CN201656716U - 14-Pole three-phase asynchronous motor - Google Patents

14-Pole three-phase asynchronous motor Download PDF

Info

Publication number
CN201656716U
CN201656716U CN2010201657041U CN201020165704U CN201656716U CN 201656716 U CN201656716 U CN 201656716U CN 2010201657041 U CN2010201657041 U CN 2010201657041U CN 201020165704 U CN201020165704 U CN 201020165704U CN 201656716 U CN201656716 U CN 201656716U
Authority
CN
China
Prior art keywords
rotor
stator
pole
punching
phase asynchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010201657041U
Other languages
Chinese (zh)
Inventor
余海刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUANGXIN ELECTRICAL MOTOR Co Ltd SHANGYU OF ZHEJIANG
Original Assignee
CHUANGXIN ELECTRICAL MOTOR Co Ltd SHANGYU OF ZHEJIANG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUANGXIN ELECTRICAL MOTOR Co Ltd SHANGYU OF ZHEJIANG filed Critical CHUANGXIN ELECTRICAL MOTOR Co Ltd SHANGYU OF ZHEJIANG
Priority to CN2010201657041U priority Critical patent/CN201656716U/en
Application granted granted Critical
Publication of CN201656716U publication Critical patent/CN201656716U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The utility model discloses a 14-pole three-phase asynchronous motor, wherein the multiplication product of the slot number of the stator sheet and the tooth width of the stator is 30 to 42 times of the height of the yoke part of the stator; the multiplication product of the slot number of the rotor sheet and the tooth width of the rotor is 32 to 40 times of the height of the yoke part of the rotor; the stator/rotor slot combination is 42/60, 84/60 or 126-106; the slot number of each phase of each pole of the stator is an integer; the rotor is rat cage-shaped; when the slot number of the stator is less than that of the rotor, the distance of the oblique slots of the rotor is equal to one stator pitch, on the contrary contrarily, the distance of the oblique slots of the stator is equal to one rotor pitch. The utility model achieves the effects of uniform structure of the stator/rotor sheet, uniform and reasonable distribution of magnetic flux density of the tooth and the yoke of the stator, and uniform and reasonable distribution of magnetic flux density of the tooth and the yoke of the rotor; and can effectively reduce the iron consumption of the stator/rotor sheet, reduce the heating of the motor and reduce the temperature rise of the winding.

Description

A kind of 14 pole three phase asynchronous motors
Technical field
The utility model relates to a kind of motor, especially a kind of 14 pole three phase asynchronous motors.
Background technology
At present, domestic threephase asynchronous technology be widely used in 2 utmost points, 4 utmost points, 6 utmost points, 8 utmost points, 10 utmost points, 12 extremely in.In the prior art, the groove number of 6 utmost point stator punchings and the product of the stator facewidth are 10~18 times of stator yoke portion height, and the groove number of rotor punching and the product of the rotor facewidth are 7~16 times of rotor yoke height; The groove number of 8 utmost point stator punchings and the product of the stator facewidth are 15~25 times of stator yoke portion height, and the groove number of rotor punching and the product of the rotor facewidth are 8~23 times of rotor yoke height; The groove number of 10 utmost point stator punchings and the product of the stator facewidth are 24~27 times of stator yoke portion height, and the groove number of rotor punching and the product of the rotor facewidth are 9~24 times of rotor yoke height; The groove number of 12 utmost point stator punchings and the product of the stator facewidth are 25~28 times of stator yoke portion height, and the groove number of rotor punching and the product of the rotor facewidth are 10~26 times of rotor yoke height; And for the motor of 14 utmost points, then use the rotor punching of some numbers of poles of existing 6~12 utmost points to make, illustrated in figures 1 and 2 as accompanying drawing.Fig. 1 is 12 utmost point stator laminating structures of prior art, be applied in 14 pole three phase asynchronous motors, when the stator teeth magnetic flux density is that (for example: in the time of 15500 Gausses), the magnetic flux density of stator yoke portion then is 8920~10300 Gausses to a reasonable value, obviously the magnetic circuit imbalance.Fig. 2 is 10 utmost point rotor punching structures of prior art, be applied in 14 pole three phase asynchronous motors, when rotor tooth portion magnetic flux density is that (for example: in the time of 15500 Gausses), the magnetic flux density of rotor yoke then is 3500~9300 Gausses to a reasonable value, obviously the magnetic circuit imbalance.If use 8 utmost point rotor punching structure fabrications, then the magnetic flux density of rotor yoke will be lower, and magnetic circuit will be more uneven.As seen, the motor that adopts the rotor punching of some numbers of poles of existing 6~12 utmost points to make 14 utmost points causes magnetic circuit distributed pole imbalance, the magnetic flux density of stator teeth magnetic circuit is too saturated and magnetic flux density stator yoke portion magnetic circuit is low excessively, and magnetic material is used fully.Sometimes for the magnetic flux density that makes the stator teeth magnetic circuit meets the demands, the core length that extends of having to causes the waste of material, the increase of cost.There is the above-mentioned magnetic circuit unbalanced problem that distributes equally in rotor magnetic circuit.
In the prior art, rotor groove commonly used is combined with 36/28,48/44,54/58/, 72/58,72/86,72/84,90/72,90/106 etc., is applied to that every extremely every phase groove number is a mark in 14 pole motors; For example, number of stator slots Q1=90, then the every extremely every phase groove number of stator (q=Q1/m/2P=90/3/14=15/7) is a mark.When every extremely every phase groove number was mark, the harmonic wave content in the winding was abundant unusually, and electromagnetic noise is remarkable during the motor operation; Because the increase of harmonic wave content causes the increase of motor harmonic leakage reactance, stray loss to increase, motor starting moment, maximum moment and motor operational efficiency descend simultaneously; In addition, when every extremely every phase groove number is mark, be asymmetric geometry between three phase windings, cause the stator winding rule to increase man-hour, error rate increases.
And the groove of rotor punching of using some numbers of poles of existing 6~12 utmost points cooperates that to be used for 14 pole motors improper, also may produce electromagnetic noise, or produces bad phenomenon such as additional torque during operation.
Summary of the invention
The utility model provides a kind of reasonable in design, design that can fully satisfy 14 pole three phase asynchronous motor requirements.
14 pole three phase asynchronous motors of the present utility model, wherein, the groove number of stator punching and the product of the stator facewidth are 30~42 times of stator yoke portion height.Setting the pilot trench number is Q1, and the stator facewidth is bt1, and the stator yoke height is hj1, and Q1 * bt1=(30~42) hj1 is then arranged.Like this, make that the stator teeth magnetic flux density is 1.0~1.4 times of stator yoke portion magnetic flux density, motor stator punching is used adequately reasonably.When the stator teeth magnetic flux density is that (for example: in the time of 15500 Gausses), the magnetic flux density of stator yoke portion then is 11070~15500 Gausses to a reasonable value, obviously the magnetic circuit relative equilibrium.
14 pole three phase asynchronous motors of the present utility model, wherein, the groove number of rotor punching and the product of the rotor facewidth are 32~40 times of rotor yoke height.If the rotor number is Q2, the rotor facewidth is bt2, and the rotor yoke height is hj2, and Q2 * bt2=(32~40) hj2 is then arranged.Like this, make that rotor tooth portion magnetic flux density is 1.05~1.32 times of rotor yoke magnetic flux density, motor rotor punching sheet is used adequately reasonably.When rotor tooth portion magnetic flux density is that (for example: in the time of 15500 Gausses), the magnetic flux density of rotor yoke then is 11740~14760 Gausses to a reasonable value, obviously the magnetic circuit relative equilibrium.
Simultaneously, the product of the groove number of stator punching and the stator facewidth is equaled or be substantially equal to the groove number of rotor punching and the product of the rotor facewidth.Like this, also relative equilibrium between the magnetic circuit of stator punching and the rotor punching magnetic circuit.
The Q1 of the utility model motor stator punching * bt1 ÷ hj1 parameter value and rotor punching Q2 * bt2 ÷ hj2 parameter value is the Reasonable Parameters value that is suitable for 14 utmost point motors, Q1 * bt1 ≈ Q2 * bt2, make the magnetic circuit relative equilibrium of magnetic circuit relative equilibrium, stator and rotor of magnetic circuit relative equilibrium, rotor tooth portion and yoke portion of stator teeth and yoke portion, magnetic material is fully utilized, thereby reduces cost, reduce iron loss, raising performance.
14 pole three phase asynchronous motors of the present utility model, wherein, it is 42/60,84/60,126/106 that the groove of fixed/rotor cooperates, the every extremely every phase groove number of stator is an integer.That is: Q1/Q2 is 42/60,84/60,126/106, and (q=Q1/m/2P is Q1=84 for example, m=3,2P=14 for the every extremely every phase groove number of stator.Q=84/3/14=2 then) be integer.Like this, the each harmonic content of motor is very little, thereby has overcome the bad phenomenon of prior art to 14 utmost point motor performances, has fully satisfied the requirement of motor to combination properties such as vibration, noise, efficient, moments.
14 pole three phase asynchronous motors of the present utility model, wherein, rotor is a mouse-cage type, (Q1<Q2), the distance of rotor chute is 1 stator tooth distance less than the rotor number when number of stator slots; (Q1>Q2), the distance of rotor chute is 1 rotor slot-pitch greater than the rotor number when number of stator slots.That is: setting sub-internal diameter is Di1, and rotor diameter is D2, and stator tooth is apart from being t1, and rotor slot-pitch is t2, and rotor chute is sk, then when Q1<Q2, gets sk=t1=π * Di1 ÷ Q1; When Q1>Q2, get sk=t2=π * D2 ÷ Q2.Like this so that weaken motor stator, rotor tooth harmonic wave.
14 pole three phase asynchronous motors of the present utility model, wherein, described stator punching is provided with several stator slots, is provided with the punching tooth between the adjacent stators groove, and the punching tooth is parallel teeth or substantially parallel tooth.
Description of drawings
Fig. 1 is the stator laminating structure of motor schematic diagram of prior art;
Fig. 2 is the motor rotor punching sheet structural representation of prior art;
Fig. 3 is 14 pole three phase asynchronous motor stator laminating structure schematic diagrames of the present utility model;
Fig. 4 is 14 pole three phase asynchronous motor rotor punching structural representations of the present utility model;
It is hj2 rotor yoke height that the high Q2 rotor of Q1 number of stator slots bt1 stator facewidth hj1 stator yoke is counted the bt2 rotor facewidth.
Embodiment
Describe embodiment of the present utility model in detail below with reference to accompanying drawing.
Stator laminating structure of the present utility model as shown in Figure 3, the groove number of stator punching and the product of the stator facewidth are 30~42 times of stator yoke portion height, that is: Q1 * bt1=(30~42) hj1.Wherein, stator punching comprises between several stator slots, adjacent stators groove and is provided with the punching tooth that the punching tooth is parallel teeth or is essentially parallel teeth.Compare with stator punching of the present utility model, the Q1 of the prior art shown in the accompanying drawing 1 * bt1 ÷ hj1 parameter value is obviously little, the height hj1 of the yoke portion relative stator facewidth bt1 that reflects stator punching of the prior art is very big, the magnetic circuit of stator teeth and yoke portion is then unbalanced, and magnetic material can not be fully utilized.
Rotor punching structure of the present utility model as shown in Figure 4, the groove number of rotor punching and the product of the rotor facewidth are 32~40 times of rotor yoke height, that is: Q2 * bt2=(32~40) hj2.Compare with rotor punching of the present utility model, the rotor punching Q2 of the prior art shown in the accompanying drawing 2 * bt2 ÷ hj2 parameter value is obviously little, bt2 is very big than the utility model motor stamping Q2 * relative rotor facewidth of bt2 ÷ hj2 parameter value to reflect the yoke portion height of rotor punching of the prior art, the magnetic circuit of rotor tooth portion and yoke portion is then unbalanced, and magnetic material can not be fully utilized.
Table 1 is 5 14 pole motor stator winding harmonic analyses for the 90 groove spans of stator punching of using prior art.Abundant unusually by the visible harmonic content of table 1, FP=100 is with in the interior harmonic wave, except that number of pole-pairs is 7 first-harmonic, also contain low-order harmonic 1,5, high order harmonic components 11,13,19,23,25,29,31,35,37,41,43,47,49,51,53,55,59,61,65,67,71,73,79,83,85,89,91,97 etc. are applied to then vibrate in the motor and electromagnetic noise increase, loss of electric machine increase, decrease in efficiency, electric motor starting and maximum moment reduce.
Table 1:90 groove span is 5 14 pole motor stator winding harmonic analyses
Q1=90?2P=14?Y=5?Q1=15/7?G1=100K=0
P=7?Kyp=.9397?KqpA=.9551?KqpB=.9551?KqpC=.9551?FP=100?FPF=0
V KQV PHAN Kqv+ Kqv- Kyv Fv+ Fv-
1 .076 8 .07604 0 .17365 10.29816 0
3 .068 24 0 0 .5 0 0
5 .044 40 0 .04351 .76604 0 5.199498
7 .955 56 .95512 0 .93969 100 0
9 .082 72 0 0 1 0 0
11 .035 88 0 .03468 .93969 0 2.310377
13 .089 -76 .08898 0 .76604 4.089466 0
15 .133 120 0 0 .5 0 0
17 .034 136 0 .03366 .17365 0 .268164
19 .046 -28 .04634 0 -.17365 -.330304 0
21 .638 168 0 0 -.5 0 0
23 .039 184 0 .03931 -.76604 0 -1.021027
25 .035 20 .03547 0 -.93969 -1.0399 0
27 .216 36 0 0 -1 0 0
29 .06 232 0 .05961 -.93969 0 -1.50646
31 .033 68 .03341 0 -.76604 -.643996 0
33 .1 84 0 0 -.5 0 0
35 .192 -80 0 .19196 -.17365 0 -.742785
37 .038 116 .03775 0 .17365 .138186 0
39 .073 132 0 0 .5 0 0
41 .138 148 0 .13779 .76604 0 2.007827
43 .054 164 .05414 0 .93969 .922798 0
45 .067 180 0 0 1 0 0
47 .054 196 0 .05414 .93969 0 .844262
49 .138 212 .13779 0 .76604 1.680019 0
51 .073 228 0 0 .5 0 0
53 .038 244 0 .03775 .17365 0 .09647
55 .192 80 .19196 0 -.17365 -.472682 0
57 .1 -84 0 0 -.5 0 0
59 .033 -68 0 .03341 -.76604 0 -.338371
61 .06 128 .05961 0 -.93969 -.716186 0
63 .216 -36 0 0 -1 0 0
65 .035 -20 0 .03547 -.93969 0 -.399961
67 .039 176 .03931 0 -.76604 -.350502 0
69 .638 192 0 0 -.5 0 0
71 .046 28 0 .04634 -.17365 0 -.088391
73 .034 224 .03366 0 .17365 .062449 0
75 .133 240 0 0 .5 0 0
77 .089 76 0 .08898 .76604 0 .690429
79 .035 -88 .03468 0 .93969 .321698 0
81 .082 -72 0 0 1 0 0
83 .955 -56 0 .95512 .93969 0 8.433735
85 .044 -40 .04351 0 .76604 .305853 0
87 .068 -24 0 0 .5 0 0
89 .076 -8 0 .07604 .17365 0 .11571
91 .076 8 .07604 0 .17365 -.113167 0
93 .068 24 0 0 -.5 0 0
95 .044 40 0 .04351 -.76604 0 -.2736580
97 .955 56 .95512 0 -.93969 -7.216495 0
99 .082 72 0 0 -1 0 0
Table 2 is 5 14 pole motor stator winding harmonic analyses for 84 groove spans of the present utility model, obviously, the each harmonic content of motor is very little, FP=100 is with in the interior harmonic wave, except that number of pole-pairs is 7 first-harmonic, there is not low-order harmonic 1,5, also have only 35,49,77,91 etc. in the high order harmonic component, so just overcome the bad phenomenon of prior art, fully satisfied the requirement of motor combination properties such as vibration, noise, efficient, moments to 14 utmost point motor performances.
Table 2: 84 groove spans of the present utility model are 5 14 pole motor stator winding harmonic analyses
Q1=842?P=14?Y=5?Q1=2/1?G1=100K=0
P=7?Kyp=.9659?KqpA=.9659?KqpB=.9659?KqpC=.9659?FP=100?FPF=0
V KQV PHAN Kqv+ Kqv- Kyv Fv+ Fv-
7 .966 45 .96593 0 .96593 100 0
21 .707 135 0 0 -.70711 0 0
35 .259 225 0 ..25882 .25882 0 1.435935
49 .259 135 .25882 0 .25882 1.025668 0
63 .707 225 0 0 -.70711 0 0
77 .966 -45 0 .96593 .96593 0 9.090909
91 .966 45 .96593 0 -.96593 -7.692308 0

Claims (7)

1. pole three phase asynchronous motor is characterized in that: the groove number of stator punching and the product of the stator facewidth are 30~42 times of stator yoke portion height.
2. 14 pole three phase asynchronous motors as claimed in claim 1 is characterized in that: the groove number of rotor punching and the product of the rotor facewidth are 32~40 times of rotor yoke height.
3. 14 pole three phase asynchronous motors as claimed in claim 1 is characterized in that: the groove number of described stator punching and the product of the stator facewidth equal or are substantially equal to the groove number of rotor punching and the product of the rotor facewidth.
4. 14 pole three phase asynchronous motors as claimed in claim 1 is characterized in that: described stator punching is provided with several stator slots, is provided with the punching tooth between the adjacent stators groove, and the punching tooth is a parallel teeth.
5. 14 pole three phase asynchronous motors as claimed in claim 1 is characterized in that: it is 42/60,84/60,126/106 that the groove of fixed/rotor cooperates, and the every extremely every phase groove number of stator is an integer.
6. 14 pole three phase asynchronous motors as claimed in claim 1 is characterized in that: when number of stator slots less than the rotor number, the distance of rotor chute is 1 stator tooth distance; When number of stator slots greater than the rotor number, the distance of rotor chute is 1 rotor slot-pitch.
7. 14 pole three phase asynchronous motors as claimed in claim 6 is characterized in that: described rotor is a mouse-cage type.
CN2010201657041U 2010-04-21 2010-04-21 14-Pole three-phase asynchronous motor Expired - Fee Related CN201656716U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010201657041U CN201656716U (en) 2010-04-21 2010-04-21 14-Pole three-phase asynchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010201657041U CN201656716U (en) 2010-04-21 2010-04-21 14-Pole three-phase asynchronous motor

Publications (1)

Publication Number Publication Date
CN201656716U true CN201656716U (en) 2010-11-24

Family

ID=43121948

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010201657041U Expired - Fee Related CN201656716U (en) 2010-04-21 2010-04-21 14-Pole three-phase asynchronous motor

Country Status (1)

Country Link
CN (1) CN201656716U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023248A (en) * 2012-12-28 2013-04-03 天津市松正电动汽车技术股份有限公司 Alternating-current asynchronous motor structure
WO2020075336A1 (en) * 2018-10-10 2020-04-16 株式会社日立産機システム Rotating electrical machine and rotating electrical machine set

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023248A (en) * 2012-12-28 2013-04-03 天津市松正电动汽车技术股份有限公司 Alternating-current asynchronous motor structure
CN103023248B (en) * 2012-12-28 2017-11-28 天津市松正电动汽车技术股份有限公司 A kind of AC induction motor structure
WO2020075336A1 (en) * 2018-10-10 2020-04-16 株式会社日立産機システム Rotating electrical machine and rotating electrical machine set
JP2020061864A (en) * 2018-10-10 2020-04-16 株式会社日立産機システム Rotary electric machine and rotary electric machine set
JP7264613B2 (en) 2018-10-10 2023-04-25 株式会社日立産機システム Rotating electric machine and rotating electric machine set

Similar Documents

Publication Publication Date Title
CN100576700C (en) Electric rotating machine
WO2016115722A1 (en) Permanent magnet synchronous motor
CN105099012A (en) High-performance permanent magnet servo motor
CN103887901A (en) Efficient motor stator made of oriented silicon steel sheets
CN210167867U (en) Stator, motor, compressor and refrigeration plant
CN105119396A (en) Mixed laminated stator core and the application thereof to remanufacturing a power motor
CN201656716U (en) 14-Pole three-phase asynchronous motor
CN106026448A (en) Brushless motor for EPS
CN104600879A (en) Stator structure of low-speed pole-slot matched permanent magnet motor based on oriented silicon steel plate
CN202076902U (en) Stator/rotor punching structure of 20 pole three-phase asynchronous motor
CN201667594U (en) 24-pole three-phase asynchronous motor
CN201656715U (en) 18-pole 3-phase asynchronous motor
CN206595871U (en) A kind of magnetic structure of permanent-magnet synchronous brushless electric machine
CN202076900U (en) Stator/rotor punching sheet structure of 16-pole three-phase asynchronous motor
CN107612258B (en) Permanent magnet synchronous motor
CN206412915U (en) A kind of direct current permanent magnetic brushless motor for electric car
CN202111543U (en) Salient pole type rotor iron core of three-phase brushless alternating-current generator
Dalcalı Cogging torque analysis in permanent magnet synchronous generators using finite elements analysis
CN202931056U (en) Permanent magnet rotor and motor
CN202183714U (en) 8/16 pole-changing multi-speed three-phase asynchronous motor
CN204886612U (en) Slot combination structure of 30 sextupole threephase asynchronous machine stators and rotor
Ahsanullah et al. Design of an interior permanent magnet synchronous machine suitable for direct drive wind turbine
CN106936236B (en) Automobile using permanent-magnetic synchronous motor rotor
CN104795914B (en) The rotor number of teeth system of selection of Low gullet torque asynchronous starting permanent magnet synchronous motor
CN204408034U (en) A kind of assembled stator structure of monodentate of low speed proximal pole groove magneto

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101124

Termination date: 20150421

EXPY Termination of patent right or utility model