,从而断开了充电电源24正极与蓄电池25负极之间的电气连接,有效地保护了充电电源24与蓄电池25。When the
3、充电电源和蓄电池均反接:3. Both the charging power supply and the battery are reversely connected:
由上述1、2两种电路连接状态的原理可以得出,当充电电源24和蓄电池25均反接时,光电耦合器13、光电耦合器15中发光二极管均不工作,光电耦合器15中光敏三极管、光电耦合器15中光敏三极管关断,同时关断了P沟道场效应管4和P沟道场效应管6,从而断开了充电电源24负极与蓄电池25负极之间的电气连接,有效地保护了充电电源24与蓄电池25。Can draw from above-mentioned 1, the principle of two kinds of circuit connection states of 2, when charging
由于本实用新型采用全对称电路设计,所以,在实际使用中端子1可以与端子22互换连接,端子3可以与端子23互换连接,极大地提高了电路的可靠性。Since the utility model adopts a fully symmetrical circuit design, in actual use, the
本实用新型与现有技术相比具有如下特点:Compared with the prior art, the utility model has the following characteristics:
1、本实用新型采用全对称电路设计,在实际使用中输入端子可以与输出端子互换使用,极大地提高了电路工作的可靠性。1. The utility model adopts a fully symmetrical circuit design. In actual use, the input terminal can be used interchangeably with the output terminal, which greatly improves the reliability of the circuit operation.
2、本实用新型采用大功率MOS场效应管作为保护器件时,其导通电阻非常小(最低可达几毫欧),使用时的功率损耗远低于采用其它元件如二极管或可控硅的电路,因此可以很好地在大电流状态下工作。2. When the utility model adopts a high-power MOS field effect transistor as a protection device, its on-resistance is very small (the lowest can reach several milliohms), and the power loss during use is far lower than that of other components such as diodes or thyristors. circuit, so it can work well under high current conditions.
3、本实用新型在实现对充电电源和蓄电池双向反接保护的同时,还可对蓄电池进行可编程充电,其应用于电动汽车和其它电动车辆等各类大功率蓄电池供电系统,将大大提高系统的工作性能和可靠性。3. The utility model realizes the bidirectional reverse connection protection of the charging power source and the storage battery, and can also carry out programmable charging on the storage battery. It is applied to various high-power storage battery power supply systems such as electric vehicles and other electric vehicles, and will greatly improve the power supply of the system. performance and reliability.
4、本实用新型尤其适合于在太阳能风能供电系统中对蓄电池进行可编程充电和双向反接保护,提高了太阳能风能供电系统的工作性能和可靠性。4. The utility model is especially suitable for programmable charging and bidirectional reverse connection protection for storage batteries in a solar-wind energy power supply system, which improves the working performance and reliability of the solar-wind energy power supply system.
5、本实用新型还可广泛使用于各类直流供电系统,使其得到有效的保护,提高系统的可靠性,减少因使用不当造成的意外损失。5. The utility model can also be widely used in various DC power supply systems, so that it can be effectively protected, improve the reliability of the system, and reduce accidental losses caused by improper use.
以下结合附图和具体实施方式对本实用新型的详细结构作进一步描述。The detailed structure of the present utility model will be further described below in conjunction with the accompanying drawings and specific embodiments.
附图说明Description of drawings
附图1为本实用新型采用P沟道场效应管的电路示意图;Accompanying drawing 1 is the circuit schematic diagram that the utility model adopts P channel field effect transistor;
附图2为本实用新型采用PNP晶体管的电路示意图;Accompanying drawing 2 is the circuit diagram that the utility model adopts PNP transistor;
附图3为本实用新型采用N沟道场效应管的电路示意图;Accompanying drawing 3 is the circuit schematic diagram that the utility model adopts N channel FET;
附图4为本实用新型采用NPN晶体管的电路示意图。Accompanying drawing 4 is the circuit schematic diagram that the utility model adopts NPN transistor.
具体实施方式Detailed ways
实施例一、如附图1所示:一种采用双向反接保护的蓄电池充电控制电路,是由端子1、输入端子2、端子3、P沟道场效应管4、电阻5、P沟道场效应管6、二极管7、电阻8、电阻9、二极管10、电容11、电阻12、光电耦合器13、电阻14、光电耦合器15、电阻16、电容17、NPN晶体三极管18、电阻19、电容20、电阻21、端子22、端子23组成。
端子1分别与二极管7正极、P沟道场效应管4的源极(S)、电阻8连接,电阻8的另一端分别与P沟道场效应管4的栅极(G)、电阻14、P沟道场效应管6的栅极(G)、电阻9连接,电阻9的另一端分别与P沟道场效应管6的源极(S)、二极管10正极、端子22连接,电阻5的一端与P沟道场效应管4的漏极(D)连接,电阻5的另一端与P沟道场效应管6的漏极(D)连接,二极管7负极分别与电阻12、电容11连接,电阻12的另一端与光电耦合器13中的发光二极管正极连接,电容11的另一端接地,光电耦合器13中的发光二极管负极接地,光电耦合器13中的光敏三极管集电极与光电耦合器15中的光敏三极管发射极连接,光电耦合器13中的光敏三极管发射极与NPN晶体三极管18的集电极连接,NPN晶体三极管18的发射极接地,NPN晶体三极管18的基极分别与电阻19、电阻21连接,电阻21的1另一端接地,电阻19的另一端与电容20连接并与输入端子2连接,电容20的另一端接地,光电耦合器15中的光敏三极管集电极与电阻14的另一端连接,二极管10负极分别与电阻16、电容17连接,电容17的另一端接地,电阻16的另一端与光电耦合器15中的发光二极管正极连接,光电耦合器15中的发光二极管负极接地,端子3和端子23接地。Terminal 1 is respectively connected with the anode of diode 7, the source (S) of P channel field effect transistor 4, and resistor 8, and the other end of resistor 8 is respectively connected with the grid (G) of P channel field effect transistor 4, resistor 14, P channel The grid (G) of the Doff 6 is connected to the resistor 9, and the other end of the resistance 9 is connected to the source (S) of the P-channel FET 6, the positive pole of the diode 10, and the terminal 22 respectively, and one end of the resistor 5 is connected to the P-channel The drain (D) of the Doff FET 4 is connected, the other end of the resistor 5 is connected with the drain (D) of the P channel FET 6, the negative pole of the diode 7 is connected with the resistor 12 and the capacitor 11 respectively, and the other end of the resistor 12 is connected with the The positive pole of the light-emitting diode in the photocoupler 13 is connected, the other end of the capacitor 11 is grounded, the negative pole of the light-emitting diode in the photocoupler 13 is grounded, the collector of the phototransistor in the photocoupler 13 and the emitter of the phototransistor in the photocoupler 15 Connect, the phototransistor emitter in the photocoupler 13 is connected with the collector of the NPN transistor 18, the emitter of the NPN transistor 18 is grounded, the base of the NPN transistor 18 is connected with the resistor 19 and the resistor 21 respectively, and the resistor 21 1. The other end of the
实施例二、如附图2所示:一种采用双向反接保护的蓄电池充电控制电路,是由端子1、输入端子2、端子3、PNP晶体管4、电阻5、PNP晶体管6、二极管7、电阻8、电阻9、二极管10、电容11、电阻12、光电耦合器13、电阻14、光电耦合器15、电阻16、电容17、NPN晶体三极管18、电阻19、电容20、电阻21、端子22、端子23、二极管26、二极管27组成。
端子1分别与二极管7正极、PNP晶体管4的发射极(E)、电阻8、二极管26负极连接,电阻8的另一端分别与PNP晶体管4的基极(B)、电阻14、PNP晶体管6的基极(B)、电阻9连接,电阻9的另一端分别与PNP晶体管6的发射极(E)、二极管27负极、二极管10正极、端子22连接,电阻5的一端与PNP晶体管4的集电极(C)、二极管26正极连接,电阻5的另一端与PNP晶体管6的集电极(C)、二极管27正极连接,二极管7负极分别与电阻12、电容11连接,电阻12的另一端与光电耦合器13中的发光二极管正极连接,电容11的另一端接地,光电耦合器13中的发光二极管负极接地,光电耦合器13中的光敏三极管集电极与光电耦合器15中的光敏三极管发射极连接,光电耦合器13中的光敏三极管发射极与NPN晶体三极管18的集电极连接,NPN晶体三极管18的发射极接地,NPN晶体三极管18的基极分别与电阻19、电阻21连接,电阻21的1另一端接地,电阻19的另一端与电容20连接并与输入端子2连接,电容20的另一端接地,光电耦合器15中的光敏三极管集电极与电阻14的另一端连接,二极管10负极分别与电阻16、电容17连接,电容17的另一端接地,电阻16的另一端与光电耦合器15中的发光二极管正极连接,光电耦合器15中的发光二极管负极接地,端子3和端子23接地。Terminal 1 is respectively connected with the emitter (E) of diode 7 anodes,
实施例三、如附图3所示:一种采用双向反接保护的蓄电池充电控制电路,是由端子1、输入端子2、端子3、N沟道场效应管4、电阻5、N沟道场效应管6、二极管7、电阻8、电阻9、二极管10、电容11、电阻12、光电耦合器13、电阻14、光电耦合器15、电阻16、电容17、PNP晶体三极管18、电阻19、电容20、电阻21、端子22、端子23组成。
端子1分别与二极管7负极、N沟道场效应管4的源极(S)、电阻8连接,电阻8的另一端分别与N沟道场效应管4的栅极(G)、电阻14、N沟道场效应管6的栅极(G)、电阻9连接,电阻9的另一端分别与N沟道场效应管6的源极(S)、二极管10负极、端子22连接,电阻5的一端与N沟道场效应管4的漏极(D)连接,电阻5的另一端与N沟道场效应管6的漏极(D)连接,二极管7正极分别与电阻12、电容11连接,电阻12的另一端与光电耦合器13中的发光二极管负极连接,电容11的另一端接地,光电耦合器13中的发光二极管正极接地,光电耦合器13中的光敏三极管发射极与光电耦合器15中的光敏三极管集电极连接,光电耦合器13中的光敏三极管集电极与PNP晶体三极管18的集电极连接,PNP晶体三极管18的发射极接地,PNP晶体三极管18的基极分别与电阻19、电阻21连接,电阻21的1另一端接地,电阻19的另一端与电容20连接并与输入端子2连接,电容20的另一端接地,光电耦合器15中的光敏三极管发射极与电阻14的另一端连接,二极管10正极分别与电阻16、电容17连接,电容17的另一端接地,电阻16的另一端与光电耦合器15中的发光二极管负极连接,光电耦合器15中的发光二极管正极接地,端子3和端子23接地。Terminal 1 is respectively connected with the cathode of diode 7, the source (S) of N-channel
实施例四、如附图4所示:一种采用双向反接保护的蓄电池充电控制电路,是由端子1、输入端子2、端子3、NPN晶体管4、电阻5、NPN晶体管6、二极管7、电阻8、电阻9、二极管10、电容11、电阻12、光电耦合器13、电阻14、光电耦合器15、电阻16、电容17、PNP晶体三极管18、电阻19、电容20、电阻21、端子22、端子23、二极管26、二极管27组成。
端子1分别与二极管7负极、NPN晶体管4的发射极(E)、电阻8、二极管26正极连接,电阻8的另一端分别与NPN晶体管4的基极(B)、电阻14、NPN晶体管6的基极(B)、电阻9连接,电阻9的另一端分别与NPN晶体管6的发射极(E)、二极管10负极、二极管27正极、端子22连接,电阻5的一端与NPN晶体管4的集电极(C)、二极管26负极连接,电阻5的另一端与NPN晶体管6的集电极(C)、二极管27负极连接,二极管7正极分别与电阻12、电容11连接,电阻12的另一端与光电耦合器13中的发光二极管负极连接,电容11的另一端接地,光电耦合器13中的发光二极管正极接地,光电耦合器13中的光敏三极管发射极与光电耦合器15中的光敏三极管集电极连接,光电耦合器13中的光敏三极管集电极与PNP晶体三极管18的集电极连接,PNP晶体三极管18的发射极接地,PNP晶体三极管18的基极分别与电阻19、电阻21连接,电阻21的1另一端接地,电阻19的另一端与电容20连接并与输入端子2连接,电容20的另一端接地,光电耦合器15中的光敏三极管发射极与电阻14的另一端连接,二极管10正极分别与电阻16、电容17连接,电容17的另一端接地,电阻16的另一端与光电耦合器15中的发光二极管负极连接,光电耦合器15中的发光二极管正极接地,端子3和端子23接地。Terminal 1 is respectively connected with the emitter (E) of diode 7 cathodes,
本文中所描述的具体实施例仅仅是对本实用新型的构思作具体说明,本实用新型所属技术领域的技术人员可以对所描述的具体实施例做各式各样的修改或补充或采用类似的方式替代,但并不会偏离本实用新型的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are only a specific illustration of the concept of the present utility model, and those skilled in the art to which the utility model belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods Replacement, but will not deviate from the spirit of the utility model or go beyond the scope defined by the appended claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010202701075U CN201726176U (en) | 2010-07-20 | 2010-07-20 | Charge control circuit with bidirectional reverse connection protection for storage batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010202701075U CN201726176U (en) | 2010-07-20 | 2010-07-20 | Charge control circuit with bidirectional reverse connection protection for storage batteries |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201726176U true CN201726176U (en) | 2011-01-26 |
Family
ID=43494529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010202701075U Expired - Lifetime CN201726176U (en) | 2010-07-20 | 2010-07-20 | Charge control circuit with bidirectional reverse connection protection for storage batteries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201726176U (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101888109A (en) * | 2010-07-20 | 2010-11-17 | 衡阳中微科技开发有限公司 | Storage battery charge control circuit adopting two-way reverse connecting protection |
CN104238593A (en) * | 2014-09-17 | 2014-12-24 | 张静 | Novel efficient temperature controller |
CN104377685A (en) * | 2014-12-04 | 2015-02-25 | 安徽巨一自动化装备有限公司 | Motor controller anti-reverse-connection and anti-back-flow redundancy power supply circuit for electric car |
CN104617562A (en) * | 2015-02-16 | 2015-05-13 | 中国北方车辆研究所 | Vehicle inverted connection proof device |
CN104821543A (en) * | 2015-05-19 | 2015-08-05 | 中国兵器工业集团第二一四研究所苏州研发中心 | Device with function of isolation DC/DC power supply input under-voltage or power-off protection |
CN109390904A (en) * | 2017-08-02 | 2019-02-26 | 罗伯特·博世有限公司 | The method of reversed polarity protection circuit equipment and operation reversed polarity protection circuit equipment |
-
2010
- 2010-07-20 CN CN2010202701075U patent/CN201726176U/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101888109A (en) * | 2010-07-20 | 2010-11-17 | 衡阳中微科技开发有限公司 | Storage battery charge control circuit adopting two-way reverse connecting protection |
CN104238593A (en) * | 2014-09-17 | 2014-12-24 | 张静 | Novel efficient temperature controller |
CN104377685A (en) * | 2014-12-04 | 2015-02-25 | 安徽巨一自动化装备有限公司 | Motor controller anti-reverse-connection and anti-back-flow redundancy power supply circuit for electric car |
CN104377685B (en) * | 2014-12-04 | 2017-12-19 | 安徽巨一自动化装备有限公司 | The redundant power supply circuit that a kind of electric machine controller for motor vehicle reverse connection preventing pours in down a chimney |
CN104617562A (en) * | 2015-02-16 | 2015-05-13 | 中国北方车辆研究所 | Vehicle inverted connection proof device |
CN104821543A (en) * | 2015-05-19 | 2015-08-05 | 中国兵器工业集团第二一四研究所苏州研发中心 | Device with function of isolation DC/DC power supply input under-voltage or power-off protection |
CN109390904A (en) * | 2017-08-02 | 2019-02-26 | 罗伯特·博世有限公司 | The method of reversed polarity protection circuit equipment and operation reversed polarity protection circuit equipment |
CN109390904B (en) * | 2017-08-02 | 2022-05-24 | 罗伯特·博世有限公司 | Reverse polarity protection circuit arrangement and method for operating a reverse polarity protection circuit arrangement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101888109B (en) | Storage battery charge control circuit adopting two-way reverse connecting protection | |
CN202083915U (en) | Button switch control circuit with zero standby power consumption | |
CN201898330U (en) | Reverse-connection-preventive circuit | |
CN201726176U (en) | Charge control circuit with bidirectional reverse connection protection for storage batteries | |
CA3097809C (en) | Nmos switch driving circuit and power supply device | |
CN202384752U (en) | Switching power supply overcurrent protection circuit | |
CN202663092U (en) | Circuit protecting battery against overcharge | |
CN102904329B (en) | Electric power management circuit | |
CN103024973B (en) | LED (Light-Emitting Diode) lamp and overcurrent protection circuit thereof | |
WO2017020782A1 (en) | Battery charging and discharging control circuit and battery charging and discharging system | |
CN214153992U (en) | Control circuit for realizing load switch control and detection protection of single-chip microcomputer IO port | |
CN210517839U (en) | Charging backflow prevention circuit | |
CN101420123B (en) | Solar energy controller preventing reverse connection of accumulator | |
CN218300991U (en) | Reverse connection prevention battery charging circuit and reverse connection prevention charger | |
CN203481904U (en) | Charger with battery reverse connection detection and protection functions | |
CN205070581U (en) | Photovoltaic charging circuit | |
CN106533409B (en) | Zero power consumption control device of dust collection cup lithium battery | |
CN204597770U (en) | A kind of anti-error-polarity connection device for photovoltaic DC-to-AC converter | |
CN205320053U (en) | Quick break -make direct current solid state relay | |
CN204190358U (en) | A kind of LED power protective circuit turning off PWM chip and export | |
CN211127763U (en) | NMOS switch drive circuit and power supply device | |
CN104617773A (en) | Positive-negative automatic conversion circuit and power output module | |
CN209046307U (en) | power supply parallel output circuit | |
CN103354350B (en) | A kind of voltage protection method for single lithium battery | |
CN206250742U (en) | A kind of output short circuit protection circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20110126 Effective date of abandoning: 20130227 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20110126 Effective date of abandoning: 20130227 |
|
RGAV | Abandon patent right to avoid regrant |