CN201673134U - 一种测定土壤原位蒸发量的传感器 - Google Patents

一种测定土壤原位蒸发量的传感器 Download PDF

Info

Publication number
CN201673134U
CN201673134U CN2010201965339U CN201020196533U CN201673134U CN 201673134 U CN201673134 U CN 201673134U CN 2010201965339 U CN2010201965339 U CN 2010201965339U CN 201020196533 U CN201020196533 U CN 201020196533U CN 201673134 U CN201673134 U CN 201673134U
Authority
CN
China
Prior art keywords
probe
temperature sense
probes
soil
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010201965339U
Other languages
English (en)
Inventor
任图生
张晓�
陆森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN2010201965339U priority Critical patent/CN201673134U/zh
Application granted granted Critical
Publication of CN201673134U publication Critical patent/CN201673134U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本实用新型涉及一种测定土壤原位蒸发量的传感器,包括并排布置在探针手柄中的七根温度感应探针和四根加热探针,从一端起率先布置三根温度探针,然后依次间隔布置加热探针和温度探针,三根紧邻的温度探针之间间距为1mm,相邻加热探针与温度探针之间间距为6mm;温度探针伸出手柄的有效长度为20mm,加热探针比温度探针长20mm;加热探针内置热电偶和电阻丝,其中热电偶距加热探针顶端20mm,电阻丝伸入到顶端;温度探针内置热电偶一种元件,伸入到探针顶端。本实用新型具有原位、扰动小、自动化程度高、便捷等优点,可以自动测定土壤不同深度的地温动态和土壤热特性,可以应用于研究土壤中的水、热、盐耦合传输过程。

Description

一种测定土壤原位蒸发量的传感器
技术领域
本实用新型涉及一种传感器,特别是关于一种测定土壤原位蒸发量的传感器。
背景技术
目前常用的土壤表面蒸发测定技术主要有蒸渗仪法、水量平衡法、波文比能量平衡法、涡度相关法和空气动力学方法,也可以利用Penman-Monteith公式等和遥感技术估测区域蒸散。但是这些方法获得的都是地表以上而不是土壤中的蒸发量,也无法得到近地面蒸发状况。
由于土壤特性的时空变异性,对土壤含水量、温度、热特性以及其它物理参数的动态监测是土壤学研究的重要课题。利用热脉冲技术测定土壤温度和热特性是目前广泛采用的一项技术。
热脉冲技术是指:通过对加热探针施以较短时长的直流电流,利用其两侧的温度感应器检测温度变化。在已知脉冲时长、探针间距和温度随时间的变化值后,通过求解各向同性的热传导方程,反求得到土壤的热物理参数,如热导率、热容量、热扩散系数等。
利用热脉冲技术和潜热通量技术计算土壤的蒸发量:就是指在已测定土壤各层热导率的情况下,通过热电偶感应探针准确测定各层地温动态,从而计算获取土壤各层热通量;然后在热脉冲技术获取土壤热容量的基础上,利用监测的地温动态获取土壤热储量变化,最终利用热量平衡原理,计算得到各层的潜热通量,并换算为土壤蒸发量。在新的研究领域内,如何更加准确地测定各层潜热通量,是有待解决的一项技术课题。
发明内容
针对上述问题,本实用新型的目的是提供一种测定土壤原位蒸发量的传感器,该传感器更加有助于应用热脉冲技术和潜热通量技术获取土壤的蒸发量。
为实现上述目的,本实用新型采取以下技术方案:一种测定土壤原位蒸发量的传感器,其特征在于:它包括七根温度感应探针和四根加热探针,并排布置在探针手柄中,从手柄的一端起,率先并排布置三根温度感应探针,然后依次间隔布置加热探针和温度感应探针,三根并排布置的温度感应探针之间间距为1mm,第一根所述加热探针与三根并排温度感应探针中紧邻的一根间距为4mm,其余相邻加热探针与温度感应探针之间间距为6mm;所述温度感应探针伸出手柄的有效长度为20mm,所述加热探针比温度感应探针的有效长度长20mm;所述加热探针内置热电偶和电阻丝两种元件,其中热电偶距加热探针顶端的距离为20mm,电阻丝伸入到加热探针的顶端;所述温度感应探针内置热电偶一种元件,所述热电偶伸入到温度感应探针的顶端。
所述手柄紧贴所述三根并排布置的温度感应探针处的壁厚为1mm。
各所述温度感应探针及加热探针中的元件由不锈钢管保护,在钢管与元件之间的空隙间填充有高热导率材料。
对于所述温度感应探针来讲,热电偶插入到所述钢管的底端,对于所述加热探针来讲,热电偶头部与钢管顶端之间留有20mm空间,电阻丝插入到钢管的顶端。
所述加热探针中的电阻丝的总阻值为500~1000Ωm-1
所述热电偶为E型、K型、T型之一。
所述手柄是使用聚氯乙烯PVC材料灌入模具在探针尾部凝固形成。
本实用新型由于采取以上技术方案,其具有以下优点:1、本实用新型的传感器具有原位、扰动小、自动化程度高、便捷等优点,最重要的是它可以自动测定土壤不同深度的地温动态和土壤热特性,可以应用于研究土壤中的水、热、盐耦合传输过程。2、本实用新型传感器体积较小,方便田间应用。3、本实用新型传感器设计依据能量平衡原理,材料价格较低,便于科研和气象台站推广使用。
附图说明
图1是土壤中的热量平衡计算模式图
图2是本实用新型传感器结构图
图3是利用本实用新型在某一时期内测定的土壤不同深度的原位蒸发速率示意图
具体实施方式
下面结合附图和实施例,对本实用新型进行详细的说明。
本实用新型利用热脉冲技术,将土壤温度测定与热特性测定的探针集成在一起,利用土壤中能量平衡原理,基于土壤蒸发伴随的热量变化,自动测定土壤表层以下各个土层中的原位土壤蒸发量。同时,本实用新型传感器还可以自动测定土壤不同深度的土壤温度和土壤热特性,极大地减轻了工作量,具有原位、扰动小、自动化程度高等优点,在研究土壤中的水、热、盐耦合传输过程中具有重要的应用潜力。
1、热脉冲技术工作原理
依据热传导原理,土壤中的热量平衡方程为(计算模式如图1所示):
(H1-H2)-ΔS=LE    (1)
其中,H1和H2分别为土壤内部两个不同深度的热通量(W m-2),ΔS为热储量变化(W m-2),LE为蒸发潜热(W m-2),L是汽化潜热(J m-3),已知量,E为蒸发量(mmh-1)。
通过Fourier定律可以得到土壤各层热通量:
H=-λ×dT/dz    (2)
其中,λ为土壤热导率(W m-1K-1),dT/dz为温度梯度。
土壤中的热储量变化ΔS可以利用下式计算:
ΔS = Σ i = 1 N C i , j - 1 - T i , j - T i , j - 1 t i - t j - 1 ( z i - z i - 1 ) - - - ( 3 )
其中i和j代表不同的土层和时间,C为土壤热容量(MJ m-3-1)。
因此,只要测定土壤各层的温度和热特性,就可以计算出其热通量和热储量变化,继而利用热平衡方程求出土壤各层的蒸发速率E。
2、传感器设计
如图2所示,根据上述原理,本实用新型提供的土壤原位蒸发测定传感器主要由十一根探针组成,其中包括七根温度感应探针1、四根加热探针2。加热探针2比温度感应探针1的有效长度长20mm。温度感应探针1内部只有热电偶11一种元件,加热探针2内部包含热电偶21和电阻丝22两种元件,热电偶用于测定各层地温动态,绝缘电阻丝用以模拟线型热源。探针中各元件的外部均由钢管保护,在钢管与内部元件之间填充有高热导率材料Omegabond101(0mega Engineering,Stamford,CT,美国)。对于温度感应探针1来讲,热电偶11一直插入到钢管12的顶端,对于加热探针2来讲,热电偶21插入到钢管23的中间部位,热电偶21头部与钢管23顶端之间留有20mm空间,电阻丝22则一直插入到钢管23顶端。例如在图2所示的实施例中,温度感应探针1中钢管3的长度为30mm,加热探针2中钢管3的长度为50mm,制作时,将热电偶和电阻丝放入各个不锈钢钢管中,对于温度感应探针1来讲,钢管12的长度为30mm,热电偶11的头部一直插入到钢管的顶端,也即相当于热电偶11插入到钢管中的深度为30mm,热电偶11的尾部位于钢管12底端;对于加热探针2来讲,钢管23的长度为50mm,热电偶21插入到钢管的深度为30mm,也即热电偶21头部与钢管底端之间还留有20mm空间,电阻丝22则一直插入到钢管顶端,即插入深度为50mm。热电偶和/或电阻丝插好后,向钢管内部灌入高热导率材料Omegabond101(Omega Engineering,Stamford,CT,美国)将其固定,并保证各种元件与管壁绝缘,即完成探针的制作。
本发明中,要求每一加热探针2中的电阻丝22的总阻值为500~1000Ωm-1。例如对于直径为75-μm,材料为镍铬电阻合金(enameled Evanohm wire,Wilbur B.Driver Co.,Newark,美国)的电阻丝,其电阻为222Ωm-1,电阻丝就要在钢管中折成4根,使得该加热探针的热源强度为888Ωm-1
上述实施例中,热电偶为E型、K型、T型热电偶均可以。
在各个探针制作完成后,使用聚氯乙烯PVC材料灌入手柄模具中,使得其在探针尾部制作探针手柄3。探针手柄3用于固定各个探针,使各个探针并排设置。各探针的排布规则如下:
1)所有温度感应探针1露出手柄3的长度为20mm;所有加热探针2露出手柄3的长度为40mm,即加热探针2比温度感应探针1的有效长度长20mm。
2)位于土壤表层设置三根并排的温度感应探针1,三根相邻探针之间的垂直间距,以及紧贴第一根探针的手柄边缘的壁厚均为1mm。
3)在三根并排设置的温度感应探针1之下,按长、短间隔排布其余的四根加热探针2和四根温度感应探针1,其中长、短间隔排布的相邻加热探针和温度感应探针之间的垂直间距为6mm,第一根加热探针2与三根并排温度感应探针1中紧邻的一根垂直间距为4mm。
本发明设置表层三根温度感应探针的目的是考虑到表层蒸发的变异性最大,增加表层的观测密度。
应用本传感器测定的工作程序是:
第一步,传感器田间安装。在田间土壤中挖一长约50mm、宽约100mm、深约60mm的土坑,将传感器沿着土壤表层水平塞入土壤中(最上层探针正好位于土表)。
第二步,将传感器与数据采集器相连,通过数据采集器完成加热和温度采集。
第三步,将数据采集器中的数据转移到计算机中,利用热量平衡方法计算获取农田土壤不同层次的原位土壤蒸发量。
下面是应用本传感器进行土壤蒸发量测定的具体案例:
2009年5月,在中国农业大学西校区科学园利用原位土壤蒸发传感器进行了土壤蒸发测定,供试土壤为砂土。
田间安置:在田间挖一个小土坑(50mm、宽100mm、深60mm),将蒸发测定传感器竖直放入土中,三根温度感应探针位于表层,保证其表面与土壤表面几乎持平,将土坑填平。将配套的数据采集器、电池等测量仪器装入防雨箱中。仪器安置完毕后,在土面均匀浇水直至土壤达到饱和状态,然后观测土壤逐渐变干的蒸发过程。
测定过程:土壤温度测定均从整点开始,5分钟测1次,所有温度采集均由数据采集器程序控制。土壤热脉冲测定在整点后1分钟开始,4小时循环1次,每次完成1个加热针的脉冲测定(即0:00h第一根加热针加热,1:00h第三根加热针加热,2:00h第二根加热针加热,3:00h第四根加热针加热,依次循环),每次加热时间为8s,测定间隔为1s,共180s。
2009年第149日到第152日土壤剖面上各层次蒸发速率的测定结果如图3所示。在晴天条件下,土壤蒸发呈现明显的日变化规律:夜间蒸发较小,上午开始变大,在10点至14点出现蒸发率峰值,随后又逐渐降低。蒸发初期(土壤很湿,第149日),蒸发速率最大值发生在7.3mm处,达到0.21mm h-1;第150日,13.5mm处蒸发速率达到最大值,为0.24mm h-1,超过7.3mm处(0.14mm h-1),达到最大;到第151日,19.6mm处的蒸发速率达到最高,为0.18mm h-1。在30mm以下深度,土壤蒸发量很微小。
这些结果表明,土壤内部发生着明显的原位土壤蒸发,本实用新型传感器能够测定土壤各个层次的蒸发动态。
值得说明的是,上述实施例仅用于说明本实用新型,其中各部件的结构、连接方式等都是可以有所变化的,凡是在本实用新型技术方案的基础上进行的等同变换和改进,均不应排除在本实用新型的保护范围之外。

Claims (10)

1.一种测定土壤原位蒸发量的传感器,其特征在于:它包括七根温度感应探针和四根加热探针,并排布置在探针手柄中,从手柄的一端起,率先并排布置三根温度感应探针,然后依次间隔布置加热探针和温度感应探针,三根并排布置的温度感应探针之间间距为1mm,第一根所述加热探针与三根并排温度感应探针中紧邻的一根间距为4mm,其余相邻加热探针与温度感应探针之间间距为6mm;
所述温度感应探针伸出手柄的有效长度为20mm,所述加热探针比温度感应探针的有效长度长20mm;
所述加热探针内置热电偶和电阻丝两种元件,其中热电偶距加热探针顶端的距离为20mm,电阻丝伸入到加热探针的顶端;
所述温度感应探针内置热电偶一种元件,所述热电偶伸入到温度感应探针的顶端。
2.如权利要求1所述的一种测定土壤原位蒸发量的传感器,其特征在于:所述手柄紧贴所述三根并排布置的温度感应探针处的壁厚为1mm。
3.如权利要求1或2所述的一种测定土壤原位蒸发量的传感器,其特征在于:各所述温度感应探针及加热探针中的元件由不锈钢管保护,在钢管与元件之间的空隙间填充有高热导率材料。
4.如权利要求3所述的一种测定土壤原位蒸发量的传感器,其特征在于:对于所述温度感应探针来讲,热电偶插入到所述钢管的底端,对于所述加热探针来讲,热电偶头部与钢管顶端之间留有20mm空间,电阻丝插入到钢管的顶端。
5.如权利要求1或4所述的一种测定土壤原位蒸发量的传感器,其特征在于:所述加热探针中的电阻丝的总阻值为500~1000Ωm-1
6.如权利要求3所述的一种测定土壤原位蒸发量的传感器,其特征在于:所述加热探针中的电阻丝的总阻值为500~1000Ωm-1
7.如权利要求1或2或4或6所述的一种测定土壤原位蒸发量的传感器,其特征在于:所述热电偶为E型、K型、T型之一。
8.如权利要求3所述的一种测定土壤原位蒸发量的传感器,其特征在于:所述热电偶为E型、K型、T型之一。
9.如权利要求1或2或4或6或8所述的一种测定土壤原位蒸发量的传感器,其特征在于:所述手柄是使用聚氯乙烯PVC材料灌入模具在探针尾部凝固形成。
10.如权利要求3所述的一种测定土壤原位蒸发量的传感器,其特征在于:所述手柄是使用聚氯乙烯PVC材料灌入模具在探针尾部凝固形成。
CN2010201965339U 2010-05-17 2010-05-17 一种测定土壤原位蒸发量的传感器 Expired - Fee Related CN201673134U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010201965339U CN201673134U (zh) 2010-05-17 2010-05-17 一种测定土壤原位蒸发量的传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010201965339U CN201673134U (zh) 2010-05-17 2010-05-17 一种测定土壤原位蒸发量的传感器

Publications (1)

Publication Number Publication Date
CN201673134U true CN201673134U (zh) 2010-12-15

Family

ID=43330546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010201965339U Expired - Fee Related CN201673134U (zh) 2010-05-17 2010-05-17 一种测定土壤原位蒸发量的传感器

Country Status (1)

Country Link
CN (1) CN201673134U (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324200A (zh) * 2011-04-26 2012-01-18 中国农业大学 模拟土壤大气蒸发能力装置
CN104730104A (zh) * 2015-03-11 2015-06-24 中国科学技术大学 一种用于氚增殖剂球床热导率的测量平台
CN105067474A (zh) * 2015-07-27 2015-11-18 北京师范大学 一种原位土壤蒸发量测量装置
CN105067497A (zh) * 2015-07-27 2015-11-18 北京师范大学 一种土壤水分入渗测量装置
CN110057854A (zh) * 2019-04-29 2019-07-26 河海大学 一种模拟干旱沙漠蒸发影响临界深度的试验方法
CN110118795A (zh) * 2019-03-28 2019-08-13 西北农林科技大学 一种复合生态系统蒸散量测量系统及其操作方法
CN113008935A (zh) * 2021-03-10 2021-06-22 中国农业大学 一种土壤含水量、热特性和电导率的原位测定装置及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324200A (zh) * 2011-04-26 2012-01-18 中国农业大学 模拟土壤大气蒸发能力装置
CN104730104A (zh) * 2015-03-11 2015-06-24 中国科学技术大学 一种用于氚增殖剂球床热导率的测量平台
CN104730104B (zh) * 2015-03-11 2017-10-03 中国科学技术大学 一种用于氚增殖剂球床热导率的测量平台
CN105067474A (zh) * 2015-07-27 2015-11-18 北京师范大学 一种原位土壤蒸发量测量装置
CN105067497A (zh) * 2015-07-27 2015-11-18 北京师范大学 一种土壤水分入渗测量装置
CN105067474B (zh) * 2015-07-27 2017-08-08 北京师范大学 一种原位土壤蒸发量测量装置
CN110118795A (zh) * 2019-03-28 2019-08-13 西北农林科技大学 一种复合生态系统蒸散量测量系统及其操作方法
CN110057854A (zh) * 2019-04-29 2019-07-26 河海大学 一种模拟干旱沙漠蒸发影响临界深度的试验方法
CN113008935A (zh) * 2021-03-10 2021-06-22 中国农业大学 一种土壤含水量、热特性和电导率的原位测定装置及方法

Similar Documents

Publication Publication Date Title
CN201673134U (zh) 一种测定土壤原位蒸发量的传感器
Sayde et al. Feasibility of soil moisture monitoring with heated fiber optics
Gil-Rodríguez et al. Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters
CN113433163B (zh) 导热系数的测试方法及其测试系统
CN103454309B (zh) 一种土壤含水率分布式测量方法及系统
Bense et al. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux
Conway et al. Summer temperature profiles within supraglacial debris on Khumbu Glacier, Nepal
CN104568226B (zh) 一种海底热流长期观测探针及其使用方法
CN103134602A (zh) 测量地埋管地温装置及测量方法
CN110118795B (zh) 一种复合生态系统蒸散量测量系统及其操作方法
Iwata et al. Comparison of soil frost and thaw depths measured using frost tubes and other methods
CN107044866A (zh) 土壤温度、水分和电导率测量装置
CN110297017A (zh) 冻融循环下土体电参数时空分布室内测试系统及工作方法
CN113008935A (zh) 一种土壤含水量、热特性和电导率的原位测定装置及方法
CN105277589B (zh) 基于热电偶监测叶温升高的作物水分亏缺检测装置及其检测方法
CN104964997A (zh) 一种基于物性匹配快速测定材料中异质含量的方法
CN109374670A (zh) 一种土壤热导率剖面特征测量仪
CN106199061A (zh) 一种基于热脉冲法测量土壤水流速的装置及方法
CN209311375U (zh) 一种土壤热导率剖面特征测量仪
AU2020102910A4 (en) A measuring instrument for soil thermal conductivity profile characteristics
CN102854214A (zh) 土壤热物性参数测量装置及测量方法
AU2020102764A4 (en) Evapotranspiration measurement system of complex ecosystem and operation method thereof
CN206573161U (zh) 一种土壤温度、水分和电导率测量装置
CN209148174U (zh) 一种土壤温度廓线仪
Giese et al. Reconstructing thermal properties of firn at Summit, Greenland, from a temperature profile time series

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101215

Termination date: 20160517